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1 Introduction

Non-local operators appear naturally in a wide range of applications, e.g., in the inves-
tigation of gravitational, electromagnetic or acoustic fields. Handling non-local interac-
tions poses an interesting algorithmic challenge: we consider classical gravitational fields
as an example. In a first step, we consider two stars located at positions z, # € R? with
masses m,m € Rsg. The gravitational force exerted by the star at position = on the
star at position  is given by

f = yim———
o — &l
where v € Ry is the universal gravitational constant. If we consider only two interacting
stars, we can evaluate this expression directly and efficiently and use it as the basis of
simulations.

The situation changes significantly if we consider a larger number of stars: Let n € N,
and let z1,...,z, € R? be positions and mq,...,m, € Ry masses of n different stars.
By the superposition principle, the gravitational forces exerted on a star at position &
result from adding the individual forces, i.e., we have

Feon S
’ H% —xll?’

Now the evaluation of the force requires ©(n) operations. Since even a small galaxy
contains around 10° and the Milky Way is estimated to contain between 2 x 10! and
4 x 10" stars, evaluating f takes a long time. If we wanted to simulate the motion of all
stars in the Milky Way, we would have to evaluate the forces exerted on each star by all
other stars, leading to at least 2 x 10? operations. This is an amount of computational
work that even modern parallel computers cannot handle: a single core of a processor
might be able to compute 10° forces per second, so it would take at least 2 x 103 seconds,
i.e., approximately 633761 years. Even if we could parallelize the evaluation perfectly
and had 633 761 processor cores at our disposal, one evaluation of the forces would still
take a year, and standard time-stepping methods require a large number of evaluations
to obtain a reasonably accurate simulation.

We can work around this problem by employing an approximation: let s C R3 be a
convex subdomain, and let

s:={jel : xj€s}, Z:=[1:n]

denote the indices of all stars located in s.



1 Introduction

Figure 1.1: Replacing a cluster of stars by a “virtual star” that exerts approximately the
same gravitational force

If the diameter of s is small compared to the distance from s to Z, we have

T, — & Ty — &
Iy A for all j € s,
lzj =2l llzs — [l

where x5 denotes the (suitably defined) center of s. Using this approximation, we obtain

) ) ) 2
m s ~ m s = m 5 —_——s = M5
]Hx —x||2 ]Hx —:c||3 ! Hx —acll3 ° v

EEYE
Jj€es jes jcs llzs 55“2
——

=img

If we have x5 and ms at our disposal, evaluating this expression requires only O(1)
operations. Essentially we approximate all stars in the region s by a single “virtual”
star at position zs of mass mg. Considering that s may contain millions or even billions
of stars, replacing them by a single one significantly reduces the computational work.

In most cases, a single subdomain s cannot contain all stars and at the same time
be sufficiently far from Z. This problem can be solved by using a nested hierarchy of
subdomains: given a subdomain s containing a number of stars, we check whether it is
sufficiently far from . If it is, we use our approximation. Otherwise, we split s into sub-
domains and check these subdomains recursively. We can arrange the splitting algorithm
in a way that guarantees that the diameters of the subdomains decay exponentially, and
prove that O(logn) subdomains are sufficient to approximate the force acting at .

This approach can be generalized and made more efficient, e.g., we can improve the
accuracy by using multiple virtual stars per subdomain s, we can reduce the computa-
tional work by constructing virtual stars for s from virtual stars of subdomains s’ instead
of the original stars. The best methods employ hierarchies of source subdomains s and
target subdomains t that are both represented by virtual stars: in a first step, the stars
in the source subdomains are replaced by virtual stars. In a second step, the interactions
between virtual source stars in s and virtual target stars in ¢ are computed. In a final
step, the forces acting on the virtual target stars in ¢ are translated back to forces acting
on real target stars. This technique can reach almost linear complexity and is known as
a fast multipole method [22] or as a symmetric panel clustering method [30]. Its algebraic
counterpart is the H2-matric representation 27, [§].



A particularly interesting application is the approximation of matrices resulting from
the discretization of integral equations or partial differential equations: instead of using
k virtual stars to approximate a gravitational field, we use k coefficients to approximate
the effect of a submatrix. Considered from an algebraic point of view, this is equivalent to
approximating a submatrix by a matrix of rank %, and this kind of approximation can be
constructed efficiently for matrices appearing in a large number of practical applications.

Splitting a matrix hierarchically into submatrices that can be approximated by low
rank leads to the concept of hierarchical matrices (or short H-matrices) [23, 26, 25,
21, 24]. These matrices are of particular interest, since they can be used to replace
fully populated matrices in a wide range of applications using specialized algorithms
for handling matrix products, inverses, or factorizations. This approach leads to very
efficient and robust preconditioners for integral equations and elliptic partial differential
equations, it can be used to evaluate matrix functions or to solve certain kinds of matrix
equations.

Taking the concept of low-rank approximations a step further leads to H2-matrices
[27, 8, 6] that handle multiple low-rank blocks simultaneously in order to reduce storage
requirements and computational work even further.
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2 One-dimensional model problem

We start with a one-dimensional model problem that shares many important properties
with “real” applications, but is sufficiently simple to allow us to analyze both accuracy
and complexity without the need for elaborate new tools

2.1 Integral equation and discretization

We consider the integral equation

1
| steuts)ay = (o) for all z € [0,1] (21)
0
where the kernel function g is given by
—1 — if
g(x,y) = ogle —y| e ‘?’ for all z,y € [0,1] (2.2)
0 otherwise

and the right-hand side f and the solution w are in a suitable function spaces. Here
log(z) denotes the natural logarithm of z € Ry, i.e., we have log(e?) = z.

In order to compute an approximation of the solution u, we consider a variational
formulation: we choose a subspace V of L?[0,1] for both the solution u and the right-
hand side f and multiply by test functions v € V to obtain the following problem:

Find v € V such that

1 1 1
/0 U(l‘)/o g(x,y)u(y) dy dz :/0 v(x)f(x)dz for all v € V.

We will not investigate the appropriate choice of the space V here, although it is of
course important for the existence and uniqueness of solutions.

We are only interested in the Galerkin discretization of the variational formulation:
we let n € N and introduce piecewise constant basis functions

1 ifzelli—1)/n,i .

wi(x) == nr [(Z )/nsi/n] for all i € [1:n], z €]0,1].
0 otherwise

Following the standard Galerkin approach, the space V is replaced by
Vp i=span{y; : i€ [l:n]}

to obtain the following finite-dimensional variational problem:



2 One-dimensional model problem

Find u,, € V,, such that

1 1 1
/0 vn(:r)/o g(z,y)un(y) dy de = /0 vp(x)f(z)dx  for all v, € V.

In order to compute u,, we express it in terms of the coefficient vector z € R" corre-
sponding to our basis, i.e., we have

n

Un = sz@j-

j=1
Testing with basis vectors yields
n 1 1 1
sz/ gpl(:c)/ 9(z,y)pi(y) dy dx = / vi(z)f(z) dx for all i € [1:n],
= 0 0 0
and this describes an n-dimensional linear system of equations.
Introducing the matrix G € R™*™ and the vector b € R™ by

1 1
Gij = /0 npi(a:)/o g9(x,y)p;i(y) dy dz for all 4,5 € [1: n], (2.3a)
1
b; := / vi(z)f(x) dx for all i € [1: n], (2.3b)
0
we can write this linear system in the compact form
Gz =h. (2.4)

Since G is an n-dimensional square matrix, we have to store n? coefficients. In order
to make u, a reasonably accurate approximation of u, we typically have to choose n
relatively large, so that storing n? coefficients is unattractive.

Since g(z,y) > 0 holds for almost all z,y € [0,1], all coefficients are non-zero, so
standard data structures like sparse matrices or band matrices cannot be applied.

Remark 2.1 (Toeplitz matrix) G is a Toeplitz matrix, i.e., we have
j—i=L0—k=a;; =ap foralli,j k.0 €[1:n].

Toeplitz matrices can be embedded in circulant matrices, and circulant matrices can be
diagonalized using the discrete Fourier transformation.

This means that we can use the fast Fourier transformation algorithm [10] to evalu-
ate matriz-vector products in O(nlogn) operations. Unfortunately, this approach relies
heavily on the regular structure of our discretization and is typically not an option for
more general problems.

Remark 2.2 (Wavelets) Another approach is to use wavelet basis functions [13, [9]
instead of piecewise constant functions.

This reduces the absolute value of most matriz elements significantly and thereby al-
lows us to approximate the entire matriz G by a sparse matrixz that can be handled very
efficiently. This approach can be extended to more general geometries and integral opera-
tors [12, (14, (11, but the corresponding algorithm is more complicated than the technique
we will focus on here.

10



2.2 Degenerate approximation

2.2 Degenerate approximation

We are looking for a data-sparse approximation of the matrix G, i.e., a representation
that requires us to store only a relatively small number of coefficients. In the case of the
integral equation , we can take advantage of the fact that the kernel function g is
analytic as long as we stay away from the singularity at © = y: if we have two intervals
t = [a,b] and s = [¢,d] with t N's = (), the restriction g|;xs of g to the axis-parallel box
t x s = [a,b] X [¢,d] is an analytic function and can be approximated by polynomials.

For the sake of simplicity, we consider a straightforward Taylor expansion of the func-
tion = — g(z,y) for a fixed y € s. For an order m € N, the Taylor polynomial centered
at z; € t is given by

T, Y) forall z €t, y € s. (2.5)

m—1 v v
Gus(@,y) = Z (& —2)" 9 I

| v
et v! ox

This is an example of a degenerate approrimation, i.e., it is a sum of tensor products

grs(x,y) Z s, (2)bes w (Y) forallz €t, y€s (2.6)

with

T — x)” o¥
Qa bts,lz(y) = a €

Degenerate approximations are useful because they immediately lead to data-sparse
approximations: if we assume §i5 & ¢|;xs, we find

1 1 ]/n
gza:/o pi(z )/ 9(z,y)pi(y )dydw—/ Y / (z,y) dy dz

i/n j/n j/n
%/ / gts X y dy dr = Z/ Gts, V dx/ bts,u(y) dy
(i-1)/nJ(-1)/ (G-1)/n

for all 4,7 € [1 : n] with

apsp(x) = (z¢,y) forallv e [0:m], z €t, y€s.

vl

supp @i = [(i — 1)/n,i/n] ¢, supp ¢; = [(j —1)/n,j/n] C s. (2.7)
We collect the indices of all row basis functions satisfying the first condition in a set
t:={ic[l:n] : suppy; Ct},
and the indices of all column basis functions satisfying the second condition in
s:={je[l:n] : suppyp; C s},

therefore we should be able to replace g by g5 in the integral (2.3a]) for all row indices
i € t and all column indices j € §.

11



2 One-dimensional model problem

We obtain the approximation
m—1
gij & Z Qts,ivts ju forallict, j€s
v=0

with the matrices matrices A;s € RiXM, Bis € R*M M .= [0: m — 1] given by

1 i/n R
Qts iy = / i(x)atsy(x) de = / atsy(x) dx foralli et, ve M,
0 (i-1)/n
1 j/n o
bts,jl/ = / @j(y)bts,u(y) dy = /( y bts,l/(y) dy for all JES, Ve M.
0 j—1)/n

It is usually more convenient to write this approximation in the short form
G|f><§ ~ AtsB:sv (28)

where By, denotes the adjoint (in this case the transposed) matrix of Bys. If we store the
factors Ays and By instead of G, ;, we only require m(|¢| + |3|) coefficients instead of
|t x 3| = |£||8]. If m is small, the factorized approximation can therefore be significantly
more efficient than the original submatrix.

The range of the approximation A:sBJ, is contained in the range of A;s and therefore
at most m-dimensional, therefore the approximation has at most a rank of m. Factorized
low-rank approzimations of this kind are a very versatile tool for dealing with non-local
operators and play a crucial role in this book.

2.3 Error analysis

Since we are using an approximation of the kernel function g, we have to investigate the
corresponding approximation error.

Reminder 2.3 (Taylor expansion) Let zy,z € [a,b], and let f € C™[a,b]. We have

m—1 2 — 20\ O 1 _ Aym-1 gm
f(z) = Z(O)af(zo)+/0 (1=7) 0 f(zo+7'(z—zo))d7'(z—zo)m.

s vl 0zY (m—1)! 0zm
Proof. Induction. The base case m = 1 is the fundamental theorem of calculus. The
induction step is partial integration. [

In the case of our approximation of the kernel function g, the statement of Re-
minder 2.3] takes the form

1 _Tm—l m
g(w,w—gts(x,y):/ (L—n)"" "

0 (m - 1)' oxm™m (xt + T(x - ‘Tt)ay) dr (SC - ‘Tt)m'

In order to obtain a useful error estimate, we require the derivatives of g. These are
easily obtained, at least for our model problem.

12



2.3 Error analysis

a Ty b c d
| | | | |
I I I I I

-

c d a Ty b
| | | | |
I I I I I

>

Figure 2.1: Distances and diameters of intervals

Lemma 2.4 Let x,y € R with x # y. We have

0 ) = ()" (= Dz )™,
8mg —m
W(az,y) = (m—1)!(z—vy) for all m € N.
Yy
Proof. Straightforward induction. [

Since the kernel function g has singularities for x = y, the same holds for its derivatives,
therefore the chances of bounding the error if the target interval ¢ and the source interval
s intersect are looking quite bleak. If we assume that ¢ and s are disjoint, on the other
hand, we can not only obtain error bounds, but these bounds even converge exponentially
to zero as the order m increases.

Theorem 2.5 (Error estimate) Let x; = (b+ a)/2 denote the midpoint of t = [a,b],
let diam(t) = b — a denote its diameter and dist(t,s) = max{c —b,a — d,0} the distance
between t and s.

If dist(t, s) > 0, we have

m—1
l9(z,y) — Gis(x,y)| < log(1+n) (77:7—1) forallz et, yes
with the admissibility parameter
diam(t)

n:= Sdist(t,s) (2.9)

Proof. Let dist(t,s) > 0, and let « € ¢, y € s. The triangle inequality and the equations
for the derivatives provided by Lemma [2.4] yield

1 _Tm—l m
!g(w,y)—éts(m,y)\g/ (1(m_)1)! g

0 3xm

:/1 1 -7t (m— Dz —x™ dr
o (m—=1! |z, +7(x—2) — y|™

(xr + 7(x — a¢),y)| dr|e — 2™

13



2 One-dimensional model problem

< /01(1 Sl (e fﬁr':—xm)m r (210

Due to dist(, s) > 0, we have either ¢ > b or a > d. In the first case (top in Figure[2.1)),
we have z,z; < b < ¢ < y. In the second case (bottom in Figure , we have y < d <
a < z,z;. This implies 2y —y < 0if ¢ > b and z; —y > 0 if a > d, so we find

| | y—a:t:y—b—l—b—a:tZC—lH—b_Ta if ¢ > b,
T =
e fy::vtfaJrafyZb*T“qLafd ifa>d,
and conclude |z; — y| > diam(t)/2 + dist(¢, s). Due to |z — 2| < diam(t)/2, we obtain
|z — x| < diam(t)/2
|ve — y| — 7]z — 2] — dist(t,s) + (1 — 7) diam(t) /2

If diam(¢) = 0 holds, the proof is complete.
Assuming now diam(¢) > 0, we can introduce

2 dist(t, s)
= 1 = —
¢ /n diam(¢)
and write our estimate as
|z — 24| 1 1

< = .
|z —y| — 7|x — x¢| — 2dist(¢,s)/diam(t) +1—7 (+1-—7
The error estimate (2.10)) takes the form
1 (1 _ T)m—l 1 O_m—l
x,y) — Ges(z,y)| < ———dr = ———do
Due to
1

]

)

| N

for all o € [0,1],

J\r

we arrive at
9(z,y) — Gus(z,y)| < (Hll)ml /1 CJlrgda ( ) " (log(¢ + 1) — log(())
—( 1/ )m log(1+1/¢) = ( ) log(1 + ).

‘/\r

1+1/¢

This is the estimate we need. ]

If dist(t,s) > 0, we have
diam(t) -
=———"- <0
2dist(t, s)
and the Taylor expansion gs(z,y) converges exponentially at a rate of

n

— <1
n+1

to g(x,y) for all z € t and y € s.

14



2.4 Hierarchical partition

Figure 2.2: Simple cluster tree constructed by recursive bisection of the interval [0, 1]

2.4 Hierarchical partition

We can expect convergence only if we apply the approximation g;s to subdomains ¢ X s
satisfying dist(t,s) > 0. In order to guarantee a certain rate of convergence, we have to
ensure that the parameter 7 introduced in is bounded.

Our approach is to “reverse” the roles of subdomain and admissibility parameter:
instead of choosing the paramter to fit the subdomains, we choose the subdomain to fit
the parameter.

We fix n € Ry and check whether a given subdomain ¢ x s satisfies the admissibility
condition

diam(t) < 2ndist(t, s). (2.11)

If it does, we can approximate the kernel function and obtain a factorized low-rank
approximation. Otherwise, we split the subdomain, unless it is so small that we can
afford storing the corresponding matrix directly.

In this example we use the choice n = 1/2, i.e., we consider a subdomain ¢ x s admissible
if diam(¢) < dist(¢, s) holds. By Theorem this leads to the error bound

lg(x,y) — Grs(z,y)| < 3log(3/2)3™™ forallz et, yes, meN.

In general, the parameter 7 allows us to balance the rate of convergence against the
number of subdomains, i.e., accuracy against computational work and storage.

For inadmissible subdomains, we use a simple splitting strategy based on bisection:
assume that t = [a,b] and s = [c, d] are inadmissible, i.e., that the condition does
not hold. We let

a = a, by = ag := HTG, by := b,
c1 =c, d1262::d—2i_c, do:=d
and define
t1 := [a1,b1], to 1= [ag, ba), s1 = [e1,d4], S9 1= [cg, da],

i.e., we split ¢ into two equal halves 1, to, and s into two equal halves s1, ss.

15



2 One-dimensional model problem

Figure 2.3: Hierarchical subdivision of the domain [0, 1] x [0, 1]

Now we check whether the Cartesian products t1 X s1, t1 X So, t9 X s1, and to X so are
admissible and proceed by recursion if they are not.
Our construction leads to a subdivision of [0, 1] into subintervals of the form

tre = [(a —1)27% a27" for all £ € No, a € [1:24].
Each interval ¢, is split into
tos1,2a-1 = [(0 = 1)27 (o — 1/2)271] and toyr2a = [(@—1/2)27% 0277,

We call these subintervals the sons of ty, and arrive at a tree structure, cf. Figure
describing the subdivision of [0,1] = tp,;. The Cartesian product [0,1] x [0, 1] is split
into Cartesian products t x s of pairs of elements of this tree.

Since we only split the domain, there are always subdomains ¢ x s that include the
diagonal {(z,y) € [0,1] x [0,1] : x = y} and therefore do not satisfy the admissibility
condition . In order to handle these subdomains, we stop splitting at a given
maximal depth p € Ny of the recursion and store the remaining matrix entries directly.
The resulting decomposition of [0, 1] x [0, 1] into admissible and inadmissible subdomains
can be seen in Figure |2.3

The next step is to construct the approximation of the matrix G, i.e., to integrate the
products of basis functions and approximated kernel functions. In order to keep this task
as simple as possible, we assume that n = 2 holds with ¢ € Ny, ¢ > p. This property
guarantees that the support [(i — 1)/n,i/n] of a basis function ¢; is either completely

16



2.5 Complexity

contained in one of our subintervals ¢ or that the intersection is a null set, so that the
integral vanishes.
Under these conditions, we have

oo =[(a@—1)207 +1: 2077,
Lo = U{Supp @i+ i E€ta} forall ¢ € [0:p], a e [1:29.

