(1 + 1/k)-Approximate Maximum Matching in Bipartite Graph Streams in $O(k^5)$ Passes and Improvements

Lasse Kliemann
contact: http://lasse-kliemann.name

Christian-Albrechts-Universität zu Kiel
Kiel, Germany

Joint work with:
Sebastian Eggert, Ole Kliemann, Peter Munstermann
Anand Srivastav
Semi-streaming model

Pass $\text{def}^{\text{each edge is presented to the algorithm exactly once.}}$

Goal: number of passes $O(1)$ or $O(\text{poly } k)$.

$O(n \cdot \text{poly log } n \cdot \text{poly } k)$ edges
Selected related work

Problem: maximum-cardinality matching in bipartite graphs

Model: semi-streaming, i.e., $O(n \cdot \text{poly log } n \cdot \text{poly } k)$ edges

Approximation: $(1 + 1/k) \cdot |M| \geq |M^*|$

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Passes</th>
<th>Technique</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>$O(k^k)$</td>
<td>aug'path, random.</td>
<td>McGregor 2005</td>
</tr>
<tr>
<td>bipartite</td>
<td>$O(k^5)$ and $O(nk)$</td>
<td>aug'path, determ.</td>
<td>we 2009/2011</td>
</tr>
<tr>
<td>bipartite1</td>
<td>$O(k^2 \cdot \log \log k)$</td>
<td>LP-based, determ.</td>
<td>Ahn & Guha 2011</td>
</tr>
<tr>
<td>general2</td>
<td>$O(k^4 \cdot \log n)$</td>
<td>LP-based, determ.</td>
<td>Ahn & Guha 2011</td>
</tr>
</tbody>
</table>

1 works also for weighted matching in $O(k^2 \cdot \log k)$ passes.

2 works also for weighted matching.
Selected related work

Problem: maximum-cardinality matching in bipartite graphs
Model: semi-streaming, i.e., \(O(n \cdot \text{poly log } n \cdot \text{poly } k) \) edges
Approximation: \((1 + \frac{1}{k}) \cdot |M| \geq |M^*|\)

<table>
<thead>
<tr>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
</tr>
<tr>
<td>general</td>
</tr>
<tr>
<td>bipartite</td>
</tr>
<tr>
<td>bipartite(^1)</td>
</tr>
<tr>
<td>general(^2)</td>
</tr>
</tbody>
</table>

\(^1\) works also for weighted matching in \(O(k^2 \cdot \log k)\) passes.
\(^2\) works also for weighted matching.
The following is based on:

- Eggert, Kliemann, Munstermann, Srivastav
 “Bipartite Matching in the Semi-Streaming Model”
 ESA 2009 / Algorithmica 2012

- Kliemann
 “Matching in Bipartite Graph Streams in a Small Number of Passes”
 SEA 2011

All documents available for free at
http://www.informatik.uni-kiel.de/~lki
or via http://lasse-kliemann.name
Augmenting paths
Approximation theory for graph matching

- Let \(k \in \mathbb{N}_{\geq 1} \). We aim for a \(1 + \frac{1}{k} \) approximation, i.e.,

\[(1 + \frac{1}{k}) |M| \geq |M^*|,
\]

where \(M^* \) is an optimal matching and \(M \) the computed matching.

- Given \(\lambda \in \mathbb{N} \), we call a path a \(\lambda \) path if it has length at most \(2\lambda + 1 \).

(\(\lambda_1, \lambda_2 \)) DAP set

- Fix a matching \(M \).
- Fix \(\lambda_1, \lambda_2 \in \mathbb{N}, \lambda_1 \leq \lambda_2 \).
- A set \(\mathcal{Y} \) of paths is called a \((\lambda_1, \lambda_2) \) DAP set (shortly: “\(\lambda \) DAP set”) if:
 (i) All paths in \(\mathcal{Y} \) are \(M \) augmenting \(\lambda_2 \) paths.
 (ii) Any two paths in \(\mathcal{Y} \) are vertex-disjoint.
 (iii) We cannot add another \(M \) augmenting \(\lambda_1 \) path to \(\mathcal{Y} \) without violating condition (ii).
Existence of small DAP sets guarantees approximation