Storing the submatrices G|;, ; for inadmissible domains ¢ x s on level ¢ = p requires
|t| |3] = 497P coefficients, since |{| = |3| = 297P. As long as ¢ is not significantly larger
than p, this amount of storage is acceptable.

For admissible domains ¢t X s on level ¢, we use the approximation and store
lt|m = 297“m coefficients for the matrix A;s and |§|m = 297%m coefficients for the
matrix Bys.

Remark 2.6 (Rank) If we replace g by gis, we obtain an approzimation G € R of
the matriz G. Solving G = b instead of Gx = b leads to an error of

le -7 _ W&  G-G|

x - IG=G]| G
[ = T <]

In typical situations, we expect the condition number k(G) to grow like n¢ for a constant
¢ > 0, while the discretization error converges like n=% for a constant d > 0.
In order to ensure that our approximation of the matriz adds only an additional error

. o ) : G-G
on the same order as the discretization error, we need the relative matriz error I el I

to converge like n="%. Due to our admissibility condition and Theorem an order
of m ~ log(n) is sufficient to guarantee this property.

2.5 Complexity

Let us now consider the storage requirements of our approximation of the matrix G.
If t x s is admissible, we store the matrices A;s and B:s, and we have already seen
that this requires m(|¢| + |3|) coefficients. If ¢ x s is not admissible, we store Gz, ; in
the standard way, and this requires 497P coefficients. In order to obtain an estimate
for the approximation of the entire matrix, we have to know how many admissible and
inadmissible domains appear in our decomposition of the domain [0, 1] x [0, 1].

In our model situation, the construction of the domains is very regular and all domains
t x s fall into one of the following for categories: we call t X s

e diagonal if t = s,

o right-neighbouring if maxt = min s,
e left-neighbouring if mint = max s, and
e admissible otherwise.

17



2 One-dimensional model problem

Figure 2.4: Diagonal, right-neighbouring, and left-neighbouring inadmissible domains
with corresponding splitting patterns

By our construction, cf. Figure[2.4] a diagonal subdomain ¢ X s is split into two diagonal
subdomains ¢; X s; and t2 X sg, one right-neighbouring subdomain #; X so and one
left-neighbouring subdomain t3 x 7.

A right-neighbouring subdomain ¢ x s is split into a right-neighbouring subdomain
ts X s1 and three admissible subdomains t5 X s9, t1 X 51 and t1 X s9.

A left-neighbouring subdomain ¢ X s is split into a left-neighbouring subdomain #; x $2
and three admissible subdomains t1 X sy, t3 X s1 and ty X so.

Admissible subdomains are not split.

We can collect the subdomains of one of the four types on each level: for all £ € [0 : p],
we define

o [t it 0 =0,
& {t1 X s1,ta X s9 : t xs € Dy_1} otherwise,
0 if £ =0,
Ry := {tl X 8 : tXS€E Dg_l}
U{ta X 81 : tXxs € Ry_1} otherwise,
0 if £ =0,
Ly:= {tQ X8 : tXs€E Dg_l}
U{t1 X s9 : txs€ Ly_1} otherwise,
0 if ¢ =0,
Ay = {ta X s2,t] X s1,t1 X 89 : t X s € Ry_1}
U{t1 X s1,ta X S1,ta X S92 : t X s € Ly_1} otherwise.

These definitions lead to a recurrence relation for the cardinalities of the sets.

Lemma 2.7 (Cardinalities) We have

Dol =2, |RJ=2'-1, |L|=2"-1,
0 if £ =0,
Ayl = or all £ € [0 : p].
Al {6(2#1 —1)  otherwise d 0:p)
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2.5 Complexity

Proof. By induction.
For ¢ = 0, the equations follow directly from our definitions.
Assume now that the equations hold for ¢ € [0 : p — 1]. By definition, we have

Dega| = 2|Dg = 2-2° = 21,
|Los1| = Dyl + Lo =20+ 20 —1 =21 -1,
R = Dol + [Re| = 2° 42 —1=2" -1,
|Ar1] = 3|Le| + 3|Re| = 6(2° — 1).
This completes the induction. [

Theorem 2.8 (Storage requirements) Let n =29, and let p denote the depth of the
cluster tree. The approximation of the matrix G requires

6m(p — 2)n + (3n + 12m — 297 PHH207P coefficients.
Proof. The number of coefficients required for the admissible subdomains is

Yo > i+ 3hm=

p
6(2°1 — 127 427 Ym =) 12271 — 1)29 m
(=0 tXSEAg /=1

M= 11

p p
122071 — 27 )m = 12m » 207 —12m ) 27
/=1 /=1

)
)

P
= 6mp2? — 12m297P Y " 27~ = 6mpn — 12m27 P(2 — 1)
/=1
= 6mpn — 12m29 + 12m297P = 6mpn — 12mn + 12m297P
=6m(p —2)n + 12m277P,

The inadmissible subdomains require

Y I8 = (1Dpl + ILp] + [Ry[)47 7

txs€DPULUR,
= (2P + 2P + 2P — 2)497P = (3. 2P — 2)497P
—3.999497P _ 9¢—p+log—p _ (3n _ 2qu+1)2qu
coefficients. Adding both results yields the required equation. [

Although exact, the result of Theorem is not particularly instructive.

We can obtain a more convenient upper bound if we assume that the order m is not too
high compared to the number of basis functions n and that we subdivide clusters only as
long as they contain more than 2m indices. The second assumption can be guaranteed
by stopping the splitting process at the right time. The first assumption is manageable
since Remark leads us to expect m ~ log(n), i.e., for even moderately-sized matrix
dimensions n, the order m should be far smaller than n.
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2 One-dimensional model problem

Corollary 2.9 (Storage requirements) Let 4m <n and m < 297P < 2m.
Then our approzimation requires less than 6mpn coefficients.

Proof. The estimate provided by Theorem gives rise to the upper bound

6m(p — 2)n + (3n 4+ 12m — 297PF1)247P < 6m(p — 2)n + (3n + 12m — 2m)2m
= 6m(p — 2)n + 6mn + 20m>
< 6m(p — 2)n + 6mn + 24m?
< 6m(p — 2)n + 6mn + 6mn = 6mpn
for the number of coefficients. [}

Remark 2.10 (Setup) In order to construct the matrices Ays and Bys of our approzi-
mation, we can take advantage of the fact that the recurrence equations

1 v =0,

atsy(x) = ifv ] forallxz €t, vel0:m],
rags,—1(x)  otherwise,
—log |zt — y| if v =0,

bis,(y) = *xtl_y ifv=1, forally € s, vel0:m]

— oy bisp—1(y)  otherwise

allow us to evaluate as, and bys, very efficiently. Since ais 1 s an antiderivative of
g5 and bes,—1 15 an antiderivative of —bys ,, all integrals appearing in Ais and Bys, and
therefore all coefficients, can be computed in O(m(|t| + |3|)) operations. In particular,
we need only O(1) operations per coefficient.

For the inadmissible domains, we can compute the coefficients g;; by using a second
antiderivative of g.

In total we require O(1) operations for each coefficient, and Corollary yields that
we only require O(mpn) operations to set up the entire matriz approximation.

Remark 2.11 (Matrix-vector multiplication) Once we have constructed the ap-
prozimation of G, multiplying it by a vector x € R™ and adding the result to y € R™ is
straightforward: for each subdomain t x s, we multiply x|; by AisBj, and add the result
to y|;. If we first compute the auxiliary vector z = Bj,x|z and then Az, we only require
2m(|t| + |3|) operations.

In order to obtain a bound for the total complexity, we note that for each stored
coefficient exactly one multiplication and one addition are carried out. Corollary
immediately yields that less than

12mpn operations

are required for the complete matriz-vector multiplication: our approrimation not only
saves storage, but also time.
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2.6 Approximation by interpolation

2.6 Approximation by interpolation

For more general kernel functions g, it may be challenging to find useable equations
for the derivatives required by the Taylor expansion and to come up with an efficient
algorithm for computing the integrals determining the coefficients of A;s and Bys.

In these situations, interpolation offers an elegant and practical alternative: we choose
a degree m € Ny and denote the set of polynomials of degree m by

m
11, .= {wHZaixi : ao,...,amER}.
i=0

Given a function f € Cla,b] and distinct interpolation points &, ..., &y, € [a, b], we look
for a polynomial p € II,, satisfying the equations
p(&) = f(&) for all i € [0 : m]. (2.12)

Under suitable conditions, p is a good approximation of f, and interpolation can be used
to obtain a degenerate approximation of the kernel function g.

Lemma 2.12 (Lagrange polynomials) The Lagrange polynomials for the distinct

interpolation points &, ..., &m € [a,b] are given by
ly(x) = H T forallz € C, v e [0:m]. (2.13)
=0 §V - gu
pFV

All of these polynomials are elements of 1L, and satisfy

1 ) =
(&) = { ifv /.L’ for all v, € [0 : m]. (2.14)
0  otherwise

Proof. As products of m linear factors, the Lagrange polynomials are in II,,.
Let v, € [0 : m]. If v = p, all factors in (2.13]) are equal to one, and so is the product.
If v # pu, one of the factors is equal to zero and the product vanishes. ]

Using Lagrange polynomials, the interpolating polynomial of (2.12)) takes the form

p= Zf(gu)gu (2.15)
v=0
Applying this equation to z +— g(z,y) with a fixed y € [c, d] yields
Ges(@,y) =Y b(@)g(6,y),
v=0

and this is again a degenerate approximation of g, but it requires us only to be able to
evaluate g, not its derivatives.
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2 One-dimensional model problem

Remark 2.13 (Setup) Using interpolation to approzimate g leads to the matrices
A € RXM gnd By, € R>M M = [0 : m), with entries

1
ats’w:/o vi(z)l,(x) dz, (2.16)

1
bs jv = / 0;i(y)g(&,y) dy foralliet, jes veM. (2.17)
0

The first integral can be computed by using a quadrature rule that is exact for polynomials
of degree m.

For the second integral, we can use the antiderivative in simple situations like the
model problem or also rely on quadrature, since the function y — g(&,,y) is smooth: the
admissibility condition guarantees that &, € t is sufficiently far from y € s.

In order to construct an approximation of the entire matrix G by interpolation, we
require interpolation points for all intervals ¢ appearing in our decomposition of the
domain [0, 1] x [0, 1].

It is a good idea to start with interpolation points in a fixed reference interval and
transform them to all the other intervals, since this approach allows us to obtain uniform
error estimates for all subdomains.

We choose the reference interval [—1,1] and interpolation points &y, ...&, € [—1,1].
Inspired by , we define an operator that maps a function f to its interpolating
polynomial.

Definition 2.14 (Interpolation operator) The linear operator

m
J: C[=1,1] = Iy, fe Z f(&)l,
v=0
1s called the interpolation operator for the interpolation points &y, ..., Em.

In order to obtain interpolation operators for a general interval [a,b], we use the
bijective linear mapping
b+a + b—a,
T
2 2

@[a,b]: C—C, T —

that maps [—1,1] to [a,b] and can be used to turn a function f € Cla,b] into a function
[ = fo®,y € C[-1,1]. Interpolating this function and using (ID[;lb] to map the result
back to [a, b] yields the transformed interpolation operator

Ji: Cla,b] — I,y, f=3[fo®pylo ‘1’[2,11,]-

For our purposes, it would be very useful to be able to represent the transformed in-
terpolation operator J; in the same form as J using suitable interpolation points and
Lagrange polynomials.
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2.6 Approximation by interpolation

Reminder 2.15 (Identity theorem) Letp € II,. Ifp(&,) = 0 holds for m+1 distinct
points &, ..., Em € R, we have p = 0.

Proof. We consider the linear mapping

p(%o)
U I, — R™HL P :
p(&m)
Due to Lemma ¥ is surjective, i.e., its rank is m 4+ 1. Our definition implies
dimII,,, < m + 1, and the rank-nullity theorem yields that W is injective. [

Lemma 2.16 (Transformed interpolation) We define the transformed interpolation
points and corresponding Lagrange polynomials

e = P (&), o ( H il V'8 for allv € [0:m], z € C.
7 gt v ‘Et,u

u#v
We have by = £, 0P, for all v € [0 : m] and therefore

m

3l =D FEn)low for all f € Cla,b].

v=0

Proof. Let v € [0 : m]. Since @[,y is bijective, it suffices to prove £, o @y = 4.
We have
1 ifv=uy,

) for all € [0: m].
0 otherwise

b o (I)[a:b} (gﬂ) = gt,u(&t#) = {

This means that ;) o @,y and £, € I, take identical values in the distinct points
€0y ---,&m. Since both are polynomials of degree m, the identity theorem (cf. Re-

minder } yields £;y, 0 @pqp = Lo ]

Now we can proceed as in the case of the Taylor expansion: we apply interpolation to
the function x — g(z,y) for a fixed y € s to find

g(z,y) = gis(x,y) thl, g€, y) forall z € ¢, y € s. (2.18)

Reminder 2.17 (Chebyshev interpolation) Using the Chebyshev points

2v+1
&, = cos <7T2m n 2) for allv € [0:m], (2.19)

for interpolation is particularly attractive, since they lead both to a numerically stable
algorithm and good error estimates.
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2 One-dimensional model problem

2.7 Interpolation error analysis
Let us now consider the analysis of the interpolation error.

Reminder 2.18 (Interpolation error) Let &,...,&, € [—1,1] be distinct interpola-
tion points and the node polynomial

w(z) = H x—& for all x € R. (2.20)
v=0

Let f € C™*—1,1]. For every x € [—1,1], there is an n € [—1, 1] with

Fom D ()

@) = 3Ufl(w) = wlo) T (2.21)
Proof. [31] If = € {&, ..., &m}, the equation holds trivially for all n € [—1,1]. Otherwise,
we have w(z) # 0 and can find R € R with 0 = f(x) — J[f](z) — Rw(x).

This means that the function g(y) := f(y) — J[f](y) — Rw(y) vanishes in the m + 2

distinct points &g, ..., &m, , and the mean value theorem of differential calculus yields
that there is an 7 € [—~1,1] such that ¢V (n) = 0. Due to J[f] € I, and w1 =
(m + 1)!, this implies the equation. [ |

Using the maximum norm
||f|]oo7[a7b] = max{|f(z)| : = € a,b]} for all f € Cla,b],
we can write (2.21) in the compact form

(PR S

(m+1)!

1f = 3Pl =1,1 < lwlloo,=1,1)

In order to investigate the transformed interpolation operator, we consider a function
f € C™*a,b] and introduce again f := f o @1, ;) € C™F1[—1,1] to find

1f = T3l ooyjap) = IIf © Plap) — Telf] © Plapylloc,(—1,1]

FO D oo, 1,1y

(m+1)!

=|If - j[f]”oo,[—l,l] < wlloo,=1,1]

The chain rule yields

ft H):( 5 > FAUSRCE I

and we conclude

_ m+1 (m+1)
b a> f ll0o,[a,8] ‘ (2.22)

1 = 3e[ oo fap) < [lwlloo,—1,1] < 9 (m+1)!
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2.7 Interpolation error analysis

To apply this result to the kernel function, we fix y € s and apply the estimate to
f(z) = glx,y) to find

. b—a\" " g 0
|g(m,y) - gts($7y)‘ < ||W||oo,[—1,1] < 9 > W for all z € t.
According to Lemma [2.4] we have
omtl m!
(m+1) _19 9
|f (LU)| - axm+1 ($7y)‘ S diSt(t,S)m+1 fOI' all.’I)Et,

so the interpolation error satisfies

||g - gtsHoo,th =

[[wlloo,(~1,1] < diam(t) \™
) .

m+ 1 2dist(t, s

If the admissibility condition (2.11]) holds, this estimate takes the form

”wHoo,[fl,l} ma1

llg — gts”oo,txs S T

Let us now consider Chebyshev interpolation (cf. Reminder [2.17]). Using Chebyshev

points implies w(z) = 27" cos((m + 1) arccos(z)) for all x € [—1,1], and in particular
|wlloo,(—1,1) = 27™. Our error estimates take the form

for all f € C™ ' a,b], (2.23a)

b—a m f(erl) o0,[a
Y e

(m+1)!
N 2 nym+1
llg — gts||oo,t><s < rﬂ (5) . (2.23b)

Compared to Taylor expansion (cf. Theorem , we can see that the Chebyshev inter-
polation error converges at a better rate if we have n < 1, e.g., at a rate of 1/4 instead
of 1/3 for n =1/2.

Even for large values of 1, we can prove that Chebyshev interpolation leads to almost
the same rate of convergence as Taylor expansion: Chebyshev interpolation is stable,
i.e., we have

”j[f]Hoq[—l,l] < Am“f”oo,[—l,l} for all f € C[_17 1]7 (224)
where the stability constant (or Lebesgue number) satisfies
2
Ap < =loglm+1)+1<m+1 for all m € Ny (2.25)
s

(cf. [29]). The stability estimate (2.24) gives rise to a best-approximation result for
Lagrange interpolation.
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2 One-dimensional model problem

Lemma 2.19 (Best approximation) We have
1f =3[ Moo -1, < X+ A f = Plloo,- 1,1 for all f € C[-1,1], p € I,
1f = Telflloo o) < (1 + Am)llf = Plloc 0.t for all f € Cla,b], p € ILn.

Proof. Let f € C[—1,1] and p € II,,. Due to the identity theorem for polynomials (cf.
Reminder [2.15)), the interpolation operator is a projection into II,,, so we have

Jlpl = p. (2.26)
Combining the triangle inequality and the stability estimate yields
1f = 3 oo, (—1,1 = IIf =P+ T[] = I[flleo -1,y = If =+ TP — flllo-1,1)
< Nf = plloo, =117 + 13 — fllloo,[=1,1]
<N f = plloo,=1,1] + Amllp — Flloo,=1,1-
This is the first estimate. R
Let now f € Cl[a,b] and p € II,,. We define f := f o @,y and p :=po P,y € Il
and apply the first estimate to obtain
15 = 3o fa) = I1f © @pap) = Telf] 0 Pagyllo,-11) = IIF = I lloe -1
< L+ A = Bllooy1, = 1+ M) | = Dlloo, -

This is the second estimate. []

Theorem 2.20 (Interpolation error) If the admissibility condition holds, the
interpolation error can be bounded by

. n \"
- Yts|loo sg 1+Am 1 1+ 1 .
o= Gl < (1 A o1 +) 1)

Proof. Let y € s and
f:t—R, x> g(z,y).

Let p € 11,,, denote the Taylor polynomial of order m. Due to Theorem [2.5] we have

n m
— < - .
Hf p”oo,[a,b] = IOg(l + 77) (77 + 1)

Now we can apply Lemma to conclude
l9(z,y) = Ges(z, 9)| = 1f (@) = Te[f](@)] < (L4 M) f = Pllos,[a,0)

< (1+Ap)log(l+n) (17:7—1) for all x € t,

and since y has been chosen arbitrarily, this is already the required result. ]

Due to ([2.25)), the stability constant A,, grows only very slowly as m increases, so the
interpolation error converges almost as quickly as the Taylor approximation error.
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2.7 Interpolation error analysis

Remark 2.21 (Chebyshev approximation) We denote the Chebyshev polynomials
by

Cp () := cos(marccos(z)) for allm € Ny, x € [-1,1].

Since {Co,...,Cn} are a basis of Iy, any polynomial p € Il,,, can be expressed as the
Chebyshev expansion

p(z) = Za,,C,,(:E) for all x € [—1,1], (2.27)
v=0

where ag, ...,an € R. This expansion is attractive, since the recurrence relation
1 ifm=0,
Cn(r) =< = ifm=1, forallmeNy, ze€[-1,1] (2.28)
20Cp—1(x) — Cp—2(x)  otherwise

allows us to evaluate efficiently in O(m) operations using the Clenshaw-Curtis
algorithm.

Remark 2.22 (Fourier expansion) Given a function f € C[—1,1], we can obtain
suitable coefficients of a Chebyshev approrimation via a Fourier expansion.
Substituting x = cos(y) yields

of@) T
[ it = [ sy
and COS(«T) COS(?J) = %(cos(a: + y) + COS(a: _ y)) yields

T ifv=p=0,
r=97m/2 ifv=pu>0, for all v, i € Ny.

0 otherwise

/1 Cy(x)o,u(y) d
Vi

This orthogonality relation leads to

1
ap = 7::_/1 \/Jl%da:, (2.29a)
_ 2 (! f(2)Cy(x) .
a, = ; /_1 ﬁdfﬁ fO’f' all v e [1 : m] (229b)

Remark 2.23 (Chebyshev interpolation) With the Chebyshev points defined in
, we have the discrete orthogonality relation

m m Zf V== 07
ZCV(&)CM(&) =m/2 ifv=pu>0, for all v,y € [0 : m],
#=0 0 otherwise

and we can replace the integrals in by sums requiring only f(&;) for k € [0 : m].
In this case, coincides with Chebyshev interpolation.
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2 One-dimensional model problem

2.8 Improved interpolation error estimates’

We can find significantly better estimates for the interpolation error by following the
approach described in [I5, Chapter 7, Section 8]: we replace the Taylor expansion by
the Chebyshev expansion ([2.27)).

We focus on the approximation of function f € C[—1,1], since we can switch to
arbitrary intervals using the mapping ®,;. If the function f can be approximated
reasonably well by polynomials of increasing degree, it can be represented by a power
series, and therefore also extended to a holomorphic, i.e., complex differentiable, function
in a neighbourhood of [—1, 1].

In this section, we therefore focus on the approximation of functions that are holo-
morphic in a neighbourhood of the reference interval [—1, 1].

To this end, we will represent [—1, 1] as the range of the cosine, and by extension as
the real part of points on the complex unit circle: Using Fuler’s formula, we find

el,t + eLt eLt + e—Lt eLt + 1/€Lt

cos(t) = R(e*) = 5 = 5 = 5 for all t € R,
where ¢ € C denotes the imaginary unit.
Definition 2.24 (Joukowsky transformation) The mapping
z4+1/z
g: C\ {0} —» C, —

2 9
is called the Joukowsky transformation.

Complex numbers on the unit circle §; := {z € C : |z| = 1} are mapped to their real
parts by the Joukowsky transformation, but g is holomorphic, while z — R(z) is not.

Our plan is to obtain an approximation of f by considering the Laurent series of a
holomorphic extension of the function

f:8 = C, z = f(g(2)).

In order to define this extension, we have to take a closer look at the Joukowsky trans-
formation.

Lemma 2.25 (Joukowsky transformation) We have
r<y <= g(z) <g(y) for all x,y € R>1. (2.30)

Let o € Rsy. The Joukowsky transformation maps the circle {z € C : |z| = o}
bijectively to the Bernstein ellipse

Ei={weC : |w—-1+|w+1| =2a} (2.31)

with semi-magor azis a = g(o) and foci 1 and —1 (cf. Figure[2.5).
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2.8 Improved interpolation error estimates

0=>5/2

Figure 2.5: Bernstein ellipses for p € {3/2,2,5/2}.

Proof. Let x,y € R>;. If we assume x < y, we have xy > 1 and therefore xiy < 1. This

implies
1 1 1 1
l-—Jz<|(l-— |y = 2r—-<y——
zy Y Y z

1 1
= m+5<y+§ — g(z) < g(y).

Assume now g(x) < ¢g(y). This implies x # y and therefore again zy > 1 and ﬁ <1, so0
we can proceed as before to conclude x < y.
Let now g € Ryj. Let z € C\ {0} and w := g(z). We have

z4+1/2-2]  |z+1/2+2

2 2
22+ 122 . |22 4+1+2z]  [z2—124|z+1]?
2|z| 2|7| 2|z|
z=1D(E-1+(=+1(z+1)
- 2|7|
z-1DE-1)+(z+1)(z+1)
- 2]
|22 —z—z+1+ |22 +2z+2+1
- 2]
2
— 2 e
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2 One-dimensional model problem

If we have |z| = p, this equation immediately implies
lw+ 1|+ |w—1[ =0+ 1/0=29(0) = 20,

ie., we &,
On the other hand, assume w € &,. To find z € C\ {0} with ¢g(z) = w, we consider

z+1/z

w=g(z) = 5 = wr=22 41 <= 22 - 2wz+1=0. (2.32)
This quadratic equation has two solutions 21,29 € C with z129 = 1, i.e., |21]]22] = 1.
Without loss of generality, we can therefore ensure |z;| > 1 > |z2|. Choosing z := z;

guarantees both w = ¢g(z) and |z| > 1.
Our previous calculation yields

29(121) = |2l + 1/]z] = [w + 1 + [w — 1] = 22 = 2¢(0),

and due to o > 1 and |z]| > 1, g(|z|) = g(0) already implies |z| = ¢ via (2.30).

Now we only have to prove that g is injective from {z € C : |z| = g} to £,. We have
already seen that we can find z € C with |z| = p and g(z) = w for every w € &,. If there
is another Z € C\ {0} with g(Z) = w, it also has to be a solution of the quadratic equation
(2.32). This equation has only two solutions z; and z9, so either we have Z = z; = z or
Z = z9. In the latter case, 1 = |z1| |22| implies |Z] = |z2| = 1/|z1] = 1/0 < 1 and therefore
|Z| # o in particular, i.e., z is the only solution of g(z) = w with |z| = p. [ ]

In order to have f = f o g holomorphic in a neighbourhood of the unit circle, f has
to be holomorphic in a neighbourhood of the reference interval [—1,1].

Lemma 2.26 (Annulus) Let o € R>;. The Joukowsky transformation g maps the
annulus

A, ={z€C : 1/o<|2] < ob
onto the Bernstein disc
Dy:={weC : |w—1/+|w+1| <2a} 2O [-1,1]
with o := ¢(p), i.e., g is surjective from A, to D,, cf. Figure .

Proof. Let z € A, and w := g(z). If |z| = 1, we have g(z) € [-1,1] C D,.
If |z| > 1, we let ¢ := |z] < p, and Lemma yields

lw — 1] 4+ |w + 1| = 2¢(0) < 29(0),

ie., w € D,.
If |z| <1 we have w = g(2) = ¢g(1/2) and can repeat the previous argument for 1/z
instead of z due to |1/z| = 1/|z| < o.

Let now w € D,. Let & := 1(jlw—1|+|w+1[) > 32— |w+1|+|w+1]) = 1. We also
have & < «a by definition and can use (2.30) to find ¢ €

[1, o] with g(9) = &. Lemma [2.25]
yields w € £; C D,. ]
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2.8 Improved interpolation error estimates

Figure 2.6: Joukowsky transformation from A, to D, with o =2

Let o € R>1, and let f be holomorphic in the Bernstein disc D,. Then by Lemma
the function

A~

f=1TFog
is holomorphic on the annulus A,.
This means that f can be represented in a Laurent series, i.e., we have

f(z) = Z anz" for all z € A, (2.33)

n=—0oo

with the coefficients

) )
an = 1) g, for all n € Z, (2.34)

C2m |o|=r 27T

for any r € (—1/p, 0). We will now prove that the Laurent series (2.33]) corresponds to
the Chebyshev expansion ([2.27]).

Lemma 2.27 (Symmetry) For all n € N, we have ap, = a_y,.

Proof. Let r € (—1/p, 0). We use the mappings

y1: R = C, t — re't,

1 1
72:R—C, 1 —et =

r ~v1(—t)

restricted to [0, 27] as parametrizations for the curve integrals over the circles with radii
r and 1/r centered at zero. We have

5(t) = (=1 Yi(t) = 71(t)2’y§(—t) = (1) for all t € [0, 27].

Y1(=1)?’
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2 One-dimensional model problem

Using this equation, g(1/z) = g(z), and ya(t — 2m) = y2(t), we find

1 fz) 1 f(1/z2)
T om lof=r 271 dz = 21 J)zp=r (1/2)71 dz

1 F@/m(t) 1 (7 f(ya(=1) 75(~t)
2me Jo o (1/m(t))n! 1(t)dt = 21 Jo o (=)t ya(—t)2 dt

1 27 1 -2 ¢ )
-5 ), LEricoa=— [ Lo
_ 1 0 f(72( )3,}/ (t) dt — 1 o f(72(t))’yl(t) dt

270 J_gp Y2 (t)"F 21 Jo  ye(t)ntl 2

2
1 ~
= / f(z dz = ay,.
21 |z|=1/r Zntl

This is the required identity. [
Using Lemma the Laurent series ([2.33)) takes the form

e o n —n
f(z) =ao+ Z a2t +a_pz"" = ap+ 2 Z an% for all z € A,.  (2.35)

n=1

—n

To obtain the Chebyshev expansion 1) we have to prove that the functions Zn%
correspond to the Chebyshev polynomials ([2.28)).

Lemma 2.28 (Chebyshev polynomials) We have

24z

5 for alln € Ng, z € C\ {0}. (2.36)

Cnog(z) =

Proof. By induction using the recurrence relation ([2.28]).
Let z € C\ {0} and w := g(z). For the base cases, we have

Now let m € N be given such that (2.36]) holds for all n € [0 : m]. We have

m —-m m—1 1-m
Cm+1("w)=2ow(w)—Cm_1(w):22+1/“ +27™ s

2 2 2
Lm+l + ,m—1 + L1-m + ,—m—1 Lm—1 + L1-m Lm+l + Z—(m—i—l)
- 2 - 2 - 2
This already completes the induction. [
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2.8 Improved interpolation error estimates

Using Lemma the expansion (2.35)) takes the form
oo
fg(2) = a0 +2)_ anCnlg(2)) for all z € A,,
n=1

and since the Joukowsky transformation g maps the annulus A, surjectively onto the
Bernstein disc D,, we conclude

fw) =ag+2 Z anCh(w) for all w € D,. (2.37)
n=1

This is called the Chebyshev expansion of the function f. In order to obtain a Chebyshev
approximation, we “just” have to cut off the series after the first m terms.

Theorem 2.29 (Chebyshev approximation) Let m € N, let ¢ € [1, 0). The polyno-

mial .
pi=ag+2 Z a,Cp € I, (2.38)
n=1
satisfies
I = pleiny < 72 (£)
p 00,Dp = Q/@ 1 0 00,D,+

Proof. Let w € Dy. Due to Lemma we can find z € A; with g(z) = w.
Let n € Ny. Due to Lemma, [2.28] we have
n —-n n n AT AN
B WY K R
2 2 2
For all r € (1/p, 0), the Laurent coefficient (2.34) can be bounded by

|G (w)]

1 I flloca,  11flloom
lan| < %27”" o e _ - e

and we can go to the limit r — o to obtain

| fllo0,D,
ot

With these estimates at our disposal, we can directly prove the error estimate:

|an| <

[f(w) = p(w)| =2 anCn(w) = Y anCr(w)| =2| > anCh(w)
n=1 n=1 n=m+1

00 oo én
<2 Y anl|Cu(w)] < 2| flloon, Y o

n=m-+1 n=m-+1
A\ m+1 00 AN T A\ m+1
0 3 0 0 1
s (5) X () =2 (5) =7
This is already the required result. [
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2 One-dimensional model problem

Corollary 2.30 (Approximation on the interval) Let m € N. The polynomial
satisfies

2 1\"
I = plern = 25 (3) Wl

Proof. We apply Theorem to 0 =1and [-1,1] = Dy. [ |

This means that the rate of convergence is determined by the largest Bernstein disc
in the domain of f.

If f is holomorphic up to a singularity at a point wg ¢ [—1, 1], we can find g9 € R>
such that wy € &,,. For every o € (1,00), the rate of convergence of the Chebyshev
expansion will be at least 1/p, i.e., asymptotically, we will have a rate of 1/gp.

Example 2.31 (Analytic function) We consider the function

1

1,1 5 R —
[ =11 =R, T T

We cannot approzimate it on the entire interval [—1,1] by a Taylor expansion around
the midpoint, since such an expansion would have to converge on the entire unit disc in
the complex plane, and this disc would include the singularities at v and —¢.

For the Chebyshev expansion, the disc is replaced by a Bernstein ellipse. The Bernstein
ellipse &y, touching the singularities i and —i is the one with

2V2 = |i — 1| +|i + 1| = 200 = 0o + 1/ 00,
0=0f—2V200+1= (00— V2)* -1,

i.e., 00 =V2+1, and 1/09 = /2 — 1 ~ 0.41 is indeed the rate of convergence observed
i numerical experiments.

Example 2.32 (Logarithmic kernel) In order to investigate the one-dimensional
model problem, we apply @[y to f(x) := g(x,y) with y € s and get
b+a b—a

5 YT

Z.

F(@) = —log |Bpuy () — y| = —log‘

We introduce

and obtain

i.e., the singularity is located at wy. Let xg € t denote the point closest to y, i.e., xg = a
ify<aandzo=>bify>0b. We have

_ 2
~ diam(t)

b+a
2

_ b+a
diam(t) |V T "2

‘y—woero—
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2.8 Improved interpolation error estimates

2(dist(t, s) + diam(t)/2)  2dist(t, s)

= diam(?) = “dam@ T ©

Assuming that the admissibility condition holds, we find

2 dist(t 1 1
wp| > 2stts) gLy 0l
diam () n n

The Bernstein ellipse touching this point is the one with

+1 1 1
ol 2 494 = Jwy— 1]+ |wo + 1| = 200 = 00 + 1/ 00,
7 7 7
+1 +1)\? +1)2
0=gf—2" Qo+1=<Q0—n ) _ 2) +1,
7 7
so we have
14+ + 12+ 2 1
po= 11 (;7+ )2+ >2n4nr 7

i.e., the rate of convergence is in fact more than twice that of the Taylor expansion. For
n =1, we obtain gy = 2+ /5 and 1/00 = 0.24, while n = 1/2 yields oo = 3+ V10 and
1/00 ~ 0.16.

According to Theorem our choice n = 1/2 yields only a rate of 1/3 ~ 0.33 if we
use the Taylor expansion.
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3 Multi-dimensional problems

The previous chapter has introduced the basic ideas of hierarchical matrix methods: the
matrix G is subdivided into submatrices G|;, ;, and these submatrices are approximated
by low-rank factorizations G|;, ; = AssBjs.

Now our goal is to extend these concepts to significantly more general applications,

i.e., more general domains and more general approximation schemes.

3.1 Gravitational potentials

Our model problem for this chapter is the evaluation of the classical gravitational po-
tential resulting from suns distributed in d-dimensional space.

We describe the suns by a family (m;);cs of masses and a family (y;),c s of coordinates
satisfying

m; € Ry, Yj ERd for all j € J,

where J is a suitable finite index set.
We want to evaluate the gravitational potential in a family (x;);cz of points satisfying

z; €RIN\{y; : j€T} for all i € Z.

The gravitational potential is given by

;= Z #mj for all i € 7,
7 i = yjll2
where v € R denotes the gravitational constant. This computation can be interpreted
as a matrix-vector multiplication: we define G € RZ*J by

7 forallicZ, jeJ (3.1)

95 = T =yl

and find
¢ = Gm.

Similar to our one-dimensional model problem, we have g;; > 0 for alli € Z and j € J.
With the function

ol if
g:RIx R? & R, (2,9) 1 { oz HEFY: (3.2)
0 otherwise,
we have
Gij = g(mi,yj) for all 7 € I, j S j,

so once again we have to deal with a kernel function that has a singularity for x = y.
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3 Multi-dimensional problems

3.2 Approximation by interpolation

In order to construct degenerate approximations for multi-dimensional kernel functions
like the gravitational potential , we have to extend the results of section from
intervals to suitable subsets of of R?. This task is particularly straightforward if we
consider axis-parallel boxes, i.e., domains

B =la1,b1] x ... X [ag, byl a, <b, for all c € [1: d]. (3.3)
We recall that we can define transformed interpolation operators

j[a,b] : Cla,b] — Iy, f=3[fo (I)[a,b]] © (I)[;,lb}’

for arbitrary non-empty intervals [a,b] and that these operators can be written in the

form
m

j[a,b] [f] = Z f(é[a,b],u)g[a,b},y

v=0

with transformed interpolation points (f[mb]’,,)z@:o and corresponding Lagrange polyno-

mials (g[a,b],u)Tzo-
In order to extend the interpolation operator to the d-dimensional setting, we “freeze”
all variables but one and apply interpolation to this one variable.

Definition 3.1 (Partial interpolation) Let ¢« € [1 : d|, and let B denote the axis-
parallel box given by . The operator Jp, : C(B) — C(B) defined by

jB,L[f] (:E) = Z f(xla sy Ty—1, E[aL,bL],w Ly41y - 7xd) é[aL,bL],v(l‘L)
v=0
forall f e C(B), € B

is called the -th partial interpolation operator for B.

The partial interpolation operator Jp, inherits many valuable properties of the one-
dimensional interpolation operator J,, 5,], but it does not produce a polynomial, merely
a function that is polynomial with respect to the «-th variable.

In order to obtain a “proper” interpolation operator, we have to apply partial inter-
polation operators to all coordinate directions ¢ € [1 : d.

Definition 3.2 (Tensor interpolation) The operator
Jp:=3Jp1o---0Jpyg

is called the tensor interpolation operator for B.
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3.2 Approximation by interpolation

We would like to obtain a representation similar to (2.15)) for the tensor interpolation
operator Jp, since this would in turn allow us to obtain approximations of the kernel

function in the form (2.18)).

To this end, we introduce the set M := [0 : m]¢ of d-dimensional multi-indices and let

v = (g[al,bl],l/l’ cee 7€[ad,bd],ud)v (34&)
€B.u(%) = Ly b1 (1) -+ Lag byl va (Td) forallv € M, z € B. (3.4b)

Using these tensor interpolation points and tensor Lagrange polynomials, the interpola-
tion operator Jg can be written in the desired form.

Lemma 3.3 (Lagrange representation) We have

Iplf)(x) = D f(€pw) Lo (x) for all f € C(B), = € B. (3.5)

veM

Proof. In order to be able to apply induction, we introduce
Bo := 1, B, :=P,—107Tp, for all « € [1:d]
and observe Py = Tp. We let

=[0:m]\,

gb v = ( [al,bl] ZERER 7§[aL,bL],VL)>
f ( ) g[al,bﬂ n (:L'l) g[ab,bL],uL (.TL) for all ¢ € [1 : d], x e R

and aim to prove

= fléw g, 3g) by(@r, .. m,)  forall f€C(B), z€ B (3.6)
veM,

by induction on ¢ € [1 : d].
We start with ¢ = 1. Let f € C(B) and « € B. Due to By = Jp,1, we can directly
apply Definition to obtain

ml [f](x) = jB,l[f] (:L‘) = Z f(é[al,bl]al/7 L2y -0 ZL‘d) g[alvbl}v’/(xl)
v=0
L o o)
veM;

Let now ¢ € [1 : d — 1] be such that (3.6) holds. Let f € C(B) and x € B. By the
induction assumption, we have

Boa[f(z) =B, OJBLH[f]( )

—"B [JB L+1 Z JB L+1 fL llvxL+17"'7xd) KL,Z/(xlvn-axL)
veM,
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3 Multi-dimensional problems

= Z Z f(éL,Vv g[ab+1,bb+1],u7 Lyp2y--- 7xd) eL,V(xh B xb) e[ab_,_l,bb_,_l]”u,(xb"rl)

veM, p=0
= Y flrm Ttz )l p(@, . T).