Let $k \in \mathbb{N}_{\geq 1}$ and $k \leq \lambda_1 \leq \lambda_2$ and

$$\delta(k, \lambda_1, \lambda_2) := \frac{\lambda_1 - k + 1}{2k\lambda_1(\lambda_2 + 2)} \in (0, 1) .$$

Lemma

Let M be an inclusion-maximal matching. Let \mathcal{Y} be a (λ_1, λ_2) DAP set such that $|\mathcal{Y}| \leq 2\delta|M|$ with $\delta = \delta(k, \lambda_1, \lambda_2)$.

Then M is a $1 + 1/k$ approximation.

N.B.: mere existence of an appropriate λ DAP set guarantees optimality – we do not have to compute it!
Given $\delta \in [0, 1]$, an algorithm is called a $(\lambda_1, \lambda_2, \delta)$ \textit{DAP approximation algorithm} if for any matching M it delivers a result A such that:

- A consists of disjoint M augmenting λ_2 paths;
- there exists a (λ_1, λ_2) DAP set \mathcal{Y} so that $|\mathcal{Y}| \leq |A| + \delta |M|$.
Approximation algorithm

Theorem

Assume we have a \((\lambda_1, \lambda_2, \delta)\) DAP approximation algorithm \(DAP\) for \(\delta = \delta(k, \lambda_1, \lambda_2)\) and \(k \leq \lambda_1 \leq \lambda_2\).

Then the following gives a \(1 + \frac{1}{k}\) approximation to the matching problem.

```plaintext
1  M := any inclusion-maximal matching
2  repeat
3       \(A := DAP(M)\)
4       if \(|A| \leq \delta |M|\) then break and return \(M\)
5       augment \(M\) using \(A\)
6  until forever
```

Proof.

- Let \(Y\) be the \((\lambda_1, \lambda_2)\) DAP set guaranteed to exist.
- By the termination criterion: \(|Y| \leq |A| + \delta |M| \leq 2\delta |M|\).
- Lemma: we have our approximation.
1 < \ell(m) = \lambda + 1?
\[\ell(m) := 1 \]
\[\ell(m) := 2 \]
$2 < \ell(m_1) = 3?$
\(\ell(m_1) := 2 \) and \(\ell(m_2) := 3 \)
\[\begin{align*}
\ell_1 & : m_1 \\
\ell_2 & : m_2 \text{ and } \ell_2 : m_2 \\
\end{align*} \]
Let $\lambda := \lambda_1 = \lambda_2$. The number of passes is

$$O \left(\frac{k^2 \lambda^5}{(\lambda - k + 1)^2} \right) = \begin{cases}
O(k^5) & \text{if } \lambda = 2k - 1 \text{ (long paths)} \\
O(k^6) & \text{if } \lambda = k + \sqrt{k} - 1 \\
O(k^7) & \text{if } \lambda = k \text{ (short paths)}
\end{cases}$$
Experimental setup

- Random bipartite graphs (rand)
- Difficult instances (degm, hilo, rbg, rope)
- For example, rope looks like this:

 ![Graph Diagram]

- Hard limit of 8 GiB, that are about 1×10^9 edges.
- C++ implementation on 64 bit CentOS Linux.
Experimental setup

- Random bipartite graphs (rand)
- Difficult instances (degm, hilo, rbg, rope)
- For example, rope looks like this:

 ![Diagram of rope]

 - Hard limit of 8 GiB, that are about 1×10^9 edges.
 - C++ implementation on 64 bit CentOS Linux.
Experimental results

- Fix $k = 9$, that is, we guarantee a 90% approximation.
- $n = 40,000, 41,000, \ldots, 50,000$
- Density is limited by $D_{\text{max}} = \frac{1}{10}$.
- Number of edges ranges up to about $|E| = 62 \times 10^6$.