I)EML+1
Applying (3.6)) to ¢ = d and observing
M = My, §dp =EBy, Liy =By forallve M

completes the proof. [

In order to approximate the kernel function g, we follow the approach outlined in
the previous chapter, but replace the intervals ¢t and s by axis-parallel boxes. The
corresponding tensor interpolation operator

= Z f&w) ey for all f € C(t)

veM

can be used in the by now familiar way: we fix y € s and apply J; to the function
x + g(z,y), obtaining

Gt.s(z,y) Zﬁtl, 9(&u,y) forall z € t,y € s, (3.7)
veM

and this is the multi-dimensional counterpart of (2.18]).

Example 3.4 (Gravitational potential) We can use directly to obtain an ap-
prozimation of the matrix G corresponding to the gravitational potential : assume
that we have sets t C T and 8 C J such that g s is a good approzimation of g for all
target points x; with i € t and all source points y; with j € 5. We find

gij = g(ﬂfi, y]) ~ gt s xz; y] Z gt v «Tz gt Vs yj Z ats,iubts,ju = (AtsB:S)ij
veM veM

(3.8)
with the matrices A € R*M gnd Bis € R*M given by
Ats iy = Et,l/(xi)v bts,jl/ = g(ft,l/ayj) fOT all i € 57 .] € '§7 ve M.

Preparing the entries of Ays is fairly straightforward, we only have to evaluate the tensor
Lagrange polynomials given by . We can use the structure of these polynomials to
compute rows of A very efficiently.

Preparing the entries of Bis is even more simple: we have to set up the tensor points
3.4d) and evaluate the kernel function .

In a practical implementation, handling the general index sets t, 8, and M may
pose a minor challenge. Usually t and § can be simply represented by arrays listing
all indices, and these arrays give rise to a natural ordering of the rows of Ais and
Bys. For the columns, the lexicographic order on the multi-index set M is convenient:
v = (v1,v2,v3) € M is mapped to vy + (m + 1)(va + (m + 1)v3) € [0: (m +1)3 — 1].
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3.3 Error analysis

3.3 Error analysis

The degenerate kernel is only useful if it provides us with a reasonable approxima-
tion of the original kernel function g, therefore we have to investigate the accuracy of
tensor interpolation.

We start by taking a look at the partial interpolation operator and noticing that it
inherits important properties of one-dimensional interpolation.

Lemma 3.5 (Partial interpolation) Let ¢ € [1:d], let B denote the axis-parallel box
given by , let Ay, be a stability constant satisfying , and let w be the node
polynomial defined by . We have

138, [0, < Amllfllc,B for all f € C(B), (3.9a)

bL —a, e ||8m+1f||00 B
o~ < L )
L Y e T

for all f € C™(B).
(3.9b)
Proof. Let f € C(B), and let z € B. We define the function
fila,b] — R, y= f(@1, . 1, Yy Ty -, Tg)

and observe

NE

I [fl(z) =

f(xla ceey Ly—1, é[ab,bb},w Ly41y--- 7$d) g[aL,bL],V(xL)
0

N
Il

fA(g[aL,b 1, ) aL,bb],u(xb) = j[ab,bL][f] (xL)

I
1[M]=

Due to (2.24)), we have
130, 6 L@ < 1300, 0 [ Fllooufan ) < Al Flloo far6) = max{|f(y)] : y € [a,, b]}
= maX{|f(:B17 ooy Ly—1,Y, Ly4-1y - - - ,IIJ‘d)| Ly S [aLab }} < ||f||oo B
and this implies (3.9a). Let now f € C™*1(B). This implies f € C™*[a,,b,], and -
yields
| (2) = 3B A @)] = |F () = Tja 0[] (2)]

bL —a, mH ||f(m+1)||ooa[ahbt}
< llellos, (=11 ( 5 ) (m +1)!

b= a\" O f|oo,
< lwlloo,[~1,1] <2> C(m+1!

This is already (3.9b)). ]

Using the representation , the investigation of the multi-dimensional tensor in-
terpolation can be reduced to the one-dimensional case.

Due to the special struction of the tensor interpolation operator, stability and approx-
imation error estimates carry over directly from the partial interpolation operators.
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3 Multi-dimensional problems

Theorem 3.6 (Stability and approximation) Let A,, denote the stability constant

of . We have

138[flloe,8 < AL Flloc, 5

1f = 3B[flce. < ZAiﬁlllf —38.[fll0.8 for all f € C(B).

=1

Proof. As in the proof of Lemma we introduce

Po =1, Br = Pr-1°TBx for all k € [1: d].
We prove
1Bl flloo,5 < AT, (3.10a)
1f = Bulfllloo.B < f:A;,;lnf — T84 loo.B for all f € C(B) (3.10b)

by induction on x € [0 : d].

For k = 0, we have B, =By = I and holds trivially.

Let now x € [0 : d — 1] be such that (3.10) holds. Due to the induction assumption
and Lemma we have

[Brt1lflloe,8 = [IBx © T k1]l = 1Bx[TB.A11[f1]llo0,B
< Al3B 1l flllsep < AL Aml fllso,s = AL flloc,B

for all f € C'(B). This proves the stability estimate (3.10al).
We can use both induction assumptions and Lemma [3.5] to prove

1f = Brt1lfllloo,5 = If = Bulf] + Brlf] = Brat1lfllloo,B
<N =Bl flloo,B + 1B:lf] = Br[T,5+1[f]] 0,
= ||f _mn[f]nooB + ”mn[ f=7JB n+1[ ]]HooB
< ||f = Bxlfllloo.5 + AL = I k+1lfllloo,B

<ZA‘ U =3B lloos + ARllf = T 1[f]lloo,
=1

rk+1
=Y A = T8l
=1
This proves the approximation error estimate (3.10b)). [

This is a particularly useful result, since it allows us to reduce the entire error analysis
of tensor interpolation to the investigation of partial interpolation operators, which due
to Lemma [3.5| behave essentially like one-dimensional interpolation operators.
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3.3 Error analysis

Corollary 3.7 (Tensor interpolation error) Let J be the Chebyshev interpolation
operator, and let A, denote the stability constant of . We have

for all f € C™T(B).

d m+1 1
~ L— bL B a'L ||8Zn+ f”OO7B
I = 9wl < 23000 () 1
=1 ’

Proof. We combine Theorem [3.6] with Lemma Since we are using Chebyshev inter-
polation, we have [|w||o —11] =27 ]

In order to turn this into a meaningful error estimate, we require bounds for the
derivatives of f(x) = g(x,y). This turns out to be surprisingly challenging, but complex
analysis can help.

Lemma 3.8 (Holomorphic extension) Let z,p € R™ \ {0}, and let r := ||p|l2 and
¢ :=||zll2/r. There is a complex number w € C such that |w| = ||z||2, and the function
1

f:i{zeC : |z| <} —C, Z'_)\/(w+zr)(w+zr)’

1s holomorphic and satisfies
lw+tr|* = [lz + tpll3 for allt € R,

p 1
f(t) = m fOT (l” t c (—g,c),

1

& < L =TT

for all z € C, |z| < (.

Proof. We can find an orthogonal transformation @ € R™"*™ and r € R\ {0} such that

We introduce & := Qx and
. . ~2\1/2
w::aﬁl—i—b(mQ—i—...—i—x%) / ,

where ¢ € C denotes the complex unity. We observe |w| = ||Z|l2 = ||z||2 and

lw + tr)? = (w+ tr) (@ + tr) = |w|* + tr(w + @) + t*r?
=2 b 22 ey H P = (B ) R 22
= ||& + tp||3 = ||z + tp||3 for all t € R,

i.e., we can switch from the n-dimensional space to the complex plane.
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—
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Figure 3.1: The set S for |w| = 2 and different values of r.

In order to define f, we need a holomorphic extension of the square root to the set
S:={(w+zr)(w+2z2r) : z€C, |z| <(}.

We would like to use the principal branch of the square root defined on C \ R<g and
therefore have to prove R<oNS = 0.
Let z = a+ b with a,b € R and |z| = Va? 4+ b? < (. We have
(w+ zr) (W + 2zr) = |w|* + (w + ©)zr + 22r% = |w|* + 2@ 2r + 222
= |w|* + 2z1ar + (a® — b*)7? + o221 br — 2abr?).

If the imaginary part is non-zero, this number is not in R<¢ and we are done.
If the imaginary part is zero, we have

2%1br = 2abr? < b=0V i = ar.
If b = 0, we have

lw|* + 221ar + (a® — b*)r? = |w|* + 22 1ar + a®r?

2

> |w|? = 2w|ar + a*r? = (|w| — ar)? > 0,

and due to |ar| < |z|r < (r = |w|, the real part is strictly positive.
If 1 = ar, on the other hand, we have

\w|? + 2&1ar + (a® — b*)r? = |w|* + 2a%r% 4+ a®r? — b*r? > |w|* 4 3a*r? — |2|*r?

> Jw]? + 3a*r* — ¢%r? = |w|* + 3a*r? — |w|? = 3a** > 0,
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3.3 Error analysis

i.e., the real part is again strictly positive.
We conclude that S is contained in the domain C\ R« of the principal branch of the
square root and

A 1
f(z):= for all z € C, |2] <,
\/(w + zr)(w + zr)
is a well-defined holomorphic function. We have
. 1 1
t == =
#e) Vw+tr)(w+tr)  yJw+trf?
1 1 1
= — = — = for all t € (—(, (),
ViIg+m2 I+l [z +tpl
and
. 1 1 1
1f(2)] = = = = < =
WV(w+zr)(@+zr)|  Vw+zr[ D +zr] T wl =[] ry/]o] - Jz]r
1 1
— — for all z € C, |z] < (.
lwl = lz[r [zl — |2l [pll2
This completes the proof. [

Lemma 3.9 (Derivatives) Let z,p € R" \ {0}. The v-th directional derivative of
g(z) == 1/||x|| is bounded by

Il

13

10y g9(x)[2 < (v +1)le for all v € N.

Proof. Let ¢, w and f be defined as in Lemma We have

ola) = i+ tp) = f1(0)

t=0

— Ot

and therefore 0y §(z) = F®)(0). Since f is holomorphic in the circle of radius ¢ around
zero, we can use the Cauchy identity for derivatives.
Let € € (0,1), set ¢ := (1 —¢€)¢. We have

o Mopemas{lf()] : 2€C 2| =8
o Cu+1

1 _ o lplls 1 Ipll3 '
lzll2 = <llpll2 (1 = e)”ll[l5 ellz2 (1—e)veflz)5*t

<uI{™

In order to reach our goal, we should choose an € € (0,1) that makes (1 — €)”e as large
as possible. We have

2(1 —e)e=—-v(l—€"te4+(1—e)" for all € € (0,1),
€
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3 Multi-dimensional problems

and computing the extremum at
1
v+1

vl—e)te=(1—€" <= ve=1-¢€ = 1=(v+1)e < €=

looks like a promising approach. Using this choice, we obtain

=) = () = () = ()

and , )}
1F(0)] < vle (v +1) ”pﬂil =e(v+1) ”pﬂﬂ.
[E4[E ]
Due to |9y g(x)| = | £)(0)], our proof is complete. ]
We have
g(x,y) = 7 =vg(z—vy) forallz €t, y € s,
lz =yl

and in order to estimate the interpolation error

9(z,y) — gis(z,y) = f(z) — Tt [f](2) forall z € ¢

with a fixed y € s, we have to analyze the partial derivatives of

f(x) =g(z,y) =vg(x —y) for all = € t.

According to Lemma we have to be able to bound both ||z — y|| from below and
|b, — a,| from above. To obtain a similar result as in the previous chapter, we introduce

diam(¢t) := max{|b, —a,| : ¢ € [1:d]},
dist(t,s) ;= inf{|lz —y| : x €, y € s}

and apply the previous Lemma.

Corollary 3.10 (Kernel function) Let dist(¢,s) > 0. We have
N 2evd(m + 2)ALL / diam(t) ™!
— Yislloo s = . o . ll N.
lg = Gtslloc e dist(t, s) 4 dist(t, s) for altm €

Proof. Let y € s. We define again f(x) := g(x,y) = vg(x — y) for all z € ¢t. Due to
Lemma [3.9] we have
1

omtt < 2N0e—F——
H L f”OOJ = V(m + ) ediSt(t, S)m+2

for all v € [1: d],

and Corollary [3.7] yields

d m+1
(b, —aq, (m+2)le 1
o~ -~ <9 AL 1
1 = 31 Tlloee < LZI m ( 4 > K (m +1)! dist(t,s)mt2

2edA%1y(m +2) [ diam(t) "
dist(t, s) 4 dist(t, s)

This is already the required estimate for the interpolation error. [
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3.4 Cluster tree and block tree

Corollary states that we can expect fast convergence of the kernel approximation if

diam(¢)
4 dist(t, s)

is small, at least less than one. As in the one-dimensional model problem, we use an
admissibility condition
diam(t) < 2ndist(t, s) (3.11)

with a parameter n € (0,2) that can be used to balance the rate of convergence ver-
sus the storage requirements. If holds, Corollary leads us to expect a rate
of approximately 7/2, since A% and m + 2 grow only slowly while (1/2)™*! decays
exponentially.

To ensure , we proceed as in the previous chapter, i.e., we split the domains ¢
and s into subdomains until they are either admissible or small enough to be handled
directly. In our example, the boxes ¢t and s correspond to clusters of suns, therefore we
will refer to them as clusters in the following.

In order to split a cluster ¢, we generalize the bisection approach introduced in sec-
tion 2.4l Assume that

t= [al,bl] X X [ad,bd]

is too large. We choose a coordinate index ¢ € [1 : d] and define

b, +a,
=g

We split ¢ into two halves along the plane z, = ¢,, i.e., we define

ti:={zxet : x, <c¢}
= [ahbl] X X [ab—17bL—1] X [ach X [aH—labH—l] X X [adabd]7
to:={zxet : x,>¢}

= [al,bl] X X [ab_l,bb_l] X [CL,bL] X [ab+1,bL+1] X oo X [ad,bd].
If t1 and %9 are still too large, we can repeat the procedure recursively.

Remark 3.11 (Coordinate selection) A simple and effective strategy for choosing
the coordinate index v € [1 : d] for splitting a cluster is to go by the maximal extent, i.e.,
to choose v € [1 : d] such that

b, —a, >b. —a. for all k € [1:d],

since this guarantees that diam(t) shrinks as rapidly as possible. We will refer to this
approach as adaptive coordinate selection.

For theoretical investigations, the regular coordinate selection approach is sometimes
more attractive: we use . = 1 for the first cluster, . = 2 for the second generation,
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Figure 3.2: Cluster construction by bisection

v = d for the d-th generation, and then we start again with ¢ = 1 for the (d + 1)-th
generation. This strategy ensures that the ratios of the sides of the clusters obtained
in the d-th generation are identical to those we started with, a useful property for the
geometric complexity analysis.

Every cluster t is associated with a set ¢ C 7 of indices such that x; € t for all i € £,
and it is frequently a good idea to construct these sets together with the corresponding
clusters. In our case, the sets

7?1 = {’L et : i, < CL}7
ty:={iet : xi, > ¢}

are an obvious choice. We want ¢; and £ to be disjoint, since every point should be
approximated only once, and we ensure this by including i € ¢ with x;, = ¢, only in the
first domain.

Remark 3.12 (A posteriori index sets) Computing the index sets t during the con-
struction of the clusters is attractive since it allows us to stop subdividing as soon as a
cluster contains only a small number of indices.

The price for this advantage is that sorting indices into the clusters typically takes
O(n) operations for each generation, where n = |t| is the cardinality of the index set in
the first generation. Since we usually need O(logn) generations to arrive at sufficiently
small subdomains, this approach can be expected to take at least O(nlogn) operations.

An alternative is to construct all generations without considering the index sets. Once
the final generation has been created, the indices are distributed to the last-generation
clusters. If we store the indices in nested arrays, i.e., if the arrays corresponding to child
clusters are sub-arrays of the array corresponding to the parent, filling the last generation
indez sets also fills all other index sets, and we obtain linear complexity O(n).

We can see that the bisection procedure gives rise to a hierarchical decomposition of

clusters and index sets: the clusters can be arranged in a tree, using the original domains
as the root and creating children of a cluster by bisection.
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Definition 3.13 (Tree) Let V be a finite set, let r € V and E C V x V. We call
T := (V,r,E) a tree if for each v € V there is exactly one sequence vy,vi,...,vp € V,
£ € Ny, such that

vy =T, v =0, (vi—1,v) € E forallie[1:4].

We call V' the nodes of the tree, r its root, and E its edges. The root is denoted by
root(7) =r. We frequently use v € T as short-hand for v € V.
For each v € T, we call

chil(v) :={w eV : (v,w) € E}

the set of children of v. If chil(v) =0, we call v a leaf.
If there is a w € V' such that (w,v) € E, this w is unique and is called the parent of
v. Our definition implies that only the root r has no parent.

Definition 3.14 (Cluster tree) LetZ be a finite set, let Tz be a tree with nodest € Tz,
and let a subset t C T be given for each t € Tr.
We call it a cluster tree for T if

e the index set corresponding to the root r is L, i.e.,
r=1, (3.12a)

e the index set corresponding to a non-leaf node consists of the union of the index
sets of its children, i.e.,

t= U t for all t € Tz, chil(t) # 0, and (3.12Db)
# €chil(t)

e the index sets of different children of a node are disjoint, i.e.,

tNte£0=1t =1t for allt € Tz, t1,t2 € chil(t). (3.12¢)

The nodes t € Tz of a cluster tree Tz are called clusters. The set of leaves of Tz is
denoted by L1 :={t € Tz : chil(t) = 0}.

Splitting the clusters into levels is frequently a very useful tool, both for proving
statements about trees and sometimes also for implementing tree algorithms.

Definition 3.15 (Level) Let 77 be a cluster tree with root r := root(7Tz). The level of
a cluster t € Tz is defined by

0 f t =
level(t) := ft=r _ ‘ for allt € T
level(t+) +1  if there exists t4 € Tz with t € chil(ty)

The maximal level
pr = max{level(t) : t € Tz}

1s called the depth of the cluster tree.
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Lemma 3.16 (Leaf indices) Let Tz be a cluster tree for the index set . For every
i € I, there exists a leaf t € L1 with i € t.

Proof. Let i € T7. The set
Ci:={teTr : i€t}

contains the root due to (3.12al), so it is not empty.

If a cluster ¢ € C; has children, (3.12b)) yields that there has to be ¢ € chil(t) with
i € t' and therefore t' € C;. Deﬁniti yields level(t') = level(t) + 1.

Since C; is finite and not empty, we can choose a t € C; such that level(¢) is maximal.
We have seen that this implies chil(t) = 0), i.e., we have t € £7 and i € . |

Definition 3.17 (Descendants and predecessors) Let Tz be a cluster tree. We de-
fine the sets of descendants

desc(t) :={t} U U desc(t') forallt € Tz
t’echil(t)

and predecessors
pred(t) := {t. € Tz : t € desc(t.)} forallt € Tz.

Lemma 3.18 (Intersecting clusters) Lett,s € Tz with t N3 # (.
If level(s) = level(t), we have t = s. If level(s) < level(t), we have t € desc(s).

Proof. We first prove that level(t) = level(s) and £ N § # () implies ¢t = s by induction on
level(t) € No.

Let t,s € Tz with level(t) = level(s) = 0. Then both clusters are the root and therefore
identical.

Let now ¢ € Ny be given such that for all ¢,s € 77 the identity level(t) = level(s) = ¢
and £ N5 # 0 imply ¢ = s.

Let ¢, s € Tz with level(t) = level(s) = £+ 1 and £ N § # ). Since level(t), level(s) > 0,
there are parent clusters ¢, s, € 7z with ¢ € chil(¢;) and s € chil(sy) and level(ty) =
level(s4) = £. Due to , we have £, N3, D tN3§ # (), so we can apply the induction
assumption to obtain ¢4 = sy. This means that ¢, s € chil(¢;), and yields t = s.

We now prove that level(t) — level(s) € Ny and £ N 3 # () implies ¢ € desc(s) by
induction on level(t) — level(s) € Ny.

Let t,s € Tz with level(t) — level(s) = 0 and £ N § # ). By the first part of this proof,
this implies ¢ = s.

Let now m € Ny be given such that for all ¢, s € 77 the identity level(t) —level(s) = m
and t N § # () imply ¢ € desc(s).

Let t, s € Tz with level(t) —level(s) = m+1 and £N3 # (. Since level(t) > level(s) > 0,
there is a parent cluster ¢4 € 77 with ¢t € chil(ty). We have level(ty) — level(s) =
level(t) — 1 — level(s) = m and £, N3 D N # (), so we can apply the induction
assumption to obtain ¢4 € desc(s). t € desc(s) follows by definition. |
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Corollary 3.19 (Leaf partition) The set {t : t € Lz} is a disjoint partition of T.

Proof. Lemma provides that every ¢ € Z appears in a leaf cluster.
Lemma provides that for all t,s € £7 with £ N5 # ), we have either ¢ € desc(s)
or s € desc(t). Since both are leaves, this is only possible if ¢ = s. ]

Once we have cluster trees 77 and 77 for target and source points at our disposal,
we can look for admissible pairs of clusters. We can use a recursive procedure: given
clusters ¢ and s, we check the admissibility condition . If it holds, we stop and
apply our low-rank approximation. If it does not hold, we check whether ¢ and s have
children. If they do, we recursively check pairs of children. If both are leaves, we stop
and use a standard representation. This approach again gives rise to a tree structure.

Definition 3.20 (Block tree) Let Tz and Tz be cluster trees for index sets T and J.
A tree Trx 7 is called a block tree for Tr and T7 if

e the nodes are pairs of clusters, i.e., for every b € Trx 7 there aret € Tz and s € Tx
with b = (t, s),

e the root consists of the roots of Tz and Ty, i.e.,

r = (root(7Tz),root(77)), and (3.13a)
e ifb=(t,s) € Tzxy has children, they are pairs of the children of t and s, i.e.,

chil(t) x chil(s)  if chil(t) # 0, chil(s) # 0,

chil(b) = < {t} x chil(s) if chil(t) = 0, chil(s) # 0, (3.13b)
chil(t) x {s} if chil(t) # 0, chil(s) = 0.

The nodes of a block tree Trx 7 are called blocks. For a block b = (t,s) € Tzx7, t € Tz

is called the row cluster or target cluster and s € Tz is called the column cluster or

source cluster.

The set of leaves of Tzx 7 is denoted by ;CAZXJ.
For every block b= (t,5) € Tzx7, weletb:=tx§ C T x J.

We introduce an abbreviation to avoid the special cases when treating (3.13b).

Lemma 3.21 (Extended children) We let

hil(¢ ] t
chil™ (¢) := chil(t) if sons( )70, forallt € Tz. (3.14)
{t} otherwise
We have
t= U t for allt € Tz,
t/ €chilt (¢)
hNta#£D=t =t for allt € Tz, t1,ty € chil™(t).
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Proof. Follows directly from Definition [3.14 ]

As a first application of this notation, we prove that block trees are, in fact, cluster
trees for the product index set Z x 7, i.e., the statements we have proven so far for
cluster trees carry over directly to block trees.

Lemma 3.22 (Product cluster tree) Let Tz« 7 be a block tree for Tr and T7. Then
Tzx 7 is a cluster tree for the product index set T x J.

Proof. Let r = root(Tzx 7). By definition, we have r = (¢, s) with ¢ = root(7z) and
s =root(77), and (3.12a)) implies f =Z and § = J. Due to # = x § = T x J, we have
proven (3.12a)) for Tz
Let now b = (t,s) € Tzx7 be given with chil(b) # (. (3.13b) yields
chil(b) = chil*(¢) x chil*(s),

and we can use Lemma [3.21] to obtain

U V= U U t'x§ = U ] x U § | =txs=b.

b’ echil(b) t'€chilt () s’€chil T (s) t'chilt (¢) s’€chil T (s)
This proves (3.12b)).

Let now by, by € chil(b) with by N by # 0. By Definition we can find row clusters
t1,t2 € chil(¢) and column clusters s, se € chil(s) such that by = (¢1,s1) and by =
(t2, s2). Since we have

(fl ﬂfg) X (§1 ﬂ§2) = (1?1 X §1) N (tAQ X §2) = 61 ﬂi)g =+ 0,
we find £; Nty # O and 3; N §o # 0. Lemma yields t; = to and s; = s9, and this
implies by = bs. [ |
Corollary 3.23 (Block partition) Let Tzx 7 be a block tree for Tz and Ty. Then
{£X§ b= (t,S) Eﬁzxj}
is a disjoint partition of T x J.
Proof. Combine Lemma [3.22| with Corollary [3.19] [ |

This result is at the heart of our approximation strategy: it allows us to construct
an approximation of a matrix G € RZ*J by combining approximations of submatrices
Gliy; for b= (t,s) € L1x7.
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3.5 Hierarchical matrices

3.5 Hierarchical matrices

Our construction of a block tree stops if one of two conditions is met: either a block
b = (t, s) satisfies an admissibility condition like or , or if a block cannot be
subdivided any further.

In the first case, we use a low-rank approximation G|;, ; ~ Ay Bj,, while in the second
case we assume that the matrix G|;, ; is sufficiently small to allow us to store it directly.
This difference between leaf blocks gives rise to the following definition:

Definition 3.24 (Admissible and inadmissible leaves) Let Tzx7 be a block tree
for cluster trees Tr and T7. We split the set Lz« of the leaves of Trx 7 into

e a set of admissible leqves L’%X 7 € Lzxg corresponding to the given admissibility
condition, and

e a set of inadmissible leaves L7, ;1= L7x7 \ [,}FXJ.

Due to Corollary the leaves of the block tree give rise to a partition of the index
set Z x J, and therefore to a decomposition of a matrix G € KZ*J into submatrices.

Notation 3.25 (Matrix notations) Since most of our algorithms work for both real-
and complex-valued matrices, we introduce K € {R,C} as a placeholder for the field
currently under consideration.
If T is a general index set and k € N, we use the abbreviation
For a general matriz X € KI*J | X* denotes the adjoint with respect to the Euclidean
inner product, i.e., X* = XT {f K=R and X* = X i{fK =C.

KIxk .— RIx[1:k]

In practice, we frequently cannot work with the matrices G € KZ*7 corresponding to
our model problems, since they are simple too large. That is why we replace them with
blockwise low-rank approximations, and these approximations have a structure that is
worth a far closer look, since it can be used in far more general applications than the
ones we have seen so far.

Definition 3.26 (Hierarchical matrix) Let Tz« 7 be a block tree for cluster trees Tz
and Tz, and let C%XJ denote its admissible leaves. Let k € Np.

A matriz G € K> s called a hierarchical matrix (or H-matrix) of local rank k for
Tzx 7 if for every admissible leaf b = (t,s) € L’;Xj, there are matrices Ap € K>k gnd
By € K5%F such that

Glivs = AvB. (3.15)

The set of all such hierarchical matrices is denoted by H(Tzx7,k).

The mere existence of the factors in may be of theoretical interest, but for
practical considerations, it is important that we can represent the entire matrix G by
factorized matrices for admissible blocks and by small matrices for inadmissible leaves.
To capture this concept, we introduce the representation of a hierarchical matrix explic-
itly, so that we can, e.g., investigate the storage requirements.
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Definition 3.27 (H-matrix representation) Let Tzx7 be a block tree, and let G €
H(Tzx7,k) be a hierarchical matriz.
Let A = <Ab>be£§xj’ B = <Bb)beﬁji_xj’ and N = (Nb>b€ﬁixj be families of matrices.
We call (A, B, N) an H-matrix representation of G if
Gliys = AvBy, Ay € KP¥F B, € Kk for all b= (t,5) € LF, ;.
Gliv: =Ny forallb=(t,s) € L7, ;.
In the case of the gravitational potential, (3.8]) is of the form (3.15) if we let k :=
(m 4+ 1)%. In the one-dimensional model problem, (2.8) and (2.16] are also of this form,
but with k = m and k = m + 1, respectively. This means that the three matrix approx-

imations we have constructed so far are hierarchical matrices, and general statements
about and algorithms for hierarchical matrices apply directly to them.

3.6 Complexity estimates

In our applications, H-matrix approximations take the place of the original matrix G,
therefore we have to store only these approximations and we have to perform arithmetic
operations like the matrix-vector multiplication only with these approximations.

In order to obtain useful estimates for the storage requirements and the algorithmic
complexity, we have to ensure

e that the inadmissible leaves of the block tree correspond to small matrices, and
e that the overall number of blocks is not too large.

For the first property, we can rely on the construction of the block tree that stops only
once the row or column clusters are leaves. If the leaves are small, we immediately obtain
a bound for the number of coefficients in the resulting H-matrix representation.

Definition 3.28 (Admissible block tree) Let Tzx7 be a block tree, and let E'IFXJ

and EEXJ denote the admissible and inadmissible leaves of Tzx 7.
The block tree Trx 7 is called admissible if

(t,s)e L7, ;= (t€LzVseELyg) holds for all (t,s) € Tzx7,
and it is called strictly admissible if
(t,s) €Ly, = (tE€ELINSE L) holds for all (t,s) € Tzx 7.
Definition 3.29 (Cluster resolution) Let Tz be a cluster tree. We call
rr:=max{|t| : t € Lz},

i.e., that maximal number of indices in leaf clusters, the resolution of T7.
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Lemma 3.30 (Storage requirements) Let Tz« 7 be an admissible block tree, let r1
and rg denote the resolutions of Tz and Tz, and let G € H(Tzx7,k). An H-matriz
representation of G requires not more than

max{k,rz,r7} Z (1] + 18])

b=(t,s)€ELzx 7

units of storage.

Proof. Let b = (t,s) € L1x7. If b is an admissible leaf, we have to store the matrices
Ay € K¥F and By, € K***, and this takes

k(|E] +13])

units of storage.

If b is an inadmissible leaf, we have to store N, € K*, and this takes |£] |3] units
of storage. Since Tz« 7 is admissible, ¢t or s has to be a leaf. In the first case we have
|{| < r7 and can bound the storage requirements by

rr [3] < rz(|f] +3)),
in the second case we have |§| < r7 and obtain the bound
rg |t < ra ([t +13).

Taking the maximum of the three estimates yields that each leaf b = (¢,8) € Lzx7
requires not more than

max{k,rz,r7}(|f| +3])
units of storage. Accumulating the requirements of all leaves leads to our estimate. m

In order to bound sums of the form

>, il

b=(t,8)ETzx 7

we employ the concept of sparse block trees [21]: Using admissibility conditions like
(2.11) and (3.11)), the row and column clusters of inadmissible blocks are geometrically
close (cf. Figure . If we use a geometrically regular clustering strategy, the clus-
ters have a certain size and do not (or hardly) overlap, and this means that only a
bounded number of clusters can be close enough to make them inadmissible, the number
of inadmissible blocks for a fixed row or column cluster is bounded.

Our strategy for constructing block trees ensures that only inadmissible blocks are
split, therefore the parent of every block in 7z« 7 is inadmissible, and we have just seen
that the number of inadmissible blocks can be bounded.
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Figure 3.3: Given a cluster (red), only a bounded number of other clusters (blue) are
close enough to lead to inadmissible blocks.

Definition 3.31 (Sparse block tree) Let Tz« be a block tree for the cluster trees T
and T7. We call

row(t) :={s €Ty : (t,5) € Tzxs} for allt € Tz
the block rows for the row clusters t and

col(s) :=={teTr : (t,8) € Tzx7} forall s € Ty

the block columns for the column clusters s.
Let Csp € N. We call Tzxg Csp-sparse if

#row(t) < Cyp for all t € Tz,
# col(s) < Cyp foralls € Ty.

If Tz« 7 is sparse, we can use the sparsity constant Cg, to replace a sum of blocks by
a sum of clusters, we have

Yoo =) > <Gy )l

b=(t,s)ELTx T teTz serow(t) teTz

In order to bound this sum, we can take advantage of the fact that Lemma [3.18| implies
that an index i € Z appears at most once on each level of the cluster tree. As in
Definition we denote the depth of the cluster tree 77 by

pz = max{level(t) : t € Tr}.

Since the level numbers start at zero for the root, the total number of levels is pr + 1.
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1

Figure 3.4: Block row and block column (magenta) for a given row or column cluster
(blue)

Lemma 3.32 (Cluster sum) Let 77 be a cluster tree of depth pr. We have
>l < (pz+ DT, >l =17l
teTr teLr

Proof. Since Lemma [3.18] implies that the index sets for all clusters on the same level
are disjoint, we have

3 yﬂ:‘ U i<z for all £ € Ny
teTz teTz
level(t)=¢ level(t)=¢
and conclude
Pz pI
> = > <Y 1Zl= (pr+ DT
teTr =0 t€Tr /=0
level(t)=¢
The second equation follows directly from Corollary [

We could apply this result directly to find a bound for the storage requirements, but
it is possible that the depth pr« 7 of the block tree Tz« 7 is smaller than the depths pr
and ps of the corresponding cluster trees 77 and 77, and in these situations a sharper
estimate can be derived, since Definition [3.20] implies that the levels of the row and
column clusters of a block cannot be larger than the level of the block.

Lemma 3.33 (Block level) Let b= (t,s) € Tzxy. We have
level(b) = max{level(t), level(s)}.

If level(t) < level(b), the row cluster t is a leaf. If level(s) < level(b), the column cluster
s is a leaf.
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Proof. By induction on level(b).

Let b € Tzx 7 with level(b) = 0. Then b is the root of Tz« 7, and Definition yields
that ¢ and s are the roots of 7z and 77, respectively, so we have level(t) = level(s) = 0.

Let now n € Ny be given such that level(b) = max{level(t),level(s)} holds for all
blocks b = (t,s) € Trxs with level(b) = n, that level(t) < level(b) implies ¢t € L7, and
that level(s) < level(b) implies s € L.

Let b = (t,8) € Trx7 with level(b) = n + 1. Since level(b) > 0, we can find a parent
block by = (t4,s4) € Tzxy with b € chil(by), and Definition yields level(by) = n.

If level(ty) < level(by), we have t4 € L7 by the induction assumption. Definition
implies ¢t = t4 and s € chil(s;), and we can use the induction assumption to obtain

level(b) = level(by) 4+ 1 = level(s4) + 1 = level(s).

Together with level(t) = level(t4) < level(bs ), this proves our claim.

If level(s4) < level(bs), we can use the same arguments.

Otherwise we have level(t;) = level(s;) = level(by). Definition guarantees
chil(t4) # 0 or chil(s;) # 0. We have

level(t) level(ty) + 1 = level(by) + 1 =level(b) if chil(ty) # 0,
Vi =
level(t4) <level(bs) + 1 = level(b)  otherwise,
level(s) level(sy) + 1 = level(by) + 1 = level(b) if chil(sy) # 0,
vel(s) =
level(sy) < level(bs) + 1 = level(b)  otherwise,
and this completes the proof. ]

Lemma 3.34 (Block sum) Let Tzx7 be an admissible Cgp-sparse block tree of depth
prx7. We have

Y. = Cylpzcg + DI, Y B < Cyplozxg +DITI.
b=(t,5)€Tzx 7 b=(t,5)€Tzx g
Proof. Lemma, yields
level(t) < level(b), level(s) < level(d) for all b = (¢, s) € Tzx 7,

and we find

Pzxg
> = Y > \t\ <Cyp Y l=Cy > il
b=(t,8)ETrx 7 teTr s€row(t teTr (=0 teTr
level(t)<pzx 7 level(t)<pzx 7 level(t)=¢

We can again use Lemma to obtain

> lil=|

teTr teTz
level(t)=¢ level(t)=¢

for all £ € Ny,

o8



3.6 Complexity estimates

and we conclude

Y. i< Cyplpzxs + DI
b:(tvs)EEXJ

Similar arguments can be applied for the second estimate. [

Theorem 3.35 (Storage requirements) Let Tzx 7 be an admissible Cs,-sparse block
tree of depth prx 7. Let rr and rg be the resolutions of the row and column cluster trees
Tz and T7. A corresponding H-matriz representation of a matriz G with local rank k
requires not more than

Csp max{k,rz,r7}(pzxg + 1)(|Z] +|T|)

units of storage.

Proof. We combine Lemma and Lemma to find that not more than
max{k,rz,rz} Y ([f+]3)

b:(t,S)GLIX J

= max{k,rz,77} oH+ D> B3

b=(t,s)€Lrx 7 b=(t,s)€L1x 7

< max{k,rz,r7} Z It + Z |5]

b=(t,s)€Tzx g b=(t,s)ETzx 7
< max{k,rz,77} (Cp(pzxg + DIZ| 4+ Cp(pzxg + 1[TI)
= Csp max{k,rz,r7}(pzxg + L)(|Z] + [TI)

units of storage are required. ]

Remark 3.36 (Matrix-vector multiplication) Given an H-matriz G, the matriz-
vector multiplication y < y + Gx can be performed blockwise, i.e., by taking the steps

Yl < ylg + Glogs

3 forallb=(t,s) € Lxg

in any order. For admissible leaves, computing z < Bjz|; takes (2k — 1)|3| < 2k|3]
operations, and the update y|; < y|; + Apz takes 2k|t| operations.

For inadmissible leaves, we have 2|t||3| operations. Assuming that Tzx 7 is admissible,
we can bound this by 2max{rz,r7}(|t| +|3|) and obtain the upper bound

2max{k,rz,rs} Y |f+ 3]

Lrxg

for the number of arithmetic operations. This is the same sum as in Lemma and
we can proceed as before to obtain the bound

2Csp max{k,rz,77}(prxg + 1(IZ| +|7])

for the number of operations.
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3.7 Estimates for cluster trees and block trees

Our complexity estimates rely on a number of assumptions:

1. The block tree is admissible.
This can be guaranteed by continuing to subdivide inadmissible blocks as long as
the row or the column cluster has children.

2. The resolution of the cluster trees is bounded.
This can be guaranteed by continuing to subdivide clusters as long as they contain
too many indices.

3. The block tree is sparse.
Proving this assumption can be quite challenging. Here, we focus on very regular
cluster strategies and a simple admissibility condition.

4. The depth of the block tree is bounded.

We can handle this assumption by proving that the depths of the cluster trees are
bounded and applying Lemma [3.33

We briefly recall three popular cluster strategies. All are based on assigning points
z; € R? to all indices i € Z, e.g., the positions of planets or the nodal points of finite
element basis functions, and splitting the “point clouds” corresponding to clusters to
construct children.