<table>
<thead>
<tr>
<th>maximum</th>
<th>rand</th>
<th>degm</th>
<th>hilo</th>
<th>rgb</th>
<th>rope</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(k^5)$</td>
<td>11,886</td>
<td>14,180</td>
<td>7,032</td>
<td>4,723</td>
<td>2,689</td>
</tr>
<tr>
<td>$O(k^6)$</td>
<td>7,817</td>
<td>31,491</td>
<td>7,971</td>
<td>4,383</td>
<td>3,843</td>
</tr>
<tr>
<td>$O(k^7)$</td>
<td>7,121</td>
<td>32,844</td>
<td>9,106</td>
<td>5,687</td>
<td>5,126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mean</th>
<th>rand</th>
<th>degm</th>
<th>hilo</th>
<th>rgb</th>
<th>rope</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(k^5)$</td>
<td>107</td>
<td>145</td>
<td>3,337</td>
<td>257</td>
<td>378</td>
</tr>
<tr>
<td>$O(k^6)$</td>
<td>80</td>
<td>127</td>
<td>2,071</td>
<td>500</td>
<td>541</td>
</tr>
<tr>
<td>$O(k^7)$</td>
<td>74</td>
<td>166</td>
<td>2,033</td>
<td>844</td>
<td>790</td>
</tr>
</tbody>
</table>

Theoretical bounds with all constants:

<table>
<thead>
<tr>
<th>$O(k^5)$</th>
<th>$O(k^6)$</th>
<th>$O(k^7)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,211,355</td>
<td>16,215,343</td>
<td>57,193,291</td>
</tr>
</tbody>
</table>
Growing trees
\(\ell(m_i) := \lambda + 1 \)
\[
\ell_1^2 \cdot m_1 \cdot m_2 \cdot m_3 \cdot \ell \cdot p \cdot m_i q : \lambda \xrightarrow{15}
\]
Theoretical analysis

- $1 + \frac{1}{k}$ approximation
- $O(kn)$ passes
- $\Omega(n)$ passes
- Running in parallel to original version, we inherit $O(k^{O(1)})$ bound.
Experimental results

<table>
<thead>
<tr>
<th>n</th>
<th>rand</th>
<th>degm</th>
<th>hilo</th>
<th>rgb</th>
<th>rope</th>
<th>$O(kn)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,192</td>
<td>35</td>
<td>21</td>
<td>51</td>
<td>43</td>
<td>53</td>
<td>18,433</td>
</tr>
<tr>
<td>16,384</td>
<td>25</td>
<td>26</td>
<td>52</td>
<td>44</td>
<td>57</td>
<td>36,865</td>
</tr>
<tr>
<td>32,768</td>
<td>37</td>
<td>19</td>
<td>54</td>
<td>48</td>
<td>59</td>
<td>73,729</td>
</tr>
<tr>
<td>65,536</td>
<td>39</td>
<td>23</td>
<td>55</td>
<td>50</td>
<td>64</td>
<td>147,457</td>
</tr>
<tr>
<td>131,072</td>
<td>28</td>
<td>28</td>
<td>57</td>
<td>51</td>
<td>65</td>
<td>294,913</td>
</tr>
<tr>
<td>262,144</td>
<td>39</td>
<td>42</td>
<td>58</td>
<td>53</td>
<td>64</td>
<td>589,825</td>
</tr>
<tr>
<td>524,288</td>
<td>27</td>
<td>26</td>
<td>58</td>
<td>55</td>
<td>61</td>
<td>1,179,649</td>
</tr>
<tr>
<td>1,048,576</td>
<td>44</td>
<td>26</td>
<td>62</td>
<td>57</td>
<td>53</td>
<td>2,359,297</td>
</tr>
<tr>
<td>2,097,152</td>
<td>41</td>
<td>31</td>
<td>60</td>
<td>57</td>
<td>59</td>
<td>4,718,593</td>
</tr>
<tr>
<td>4,194,304</td>
<td>30</td>
<td>29</td>
<td>62</td>
<td>58</td>
<td>54</td>
<td>9,437,185</td>
</tr>
</tbody>
</table>

Data based on roughly 800,000 instances in total.
Lower bound $\Omega(n)$
Current work

- Beat the adversary by randomization (experimental study).
- Modify path/tree-growing approach for general graphs!