We prescribe a resolution r7 € N and we keep splitting clusters recursively until the
condition |f| < rz is met.

Adaptive bisection Clusters correspond to axis-parallel boxes
t =la1,b1] x -+ X [ag, bg).
We choose the direction of maximal extent ¢ € [1 : d], i.e., we have
b, —a, >b. — a. for all k € [1:d].

If this condition does not lead to a unique choice, we pick the smallest ¢.
We denote the midpoint of the ¢-th interval by

o b, +a,
L= 9
and construct two children
t1:={zet : z,<c¢} to:={z et : x,>¢}.
The corresponding index sets are
tAl = {Z € 1? DTy < CL}, tAQ = {Z € 1? DT, > CL},

where we arbitrarily assign indices on the boundary between the two children to ;.

60



3.7 Estimates for cluster trees and block trees

Regular bisection We proceed as in the adaptive bisection approach, only instead of
choosing the direction of maximal extent, we cycle through all directions ¢ € [1 : d].

Tensor bisection Clusters correspond to axis-parallel boxes
t= [al,bl] X oo X [ad,bd]

and are split along all coordinate axes simultaneously.
We denote the midpoints by

bl, L
¢, = ;a for all ¢ € [1: d]
and define
a% = q,, b =, M =¢, b =1, for all € [1:d].

This implies

(a6 U [afV, (V] = [a., b,

(@, 6@ N [V, 6V] = {c,} for all v € [1 : d],
i.e., we split all intervals [a,,b,] along the middle into [afo), bfo)] and [afl), bfl)].

Given the multiindex set S := {0,1}%, we construct 2¢ children

t, == [agyl),bgyl)] X o X [afiyd),bglyd)] for all v € S.

The corresponding index sets are given by
t,={ict : Vee[l:d : (v,=0=z;, <c,)A
vm=1=z,>c¢)} for all v € S.

Remark 3.37 (Diameters) For the tensor bisection strategy, we immediately obtain

diam(t)

diam(t') <
fam(t') < 5

for all t' € chil(t), t € T7.

For the reqular bisection strategy, we have to take d splitting steps before the diameter
1$ halved, i.e.,

diam(t)
2

diam(t*) < for all t* € desc(t), level(t*) = level(t) +d, t € Tz.
Adaptive bisection is a little more challenging. We again consider a cluster t € Tz and
perform d splitting steps to obtain a descendant t* € desc(t) with level(t*) = level(t) +d.
We let

£ = o], b % -+ x [al b
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3 Multi-dimensional problems

For every v € [1:d], let v, € [0 : d] be the number of times we have split clusters in the
t-th direction. Since we have performed d steps, we have

V= +...4+vg=d.

We choose a direction ¢ € [1 : d] with v, > 0. Our strategy splits only along the direction
of maximal extent. The -th direction can only have been chosen v, times if it was still
the direction of maximal extent after v, — 1 splits, i.e.,

21 (b — a;) > b} — aj, for all k € [1:d].
We conclude

diam(t*) = max{b: —a’ : k€ [1:d]} <2"7 (b} —a))
_2n(bf —ay) b —a, < diam(t)

2 2~ 2

i.e., adaptive bisection reduces diameters at least as quickly as reqular bisection.

Now that we know how many levels are required to reduce the diameter of a cluster, we
can easily calculate how many levels are required until clusters contain only one point,
i.e., when the splitting procedure stops.

Lemma 3.38 (Depth) Let H € R~ be the diameter of the root cluster. Let
h:=min{||z; — zjllec : i,j €L, i #j}
be the minimal distance between two points. The depth of the cluster tree is bounded by

< |logo(H/h)| + 1 for tensor bisection,
~ |d(|loga(H/R)| + 1)  for regular and adaptive bisection.

Proof. We first consider the tensor bisection strategy. Using

di t
diam(#') < 1a1;1( ) for all t € Tz, ' € chil(t),
a simple induction yields
diam(t) < 27‘H for all t € Tz, level(t) = £.

If we use £ := |logy(H/h)| + 1, we have
27t < g7 loe2(H/M) — /|

and therefore diam(t) < h for ¢ € Tz with level(t) = ¢. Due to our choice of h, this
means that ¢ can contain at most one point and therefore has to be a leaf.
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3.7 Estimates for cluster trees and block trees

For regular and adaptive bisection, we can use

diam(t*) < diar2n(t) for all t € Tz, t* € desc(t), level(t*) — level(t) = d,
to obtain
diam(t) < 27°H for all t € Tz, level(t) = 4d.
Now we can proceed as before. [

Once we have constructed cluster trees 77 and 77, we can consider the block tree Tz 7.
Definitions and already prescribe the essential steps by which a minimal admis-
sible block tree can be constructed: we start with the root block r = (root(7z), root(77)).
If a block b = (t,s) € Tzxs is admissible, we stop and make it a leaf. If ¢t and s are
leaves, we also stop and make b an inadmissible leaf. Otherwise we subdivide b into its
sons

sons(t) x sons(s) if sons(t) # (), sons(s) # 0,
sons(b) = < {t} x sons(s) if sons(t) =0, sons(s) # 0,
sons(t) x {s} if sons(t) # 0, sons(s) = 0.

and treat each of these sons b’ € sons(b) recursively.

For our complexity analysis, we not only need 7747 to be admissible, it also has to
be sparse. In order to investigate this property, we follow the approach outlined in [21]:
a block b = (t,s) € Tzx7 is only constructed if its father b™ = (t*,s7) € Tz 7 is not
admissible. Since our cluster construction ensures that no cluster has more than 2¢ sons
for tensor bisection and two sons for adaptive or regular bisection, bounding the number
of inadmissible blocks yields an estimate for the number of blocks.

A bound for the number of inadmissible blocks can be obtained by counting how many
clusters “fit into a ball” surrounding a given cluster. If the ball centered at the cluster
t is sufficiently large, it contains all clusters s such that (¢, s) is inadmissible, since any
cluster intersecting the outside of the sphere has to be admissible.

In order to turn this into a precise mathematical proof, we require that the clusters’
aspect ratios do not degenerate.

Lemma 3.39 (Inadmissible blocks) Let Cyr € Rsq be given with
diam(£)? < CarAa(t) for all t € Tz,
where Ay denotes the d-dimensional Lebesque measure. Let
wa=Aa({z €R? : |lzflz < 1})

denote the measure of the d-dimensional unit ball. Let t € Tz. The set of inadmissible
clusters

T = {s € Tr : level(s) = level(t), 2ndist(t,s) < diam(¢)}
1s bounded by

3vd + 1/n)¢
’It| < Carwd(Qd/n)‘
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3 Multi-dimensional problems

Figure 3.5: Inadmissible clusters intersect the green ball and are in the blue one.

Proof. Let £ :=level(t), and let m; € t denote the center of the axis-parallel box ¢t. We
let ¢ := diam(t¢)/2 and observe

d

d . .
diam(¢)?  diam(t)?
|z —ml|j3 = Lgl(xb —m,)? < LEI 1a12( ) =d 1a12( ) = do? for all = € t.

We prove that all inadmissible clusters s € Z; are contained in the ball
B:={yeR? : [ly—mll2 < (3Vd+1/n)e},

cf. Figure Let s € Z;, i.e., we have

) diam(t) o
dist(t,s) < =-.
(t,5) o ;

In order to prove s C B, we let z € s and have to show z € B. Let z € t and y € s with
|z — yll2 = dist(t,s). We find

d d
Iz —yll3 = (2 —9)? <> diam(s)* = d diam(s)* = 4dg”
=1

=1

due to diam(s) = diam(¢) = 2¢ and find

l[z=ml2=lz-y+y—z+tax—ml2<|z—-ylz2+ [y — 2|2 + [[z — m]2
< 2v/do + dist(t, ) + Vdo < 3v/do + % = (3Vd+1/n)o,
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3.7 Estimates for cluster trees and block trees

so we have indeed proven z € B.
By our construction, the clusters on the same level as t are disjoint up to null sets and
have the same measure as t, so we have

1 A (User, 8) _ Aa(B)  wa((3Vd+1/n)0)?
b 1P DRl ey v R v R ey
(8Vd+1/n)%" (3Vd+1/n)%" (3Vd +1/n)*
< Carwd diam(t)d = Carwd Qde = arWdQ—d.

Lemma 3.40 (Sparsity) Let 77 be a cluster tree constructed by our algorithm. Trxz
be a minimal admissible block tree for the admissibility condition with n € Ryp.
The block tree Trx1 is Csp-sparse with

o Carwq(3V/d + 1/n)? for tensor bisection,
P Carwa(3Vd + 1/n)%2'=%  for reqular and adaptive bisection,

where Cyy and wy are defined as in Lemma|3.539,

Proof. Since Tzxz is the minimal admissible block tree, blocks are not subdivided as
soon as the row or the column cluster is a leaf. Together with Definition this
implies level(t) = level(s) for all b = (t,s) € Tzxz.

Let t € Tz. If t = root(7Tz), (t,8) € Trx1 already implies t = s.

Otherwise let T € 77 denote the parent of ¢.

Let s € row(t), and let s* € 77 denote the parent of s. Due to the minimality of
the block tree, (t7,sT) cannot be admissible, since otherwise the algorithm would have
stopped before creating (¢, s).

Due to Lemma we have

(3vd+1/n)?
2d )
For the tensor bisection strategy, st can have no more than 2¢ children, and we conclude
row(t)| = [{s € Tz : (ts) € Traah < | |J chil(s™)|
s+€It+

(3vd+1/m? _
d

|It+’ < C'achl

< 2T ] < 2%Curwa= - = Carwa(3Vd + 1/m)".

For the regular or adaptive bisection strategy, s* can have no more than two children,
and we can modify the argument to obtain

lrow(t)| = |{s € Tr : (t,s)ETzXzﬂg‘ U chil(sﬂ‘
s+€It+

(3Vd+1/n)
2d

< 21T+ | < 2Cuwy = Cowa(3Vd + 1/n)d2! 2.
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3 Multi-dimensional problems

3.8 Improved interpolation error estimates’

The estimate provided by Corollary for the interpolation error is not optimal: it

requires the relative distance between the clusters £ and s to be “large enough”, and we

have already seen in Section [2.8 that one-dimensional interpolation converges as long as

the distance is non-zero. Since tensor interpolation is closely related to one-dimensional

interpolation, we can expect this property to carry over to the multi-dimensional case.
To investigate the interpolation error a little closer, we fix a cluster

t= [al,bl] X X [ad,bd]

and a closed set s C R? with dist(t, s) > 0.
We have already seen that it is sufficient to take a look at the error f — J; ,[f] of the
partial interpolation operators for all direction indices ¢ € [1 : d].

Lemma 3.41 (Best approximation) Lety € s, ¢ € [1:d], and

f:t—=R, x— g(z,y).
Let x €t and
ﬁ: [—1,1] — R, T f(xy,... 221, <I>[aL’bL](T),xL+1, ceey ).
Using the Lebesgue stability constant A, introduced in , we have
[£(2) = 30, A@)] < 0+ Am)ll o = Plloc,f-1,1 for all p € I,

Proof. As in Lemma we introduce the auxiliary function
fioila,b] = R, z20 f(X1, e L1, 2, Tg 1y - - T4),
and recall
Jeu[f1(x) = Tja, ) [f](20)-
Due to the definition of the transformed interpolation operator J,, 3], we have
|f('r) - jt,L[f](‘r)’ = |fL(37L) - j[ab,ln} [fb](xt)’
= |fo o ®lo,p,)(7) = ILfs © Pl p, | (T) = [fu(7) = T[fA(T)]  (3.16)
with 7 := (Ifl’m (x,) € [-1,1].

[a.

Let p € II,,,. Due to J[p] = p, we have
Hﬁ - j[ﬁ]”oo,[—l,l] = Hﬁ —p+3Jp— fL] lloo,[=1,1]
<|f — Plloo,~1,1) + I13[f. — Pllloo-1,1]
<|f. — Plloo,—1,17 + Amllf, - Plloo,[~1,1]
= (1+An)lf — Plloo,[~1,1]-
Combining this estimate with completes the proof. [

Using this result, we “only” have to prove that fL can be approximated by polynomials.
We approach this task by rewriting the function.
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3.8 Improved interpolation error estimates

Lemma 3.42 (Interpolant) Let € [1 : d], let x € t and y € s. We define vectors
m,p € RY with

bL L y —
{ sy ifR=y,
My 1=

Ty — Yk otherwise,
bL_a/L ; _
L =2
Dk i= 2 / L for all k € [1:d].
0 otherwise

We have ||p||2 < diam(t)/2, and

- ; y
m + 7p|l2 > dist(t, s), filT) = 7 for all T € [—1,1].
bl > i), )= )

Proof. We introduce the extension operator
E: [—1, 1] — t, T (.%'1, R (I)[aL,bL}(T>7$L+17 cey ),
and write fL in the form

fL(T)ZQ(E(T)ay):m for all 7 € [-1,1].

Let 7 € [—1,1] Due to

b ta, b, —a,
=g T

D4, 5,)(7)
we find
E(r) = E(0) + 7p, E(r)—y=E)—y+7p=m+7p.
Due to E(7) € t, we have
lm +7pll2 = [|E(7) — yll2 > dist(t, ),

£ = (B ) — g =T
f.(1) = g(E( >7y) HE(T) _ yH2 ”m—l— Tp”g

In the following, we fix ¢ € [1 : d] and write f instead of f,. We have already seen in
Lemma [3.8| that we can find a complex number w € C with |w| = ||m/|2 such that

Z i for all z € C, |2| <,

V(W + zr)(w + 27)

is a holomorphic extension of f, where r := ||p||2 and ¢ := ||m]|2/r-
In order to apply Theorem we require a holomorphic extension of f not just to

a disc around zero, but to a Bernstein disc that is as large as possible.
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3 Multi-dimensional problems

—w/r

—w/r

Figure 3.6: Maximal Bernstein disc D, for w = —% + L% and r =1

Lemma 3.43 (Maximal holomorphic extension) Let w = w, + ww; € C\ [-1,1]
with w,,w; € R and

Sy =C\{a+b : a,beR with ar +w, =0 and |b|r > |w;|}.

The function

£ i
: Sy — C, zZ ;
f V(W + 2r)(w + 2r)

18 holomorphic.

Proof. We have to prove that z € S, implies that (w + zr)(w + 2r) is contained in the
domain C\ R<q of the principal branch of the holomorphic square root function.
We accomplish this by contraposition: let z € C be given with

(w+ zr)(w + 2r) € Reo.
We will prove z € S,. Let a,b € R with z = a + tb. We have

(w+ zr)(w+ zr) = (ar + w, + t(br + w;))(ar + w, + t(br — w;))
= (ar +w,)? — (br + w;) (br —w;) + t(ar + w,) (br 4 w; + br — w;)
= (ar +w,)? + w? — b*r? + 2u(ar + w,)br.

Due to our assumption (w + zr)(w + zr) € R<g, we have

(ar + wy)br =0, (ar +w,)? +w? — b*r? <0,
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3.8 Improved interpolation error estimates

Figure 3.7: Bernstein disc included in a §-neighbourhood of the interval [—1, 1]

Due to r = ||p||2 > 0, the left equation implies either b = 0 or ar + w, = 0.
In the first case, i.e., if b = 0, the right inequality takes the form

(ar +w,)* +w? <0,

which implies ar + w, = 0 and w; = 0, i.e., w; = br and |w;| = |b| r, i.e., z € Sy
In the second case, i.e., if ar + w, = 0, the right inequality becomes

w? —b*r? <0 <= w? <b*r? = |w;| < [b|r

We conclude again z € S,,. ]

If w is known explicitly, we can find the major axis o of the Bernstein ellipse &,
running through w via

= =1 +]Z+1] =20
r r
and compute o by means of
1
0+-=20 <= > —200+1=0 = (p—a)’=0a’-1 = Q:ai\/ﬁ.
o

In practice, we want to use an admissibility condition like (3.11)), and this condition only
provides us with an upper bound for

v v
lw + 77| \/(w—i-Tr)(fLD—FTr)

; v v
= = < for all -1,1
E A e e 5 B e

i.e., the distance between w and the interval [—1, 1] is at least dist(¢, s), but we do not
know exactly where w is positioned. Fortunately, if we stay close enough to [—1, 1], the
triangle equality guarantees that we stay far enough from w, so we only have to find an
Bernstein disc that is sufficiently close to [—1, 1], cf. Figure

Lemma 3.44 (Bernstein neighbourhood) Let § € Rs, and let o := 6 + /62 + 1.
For every z € D,, we can find T € [—1,1] with |z — 7| < 6.
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3 Multi-dimensional problems

Proof. Let z € D,. Using Lemma we find w € C with 1 < |w| < p and

w+1/w
=
We define v := w/|w| and consider
v+1/v
==
Due to |v| = 1, we have
v+1/v v+9/|v* v+ o] +1/|v]
T 2 2 2 ('U) E ? ’T‘ — 2 )
and therefore 7 € [—1,1]. Using |w| > 1, we also find
1 1—|w]
w+1l/w—v—1/v (1_W)w+ w
|z — 7| = =
2 2
_ 1 |1—|w]| |w|—1
B st L e T R VI
- 2 2 2
co—l/o_(+VP+1P2-1 F#422VP+14+8+1-1
-2 2(6 + V62 + 1) 2(6 + V02 + 1) '

]
In order to apply Theorem we need an upper bound for f in a Bernstein disc
that is as large as possible.

2 dist(¢,s)
diam(t) ’

Lemma 3.45 (Upper bound) Let 4y 1=
J+ Vo2 +1. We have

£ 5maw Y
< .
f(2)] < S — 8 dist(, ) for all z € D,

Proof. Let z € D,. Using Lemma we find 7 € [—1,1] with |z — 7] < 4.
Using the triangle inequality, we obtain

and let § € [0 : Opmqq). Let o :=

diam(t
|lw+ zr| > |w+7r| — |1 —z|r > ||m+ 7p||2 — or > dist(t, s) — 6ﬂ()

) 1) diam(¢t ) .
= dist(t, s) — 5 Omax 5 ®) = (1 - 5max> dist(¢, s),
|lw+zr| > |w+71r|—|T—zlr=|lw+7r|—|T—2]r > <1 — > dist(t, s),
¢ g i
1f(2)] = = = =
IV (w+zr)(w+zr)  /|w+zr||w+ 2r]
< Y
= (1 = 6/6max) dist(t, s)
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3.8 Improved interpolation error estimates

Theorem 3.46 (Partial approximation) Let 0oy = 2&{:;(@‘;) > 0 and Omar =

Omaz + \/02,4: + 1. For every m € N, we can find a polynomial p € I1,,, with

2e(m+1)2 v m
M Omaz  dist(t, s) Omaa-

Hf - p”oq[—l,l] <

Proof. We define

5= — G, 0:=0+ 62 +1.

m+1
Due to dpax > 0, we have 6 > 0 and o > 1. Lemma yields

; Omax v y(m +1)
|f(2)] < 5 = for all z € D,,

max — 0 dist(t, ) dist(¢, s)

and we can apply Theorem [2.29| with ¢ = 1 to find a polynomial p € II,, with

) 2 (1\"7(m+1)
_ <S— =) S
1/ = plloo,[-1,1) < o—1 <Q> dist (¢, s)

We have

m—+1

2
Q:5+\/52+ :nn'ﬁlémax‘k\/<m> 512113X+1

m m
= (5max + V 512nax + 1) = m@maxa

m+ 1
0— 1=+ V2 +1-1>0=—" G,
m+1

and conclude

: <1>m’7(m+1) § 2max <m+1>mv(m+1) .

- 2 (1
1f = Plloo 1,1 < o—1\o) dist(t,s) = 25 m dist(t, 5) omax

m
S2m+ PNy 2emt1)? L,
T M Omax dist(t, s) Omax = M Omax  dist(¢, s) Omax

m

Corollary 3.47 (Kernel function) Let diam(t) < 2ndist(t,s). Let m € N. Let Ay,
be the stability constant of . We have

77(erl)2 0

n
m  dist(t, s) (14_,/1724_1) '

g — Gesllocyexs < 2deAd (1 + Apy)

71
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Proof. Let x € t and y € s. Theorem [3.6] yields

d
902, y) = us (2, 9)| = 1 (@) = T < DA = Teal oo
=1
for the function f defined in Lemma For ¢ € [1 : d], this lemma states
[f(@) = 3@ < A+ Am)llfe = Plloo, 1,1 for all p € Iy

Finally, Theorem [3.46| provides us with a polynomial p € II,, such that

5 2e(m+1)2 _
— < m
1. pHOO’[*l’l] T MmOmax  dist(¢,s) Omax
with
2dist(t,s) _ 1 14+ vn?+1
5max:m > 5, Qmax:(smax+\/5l211ax+12 T

Combining these estimates yields the result.

72



4 Low-rank matrices

Most approximation schemes for non-local operators make use of low-rank matrices to
express long-range interactions by a small number of coefficients. In this chapter, we
consider techniques for obtaining low-rank approximations.

4.1 Definition and basic properties

In order to approximate an arbitrary matrix by an H-matrix, we have to find low-rank
approximations of all admissible submatrices.

Let Z and J be finite index sets, and let nz := |Z| and ny := |J| denote their
cardinalities.

For convenience, we introduce the following notations.

Definition 4.1 (Range) Let X € KIXJ. The set
range(X) := {Xy : y € K7}
is called the range of X. It is a subspace of KZ.
Definition 4.2 (Rank) Let X € KZ*J. The rank of X is given by
rank(X) := dimrange(X).
Due to range(X) C K%, the rank is bounded by nz.

Notation 4.3 (Matrices, vectors, scalars) We identify KZ and KX, j.e., each vec-

tor can also be treated as a matrixz with only one column containing its entries.
We also identify K and K¥1, i.e., a one-by-one matriz can be treated as a scalar.
Most importantly, these notations imply that x*y is the Euclidean inner product of
z,y € KZ, and that ||z|2 := Vo*x is the Euclidean norm of x € KZ.

Using these notations, we can construct matrices of rank one in factorized form: let
a € KT\ {0} and b € K7 \ {0}. Then

R :=ab” (4.1)

is a matrix in KZ*7. Its range is contained in the span of a and due to Rb = ab*b =
al|b]|3 # 0 it is also non-trivial, so R is a rank-one matrix.
We can prove that any rank-one matrix can be represented in this way.
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4 Low-rank matrices

Lemma 4.4 (Rank reduction) Let X € KZ*7 be a matriz of rank k, and let a €
range(X) and c € KT be vectors with c*a = 1. Then

X=X —ac*X
is a matrix of rank k — 1.

Proof. Due to a # 0, a € range(X) and rank(X) = dimrange(X) = k, we can apply the

basis extension theorem to find by, ..., bx_; € K such that {a,by,...,bx_1} is a basis of
range(X).
We define
d; :=b; — ac*b; forallie[1:k—1]

and will prove that {d1,...,d;_1} is a basis of range(X).
We first prove that range(X) is contained in the span of dy,...,dy_1. Let y € K7.
Due to Xy € range(X), we can find «, 51, . .., Bx—1 € K such that

Xy=aa+ B1b1 + ...+ Br_1bp_1.
By our definitions, we have

Xy =Xy —ac*Xy
=aa+ B1by + ...+ Br—1bp—1 — ac*(aa + B1by + ... + Br_1bp—1)
=aa+ B1by + ...+ Br_1bp—1 — aac®a — Prac*by — ... — Br_1ac bi_1
=a(l —c'a)a+ Bi1(by —ac™by) + ... + Br_1(bg—1 — ac™by_1)
=a(l —c'a)a+ frdy + ... + Br_1di—1.
Due to c¢*a = 1, the first term vanishes and we have proven our claim.

Now we will prove that the vectors di,...,dr_1 are linearly independent. Let
Y1, .. .,7k—1 € K be such that

mdi + ...+ Yp—1dk—1 = 0.
Our definition implies
0=mdi+...+%-1dr-1
=7(b1 —ac*br) + ... +yp-1(bg—1 — ac*b_1)
=y1b1 + ..+ Ye—1bg—1 — (N1 + .+ Y1 b1 )a.
Since the vectors {a,bi,...,bx_1} are linearly independent, we conclude v; = ... =
Ye—1 = 0. This completes our proof. [

We apply Lemma [4.4] to a rank-one matrix R: we choose a € range(R) with ||allz = 1,
let ¢ := a and find that R := R — aa*R is a matrix of rank zero. This means that its
range is trivial, so we have R =0 and conclude R = aa*R = a(R*a)*. Setting b := R*a,
we have proven R = ab*.
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4.1 Definition and basic properties

Remark 4.5 (Projection) Due to c¢*a = 1, the mapping P := I — ac* appearing in

Lemma@ is a projection, i.e., satisfies P> = P, and its nullspace is the span of a.
This means that P is injective on complements of a, e.g., on the space spanned by

bi,...,bk—1. Therefore the vectors d; = Pb; are linear independent and span the range

of X = PX.

We can extend this result: matrices of rank k can be represented as sums of k rank-one
matrices, each of which can again be represented in factorized form.

Theorem 4.6 (Low-rank representation) Let X € KZ*7 be a matriz of rank k. We
can find vectors a1, ...,ar € KX and by,..., b, € KI such that

k
X=> ab} (4.2)
v=1

Proof. By induction.

Let first & = 1, and let X € KZ*7 be a matrix of rank one. We can find a € range(X)
with |lal]]s = 1, and applying Lemma to ¢ 1= a with c*a = ||al|3 = 1 yields that
X — aa* X is a matrix of rank zero, i.e.,

X =aad*X = a(X%a)" = ab”,

where we have chosen b := X*a.
Let now k € N be given such that our claim holds. Let X € KZ*7 be a matrix of rank
k+1. We can again find a € range(X) with [|alj2 = 1, and Lemma [4.4] again yields that

X=X —ad*X

is a matrix of rank k. Applying the assumption yields vectors a,...,a; € K% and
bi,...,br € K7 such that

k
X = Z ayb;,
v=1
and setting ag4+1 := a and b1 := X*a, we conclude

k k+1
X=X+aa"X =) ab}+appbpy = asbj.
v=1 v=1

In order to avoid sums and indices for this representation of low-rank matrices, we
collect the vectors aq,...,ax in the columns of a matrix A and the vectors bq,...,b; in
the columns of a matrix B and obtain a compact notation that naturally extends
to the case of higher ranks.

Since A and B now have column indices in [1 : k] and row indices in Z and J, we
introduce a suitable notation.
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4 Low-rank matrices

Notation 4.7 (Column matrices) When dealing with matrices with column indices
in N, we write KI*k .= KIX[LA] gpg KF*T .= KIKIXT

Correspondingly, for A € KI** and ¢ € [1 : k], we define the restriction to the first £
columns as Alg, g := Alpy.,q for subsets tCT.

Definition 4.8 (R(Z,J, k)-representation) Let k € N and X € KX*7. We call a
pair (A, B) of matrices A € KT*F and B € KI** an R(Z, T, k)-representation of X if

X =AB” (4.3)
and we denote the set of all these representations by
R(Z, T, k) :={AB* : Ac K" Be KT}

This is not a vector space, since the sum of two rank-k-matrices can have a rank higher
than k. If the index sets T and J are irrelevant or implied by the context, we use the
short notation R (k).

Using this notation, Theorem takes the form of the following existence result for
R(Z,J, k)-representations.

Corollary 4.9 (R(Z,J,k)-representation) Let k € N and X € KZ*J.
If X is of rank k, we have X € R(Z,TJ,k).
If X € R(Z,J,k), we have rank(X) < k.

Proof. Let first X be of rank k. Applying Theorem , we find vectors ar, ..., a; € KX
and by, ..., b, € K7 such that

k
X = Zal,b,’j.
v=1
We define
A= (a,1 ak) e KTxk, B = (bl bk) e KIx¥

and obtain X = AB*, i.e., X € R(Z,J, k).
Let now X € R(Z,J,k). By definition, we find A € KZ**¥ and B € KI*¥ with
X = AB*. We have range(X) C range(A), and since A has only k columns, we conclude

dimrange(X) < dimrange(A) < k,

i.e., rank(X) < k. |
Remark 4.10 (Storage) A matriz in R(Z,J, k)-representation requires (nz + ng)k
units of storage. If the rank is low compared to the number ng of rows and the number

ng of columns, this representation is far more efficient than the representation as a
standard two-dimensional nz-by-ng array.
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Remark 4.11 (Matrix-vector multiplication) Computing the product of a matriz
X in R(Z, T, k)-representation and a vector y € K7 takes 2(nz + nz)k operations: let
X = AB* with A € KI** and B € KI*F. In order to compute z = Xy, we first
compute the auziliary vector § := B*y, using not more than 2n sk operations, and then
z = Ay, using not more than 2nzk operations.

Using the representation , we can carry out this operation with minimal auziliary
storage: we start by initializing z < 0. Then we perform the update z < z + a, b}y
for all v € [1 : k] by first computing the inner product 4, := bhy and then updating
Z 4 24+ ayyy,.

Remark 4.12 (Matrix-matrix multiplication) If X € R(Z,J,k) and Y € KI*K,
we have XY € R(Z,K,k): using X = AB*, we obtain XY = AB*Y = A(Y*B)*, and
setting C':= Y*B, we have found the R(Z, K, k)-representation XY = AC*.

Similarly, if X € KI*J and Y € R(T,K, k), we also have XY € R(T,K, k).

Exercise 4.13 (Uniqueness) So far, we have only considered the existence of low-rank
representations. Sometimes the uniqueness may also be of interest.

(a) Let ay,as € KT and by, by € K.

Prove that a1b] = agbl # 0 implies that there is a constant v € K\ {0} such that
ag = yay and by = %bl.

(b) Let A1, Ay € KTXF and By, By € KI*F,

Prove that if A1B] = AaBj is a matriz of rank k, there is an invertible matriz C
such that Ay = A1C and By = B1(C~1)*.

Exercise 4.14 (Self-adjoint matrices) Let X € KZ*T be a self-adjoint matriz.
(a) Assume that X is positive semidefinite, i.e., that
y* Xy € R>g for all y € KZ.
Prove that y* Xy = 0 implies Xy = 0 for all y € KZ.

(b) Since the unit sphere in KT is compact (cf. the Heine-Borel theorem), there is a
vector e € KT with e*e = |le]|3 = 1 and

Xy <e'Xe for all y € KZ.
Prove that there is a A € R with Xe = )e.

¢) Let k :=rank(X). Prove that there are \1,...,\s € R and ey, ..., e, € KL with
(c)

k
X = Z evAve,,.
v=1

Hints: Considering (y + aXy)*X (y + aXy) for a — 0 may be useful in part (a). For
part (b), it may be a good idea to look for a A € R such that the matriz A\I — X is positive
semidefinite. Part (c) can be solved by combining part (b) and Lemma[{.4
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4 Low-rank matrices

4.2 Low-rank approximation

In most applications, we can only hope to approximate matrices by low-rank matrices.
Therefore it would be particularly attractive to have a reliable algorithm for finding the
best approximation of a given matrix by a matrix of given rank k. We will now introduce
this algorithm.

Definition 4.15 (Orthogonal and isometric matrices) Let Q € KX*J . If we have
Q*Q =1, we call Q an isometric matrix.
If we have Q*Q =1 and QQ* =1, we call Q an orthogonal matriz.

If Q € KI*7 is isometric, we have

(Qx)"(Qy) = 2" Q"Qy = zy for all z,y € K7, (4.4a)
|Qx|2 = v/ (Qx)*(Qzx) = Varz = ||z for all z € K7. (4.4b)

The latter equation motivates the name “isometric”. It is possible to prove that it is
equivalent to the equation Q*Q = I used in the definition.

If @ is orthogonal, it is both injective and surjective, and is therefore an isometric
isomorphism between KZ and K.

Definition 4.16 (Singular value decomposition) Let X € KZ*J, and let p :=
rank(X). If there are isometric matrices U € KE*P and V € KI*P and a diagonal
matrix

g1
Y= € RP*P
Op
with o1 > 09 > ... > 0, > 0 such that
X =U%XV", (4.5)

we call (U,%,V) a singular value decomposition of X .
We can rewrite (4.5]) as
P
X = Z Uy oy, U,
v=1

to make it resemble , where u, and v, are the v-th columns of U and V, respec-
tively. The only difference compared to the result of Theorem lies in the fact that
{wi,...,up} and {vi,...,v,} are now orthonormal families of vectors. This property
makes the singular value decomposition significantly more useful, but it also makes it
significantly harder to obtain.

Reminder 4.17 (Cauchy-Schwarz inequality) For all z,y € K, we have

2%yl < [lll2llyll2-

Equality holds only if x and y are linear dependent.
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4.2 Low-rank approximation

Theorem 4.18 (Singular value decomposition) Every matriv X € KZ*7 has a
singular value decomposition.

Proof. By induction on rank(X).

For rank(X) = 0, we choose empty matrices U, V and ¥ and are done.

Let now p € Ny be such that every matrix X € KZ*7 with rank(X) = p has a singular
value decomposition.

Let X € K2*J be a matrix with rank(X) = p + 1. We consider the function

K xKI - R>o, (z,y) — |2" Xy,
on the unit spheres
Sri={zeKl : |z|, =1}, S;={yekK : |yl =1}
Since the unit spheres are compact and f is continuous, we can find a maximum
o :=max{f(z,y) : 2€ 87, y€ Sy}

Due to rank(X) = p+1 > 0, we have X # 0 and therefore 0 > 0. Let u € Sz and v € S
be vectors with f(u,v) = ¢. By modifying the sign of u, we can ensure o = u*Xwv.

We will now prove Xv = ou and X*u = ov.

In order to prove Xv = ou, we make use of Xv # 0 to define

Xv
z = .
[ X2

Due to z € Sz, we have

|(Xv)*Xo| _ [ Xv]3
[u* X[ =0 > f(z,0) = = = [[Xvll2 = [lull2l| X2
[ X0ll2 [ Xvll2

By the Cauchy-Schwarz lemma, |u*Xv| > ||lul|2||Xv|2 can only hold if v and Xv are
linearly dependent, so we find A € K with Xv = Au.

o =u*Xv = uu=\u|3 =\

yields the desired equation Xv = ou.
In order to prove X*u = ov, we make use of X*u # 0 to define
X*u
Y= e
[ Xl
with y € S7. Proceeding as before, we find |[v*X*u| > |y*X*u| = ||v|2]|X*ul|2 and
finally X*u = owv.
We consider the matrix

X =X —wu'*X.
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4 Low-rank matrices

Due to Xv = ou and o # 0, we have u € range(X ), and since we also have u*u = ||ul|3 =
1, we can apply Lemma to conclude rank()? ) =np.
Using the induction assumption yields a singular value decomposition (ﬁ, f), ‘7) of X.
We define

U::(u ﬁ), 2::(‘7 i) V::(v f/)

and will now verify that (U, X, V) is a singular value decomposition of X.
First we prove that U and V are isometric. We have

o= (o ) (o )= () 6 )= (2 20) - ()
(o7 6= 6 -5 ) - ()

We only have to show w*U = 0 and V*v = 0. Since ¥ is invertible, we have

Xvel=UsvvEtl=0ss ! =1,
STUX = 2TIUSV = SISV = VR
This implies
WU = XVE™ = 0" (X —u*X)VE ™ = (' X —u*X)VE~1 =0, (4.6)
i.e., U*U = I. In order to prove V*V = I, we observe
X=X —-uw'X=X—uXu"=X—ow* =X —Xov*
and can now use the same argument as before to get
Vio=3"10"Xv =3 0"(X — Xov*)v = S7'U*(Xv — Xv) =0,

i.e., V*V = I. To complete the proof, we have to show that o is larger than all diagonal
entries of 3. Let v € [1 : p], and let 6, denote the v-th diagonal element of .

We denote the v-th columns of U and V by @ € K and © € K7. Since U and V are
isometric, we have 4 € St and v € S7. Equation implies u*u = 0, so we find

o> fla,0) = [a*X0| = |a*(X —uwu* X)0| = [a* X 0| = |a*USV*D| = 5,
since both U*@ and V*¥ are the v-th canonical unit vector. ]
Lemma 4.19 (Range and null space) Let X € KZ*7 let p := rank(X), and let
(U,%,V) be a singular value decomposition of X .
We have range(X) = range(U) and range(X™*) = range(V).

For the null spaces we have ker(X) = ker(V*) and ker(X™*) = ker(U™).
The dimensions satisfy

dimrange(X) = dimrange(U) = p, dimker(X) = dimker(V*) = |J| — p.
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Proof. The defining equation X = UXV™* already implies range(X) C range(U). Since
both range(X) and range(U) are p-dimensional, we conclude range(X) = range(U).
Applying the same argument to X* = VXU*, we obtain range(X™) = range(V).
The defining equation also yields ker(V*) C ker(X). Let y € ker(X). We have

0= [IXyl2 = [[UZV7ylla = [[EV7y]2

due to (4.4b), i.e., ¥V*y = 0. Since ¥ is invertible, this implies V*y = 0, ie., y €
ker(V*). The same reasoning leads to ker(U*) = ker(X™).
The rank-nullity theorem yields

| 7| = dimrange(X) + dim ker(X) = dimrange(U) + dim ker(V™*),

and dimrange(X) = p = dimrange(U) completes the proof. [ ]

If the rank p is too large for our purposes, we can reduce it to a lower value k£ < p
by dropping all but the first k£ terms of the representation, i.e., we can consider the
approximation

01

Ok

k
X = Zuyayv,’j =U V™. (4.7)
v=1

0

Obviously it would be of great interest to know how good this approximation actually
is. In order to measure the approximation error, we introduce appropriate norms.

Definition 4.20 (Frobenius norm) The Frobenius norm of a matriz X € K¥*J is

given by
1/2

XN = DD iyl

€L jeJ

Lemma 4.21 (Frobenius norm) Let X € KZ*J. We have

1 X7 = [ X[, (4.8a)

[ Xyllz < [ X[ llyll2 for all y € K7, (4.8b)
1QX ||F = |1 X||F for all isometric Q € KT, (4.8¢)
1XQ*F = I X|F for all isometric Q € K7, (4.8d)

Proof. Equation (4.8a) follows directly from the definition

IXNE =D lel® =30 D> 1z = 1X* 13

i€ jeJ JET €T
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4 Low-rank matrices

The next equation (4.8b)) is a consequence of the Cauchy-Schwarz inequality, i.e.,

X0l = S 1Cxl? = S0 S | < 303 beail?) (X i)

€L i€l jeJ i€l jeJg
= laglPlylls = 1X1E 13-
€L jeJ

For the equation (4.8¢)), we find

IQX[1F =D 1QX)k* =D > (@X )k (QX )i

kek jeTg kek jeJ

= Z Z (Z le“zy> (Z Qkﬂzg) = Z Z Z TijTe; Z Tkiqke
keK jeJ i€l JEJ i€T Lel keK

= Z ZZ@]-J:@ Q" Q)i = Z Z@jﬂcz‘j = Z Z i |* = 11X %
JEJ €T teT JeJ i€l JeJ i€l

Combining (4.8a)) and -, we obtain
1 XQ*F = I(XQ") [l = QX |lF = IX"lF = [ X]|F,

and this is the final equation (4.8d)). |

We can turn the space of matrices into a Hilbert space by introducing an inner product
corresponding to the Frobenius norm.

Lemma 4.22 (Frobenius product) The Frobenius product is defined by

(X,Y)p = Z Z TiiVij for all X, Y € KT*Y.
i€l jeJ
We have
1X|Fr =V(X,X)p for all X € KT*7 (4.9a)
(X,Y)p = (X*Y")p for all X,Y € KI*J (4.9b)
(X, YZ)p = (Y*X, Z)p for all X e KPKy e kKI*T | 7 € KI*K (4.9¢)
(X, YZ)p =(XZ*Y)p for all X e KKy e KI*T | 7 ¢ KI*K, (4.9d)

Proof. Let X,Y € KI*J. We have

IXNE =D lwigl? =D @i = (X, X)r,

i€l jeTJ i€l jeJ
XCY)e =) D Figyiy = DD vy = Y ) wigy = (XY p.
i€ jeJ i€ jeJ JjeT €T

82



4.2 Low-rank approximation

Let X e KIXK Y e KIXJ | and Z € KY*K. We have

(X, YZ)p = Z Z (Y Z)ir = Z Z Tk Z YijZjk = Z Z Zyijfikzjk

€L ke €L kel JjeT JjE€T keK i€
=3 > V" X)pzn = (V' X, Z)p.
JET kek

Combining (4.9b)) and (4.9¢) yields
(X,YZ)p = (X*,(YZ)")r = (X*, 2V ") p = (ZX*, Y\ = (XZ",Y)p,

completing the proof. n

While the Frobenius norm is frequently a convenient tool for obtaining estimates for
the approximation error, the bound (4.8b)) can be very pessimistic. Therefore we consider
the spectral norm, which makes this bound as sharp as possible

Definition 4.23 (Spectral norm) The spectral norm of a matriz X € K2*7 is given

by
1X |2 == max{|| Xyl2 : y €K with |yll2 = 1}.

Since the unit sphere {y € K : |lylla = 1} is a compact set and y — || Xyl|2 is a
continuous function, the maximum exists and the norm is well-defined.

Lemma 4.24 (Spectral norm) Let X € K2*7. We have

Xyl < 1 X]2llyll2 for all y € K, (4.10a)
2" Xy|

HX”Q_Sup{HZHQHyHQ : ?JGKJ\{O}; ZEKI\{O} ) (4.10Db)

[ X1l2 = [|X™|l2, (4.10c)

1QX ]2 = | X |2 for all isometric Q € KT (4.10d)

[ XQ% 2 = || X 1|2 for all isometric Q € K**7 (4.10e)

|ID|l2 = max{|dy;| : i € T} for all diagonal D € K**Z. (4.10f)

Proof. Let y € KY. If y = 0, we have Xy = 0, and || Xy|l2 = 0 < || X||2]|y[|2 holds.
If y # 0, we have ||y|l2 # 0 and can define § := y/||y||2, ensuring ||y|l2 = 1. Applying
Definition [£.23] we obtain

Xyl = 1 X7ll2llyll2 < [ XT2[lyll2

and have proven (4.10al).
To prove (4.10bl), we let

*X
a:zsup{w s ye K7\ {0}, ZGKI\{O}} > 0.
12ll2llyll2
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4 Low-rank matrices

By the Cauchy-Schwarz inequality and (4.10af), we have
12" Xy| < [lzll2l Xyll2 < [lz]l2ll Xl2]lyll2 for all y € K7, » € K*

and conclude o < || X ||.
If | X|l2 = 0, we immediately find || X||2 < a. Otherwise, we choose y € K7 with
llyll2 =1 and || Xyl|l2 = || X]|2. Due to || X||2 > 0, the vector z := Xy is not zero, and we

get
EEIE /N0 D1
~lzll2llyllz I Xyll2llyllz I Xyll2llyll2
This proves o = || X |2, i.e., (4.10D].

Using this equation and the identity |a*b| = |b*a| for a,b € K7, we immediately find

*X
| X2 = sup{w HETRS KJ\{O}, z e KZ\ {0}}
zll2llyll2

— sy [(X*2)"y| J 5 T
= { [l * ¥ €7 MOk =€\ 1)

Y X"z ;
:sup{" . 2 e K7\ {0}, yer\{O}}znx o
EEEE

and have proven (4.10c)).
Let now Q € K**Z be isometric. Due to (4.4b)), we have

1|2 = max{[| Xyllz : y € K with [|ly]l2 = 1}
= max{[|QXyl2 : y € K7 with |[y[l2 = 1} = QX2

which proves (4.10d)).
Let Q € K*XJ be isometric. Combining (4.10c) with (4.10d)) yields

1 XQ% 2 = [(XQ%)"[l2 = |QX™[l2 = [ X™[l2 = [ X]l2.
Now let D € KX*% be a diagonal matrix, and let p := max{|d;| : i € Z}. We have
IDyl3 = Idiwil® =D Idiil*lysl® < 1® > |wil® = 1 |lyll3
i€ i€ i€

for all y € K%, and Definition yields || D]z < p. We can find j € T with p = |djj|.
Let 6; € KZ denote the j-th canonical unit vector with

1 e
(6;)i = ne Jf for all i € 7.
0 otherwise
We have
D355 = Z |dii(65)i* = |djj|* = p?
i€l
and use Definition to conclude ||Dlj2 > ||Déjll2 = p, €., |Dl]j2 = p. |
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4.2 Low-rank approximation

Lemma 4.25 (Approximation error) Let X € KI*T | let p := rank(X), let k €
[0,...,p—1], and let X be constructed as in . Then we have

~ P 1/2 ~
X =Xle= (Y 02) " 1X = X2 = o1t
v=k+1

Proof. Let (U,%,V) be a singular value decomposition of X. We define

01

and observe B B
X =UXV"*.
Using (4.8¢|), (4.8d)), (4.10d)) and (4.10€]), we obtain
IX - X|p = [[USV* —USV* | = |UE - S)V*|F = | - Z|F,
|X = X|g = [[USV* = USV*||g = [[UE = D)V |2 = || = Zfa.

Due to
0
E=%-%Y= 0 ,
Ok+1
Op
we immediately find
- - p 2\ 1/2
1X = Xllp =15 =Sl = 1Blr = (Y o2) "
v=k+1

Using (4.101)), we obtain
IX = Xll2 = I = Z[l2 = | Ell2 = max{o, : v €[k+1:p]} =opp1.
]

This result allows us to control the approximation error: once the singular values have
been computed, we can choose the rank £k adaptively to guarantee a prescribed accuracy:
to ensure the spectral norm estimate || X — X||2 <€, we let

. min{¢ € [0:p—1] : op41 <€} ifo, <,
P otherwise,
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4 Low-rank matrices

while the Frobenius norm estimate || X — X ||F < e is ensured by choosing

P
k::min{fe[o:p] : Z 0'3<62}.

v=_0+1

It is frequently a good idea to ensure relative error bounds like [|X — Xl < & X2 or
|IX — X||r < €| X||r. Applying Lemma to k = 0 yields

p 1/2
X2 = o1, 1 X]|F = (Z 03) :
v=1

Once the singular values have been computed, we can therefore let € := €||X||2 or € :=
€|l X || 7, respectively, and again choose the rank adaptively.

Remark 4.26 (Low-rank projection) Let (U,%,V) be a singular value decomposi-
tion of a rank-p matriz X € KI*T . Let k € [0: p] and let X be defined as in .
Let P € KP*F be given by

1 f v =
Pop = ifv '% forallve(l:pl, pell:kl]
0 otherwise

This matrix is isometric and has rank k. Since U 1is isometric, so is P := UP e KIxk
the matrix consisting of the first k columns of U.
Using Ij, € KF** to denote the k-dimensional identity matriz, we have

DDx Ik
()

and PP* is an orthogonal projection into the subspace KF x {0} C KP.
The matriz PP* € KZ*T is an orthogonal projection into the subspace range(P)
spanned by these first k columns, and we have

g1

(0% >

PP*X =UPP*U*USV* = UPP*SV* =U Vi =X,

0

i.e., wWe can See X as the result of an orthogonal rank-k projection applied to X.

This representation is frequently useful, e.g., if we use and algorithm that constructs
only U and X, but not V. In this case, X = PP*X = P(X*P)* directly yields a rank-k
approrimation without the need for ¥ or V.
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The matrix X defined in is not only a low-rank approximation of X, it is the
best approximation with respect to both the spectral and the Frobenius norm. This
is a useful property for theoretical investigations, since it allows us to investigate the
existence of an approximation separately from its algorithmic construction.

Lemma 4.27 (Lower bound) Let X € K7 be a matriz of rank p, and let o1 >
o9 > ... > 0p >0 be its singular values.

Let R € K7 be a matriz with k := rank(R) < p. There is a vector z € K7 with
lzll2=1, Rz =0 and || Xz|2 > ok+1-

Proof. (cf. [I8, Theorem 2.5.3]) Let (U, %, V) be a singular value decomposition of X
with

g1

We denote the dimension of K7 by n := |J|. Let N := {z € KY : Rz = 0} de-
note the null space of R. Due to Lemma we have dim(N) > n — k. Let W :=
span{vi, ..., vg41}. Since {v1,...,vp} is an orthonormal basis, we have dim(W') = k+1.

Since both N and W are subspaces of the n-dimensional space K7, their intersection
cannot be trivial, i.e., we find a vector z € N N W with z # 0. By scaling the vector
appropriately, we can ensure ||z||2 = 1.

Due to z € N, we have Rz = 0.

Due to z € W, we can find 71, ...,v11 € K such that

Z =701+ e Ve 1Vk+1

holds. Since {v1,...,v,} is an orthonormal basis, we have

Uz = Up (Y101 + o Ve 1Uk+1) = VIOLUL e Ve 10Uk

_{’y,, ifv<k+1,

forallve(l:
0 otherwise 2]

and

1= HZH% = (’ylvl 4+ ...+ 'ykﬂvkﬂ)*z = ”’ylv’fz + ...+ ’7]6+11}Z+1Z
=N+ T = P el
Since U is isometric, we can apply (4.10d)) to obtain

p k+1 k+1
X235 = [USV*2)3 = 2V*2l3 = D onlvpz* = onlwl* > 070 > Iwl® = o
v=1 v=1 v=1
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4 Low-rank matrices

A closer look reveals that this estimate already provides us with the desired result for
the spectral norm.

To prove a similar result for the Frobenius norm, we will use the vector z provided by
Lemma in a rank-one update. We require an estimate for the Frobenius norm of
this update.

Lemma 4.28 (Frobenius norm, projection error) Let Y € KX*7 be a matriz and
let Q € KI*K be isometric. We have

Y — QR||7 = |QQ*Y — R)|% +||Y — QQ*Y | for all R € K7,

We can see that the right-hand side takes its minimum for R = Q*Y .
Applying this equation to R =0 and Q with only one column, we obtain
V]2 = |22*Y||% + ||V — 22*Y||% for all z € KT with |22 = 1,
|V[% = ||V 22" ||% + ||Y — Yz2*||% for all z € KT with ||z|s = 1.
Proof. Let R € K&*J | The first result is a consequence of (4.9¢|), since we find
1Y = QR[% = Y — QQ'Y +QQ"Y — QR||%
= (Y -QQY)+QQ"Y - R),(Y —QQ"Y) +Q(Q"Y — R))r
= (Y -QQY.Y -QQY)r+ (Y —QQY,Q(QY — R))r
+(QR(QY —R),Y —QQ"Y)r +(Q(Q"Y — R),Q(Q"Y — R))r
=[IY - QQY[E +(Q"(Y - QQ'Y).Q"Y — R)r
+(QY —R,Q(Y - QQY))r + Q(Q"Y —~ R)||}
=Y - QQYE + (Q'Y — QQQ™Y,Q"Y — R)p
+{(QY ~R.Q"Y - Q"QQY)r + |Q(QY - R)|%.
Since @ is isometric, we have Q*Q = I and conclude
IV = QR|E =Y - QQY|[F +(QY - Q"Y,Q"Y - R)r
QY ~R.QY -QY)r +[Q@QY - R)|}
=Y = QY7+ QQ"Y - R)|

Let now z € K% with ||z||2 = 1. This implies 2*z = ||z||3 = 1, so z can be interpreted as
an isometric matrix due to Notation Applying the first equation with R = 0 yields

Y15 = llz2"Y |7 + Y — 22" ||3.

For z € K7 with ||z|l2 = 1, we can apply this equation in combination with (4.8a]) to
obtain

Y IE = 1Y% = l22"Y |5 + Y™ = 22"Y*|[T = V2" |5 + Y = Yez'|I7,

i.e., our final result. u
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4.2 Low-rank approximation

Theorem 4.29 (Best approximation) Let X € K27 be a matriz of rank p with
singular values 01 > 02 > ... >0, > 0. Let R € RIXT be a matriz of rank k < p. Then
we have

1/2
o if k <p, P
X = Rll2 > { et Hh<p | X = R||lp = ( > 03) -

0 otherwise, Nt

Proof. (cf. [16]28]) For the spectral norm, we use Lemmamm obtain a vector z € K
with ||z||2 =1, Rz =0 and || Xz|2 > ok+1. The definition of the spectral norm implies

X = Rll2 > [(X = R)z[l2 = [[ Xz — Rzl2 = | Xz[l2 > op1-

For the Frobenius norm, we prove

p
|1X - R||% > Z o2 for all R € K2*7 with rank(R) <p —¢ (4.11)
v=p—{+1

by induction over ¢ € Ny and note that applying it to ¢ := p — rank(R) will give us the
desired result.

If £ = 0 holds, the estimate’s right-hand side equals zero.

Let now ¢ € Ny be such that (4.11) holds. Let R € KZ*J be a matrix with k :=
rank(R) < p— (¢ +1). In particular we have k < p and can apply Lemma to find
z € K with ||zl = 1, Rz =0 and || X z|2 > 0%y1.

Applying Lemma toY := X — R, we get

IX = R = Xz2"|[F = (X = R) — (X = R)z2"|[p = |IY = YVz2"|7 = [V [[F — V22" |7
=IX = R|[% = (X = R)zz"[ = | X = Rl% — | X=2"||%.

Duc to 1 = [|z[3 = 2"z, we can apply (18d) and k < p— £~ 1 to got [Xzz*[2 =
|Xz[|% > 034, > 02_, and conclude

IX = RlE = IX = R — Xz2*|[} + | X22*|3 > | X — R— Xz2"||F + o).
In order to apply the induction assumption, we introduce
R:=R+ Xzz".

We have k :=rank(R) <k+1<p—({+1)—1=p—{ and find

p p
IX =R} > IX —Rlp+op > Y, ov+om,= Y o
v=p—L+1 v=p—{
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4 Low-rank matrices

Exercise 4.30 (Isometric factorization) Let A € KZ** and B € K7** be matrices
with k < |Z|],|J].

Prove that there are isometric matrices Q4 € KX and Qp € KI** and an upper
triangular matriz R € KF*F with AB* = QaRQ%E, Q4Qa =1, and QpQp = 1.

Hint: A sequence of Householder reflections can be used to transform any matriz into
upper triangular form.

Exercise 4.31 (Norm) Since we frequently use rank-k matrices to approximate other
matrices, we are interested in computing the corresponding errors.

(a) Let A € KT** and B € KI*F with k < |Z|,|T|.
Find an algorithm that takes not more than O(k*(|Z|+|J|)) operations to construct
a matriz R € KF*F with || AB*||2 = ||R||2 and |AB*||r = ||R||F.

(b) Let A1 € KP*F1 and By € KI*F1, Let Ay € KI**2 and By € KI *k2,

Assuming k1 + ko < |Z|,|T|, find an algorithm that takes mot more than
Ok (|Z| + |TI)) operations to construct a matric R € KF1tk2)x(kithkz) it
A1 B} — A2B3 |2 = [|R|l2 and |[A1Bf — A2 B3 ||r = [|R| F.

Exercise 4.32 (Block-diagonal matrix) Let Z;,Z be disjoint sets with T = TyUZ,
and let J1, Jo be disjoint sets with J = J1UJa. Let X1 € KX qnd Xy € KT2X72 | Let

(X1 0 IxT
o (B0 ew

Prove

X[ = \/Ilellfv + 11 X217, [ X1z = max{|[ X1]l2, [ Xzll2}-

Exercise 4.33 (Projection) Let X € K7 be a matriz of rank p € N. Following the
proof of Theorem we construct vectors ay, ..., a, € KZ, ¢, ... ,Cp € KZ and matrices
Xo,...,Xp € KZ*J as follows: let X := X. For k € [1 : p|, choose ay,c, € KT with
ay, € range(Xy_1) and cjap = 1. Let Xj, := Xj—1 — arci Xp—1.

(a) Prove range(Xy) C range(Xi_1) for all k € [1: p].
(b) Prove cjx =0 for all x € range(X}) and k € [1 : p].

(¢) Prove that Ly, := C} Ay, is a left lower triangular matriz with unit normal, where

Ak::(al ak), Ck::(cl ck), kell:p].

(d) Prove Xy = X — 11X for all k € [1 : p|, where IIj, := AyL; 'C} is a projection,
i.e., 117 = Tl
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4.3 Rank-revealing QR factorization

4.3 Rank-revealing QR factorization

The singular value decomposition allows us to obtain the optimal low-rank approxima-
tion of a given matrix X € KZ*J but finding this decomposition is computationally
expensive: standard algorithms [I7] first reduce X to a bidiagonal matrix and then apply
an iterative eigenvalue solver to obtain the required diagonal form. Already the first step
requires computational work on the order of nzns min{nz,ns} operations for a general
matrix X, where we use again nz := |Z| and ns := | J| to denote the cardinalities of the
index sets Z and J.

If we no longer insist on finding the best possible low-rank approximation, we can
consider alternative and less computationally expensive alternatives.

Our first approach is based on a QR factorization. In order to be able to use the
standard definitions of triangular matrices, we assume Z = [1 : n] and J = [1 : m] with
n,m € N. Any matrix X € K"*™ can be factorized as

X =QR

with a unitary matrix Q € K™*™ and an upper triangular matrix R € K"*™. Let
p:=min{n,m}. Given k € [1 : p|, splitting the factors into

Q = (Qk Q*) 5 Qk c KnXk7 Q* c Knx(n—k),
R= (?) ; Ry € KF>m, R, € K(n—k)xm

yields

X = QR = (Qk Q*) (gi) = QkRk + Q*R*7

and since @ has only k columns, Qp Ry can be considered a rank-k approximation of
the matrix X.
Due to the identity

L 0 . : QQr QL0
<(f Ink):I": QZ(Q'E) (@ Q*):<Q§QZ QlfQ*>’

both the matrices @ and @ are isometric, and we can use (4.4b) to compute the error
of the approximation via

[X = QeRill2 = [[Q«Bull2 = [[Rull2, X = QuBillF = [|Q«Rul[F = || Rel|F-

If we construct the QR factorization by Householder reflections, we can reduce the com-
plexity by stopping early: if we denote the first & Householder reflections by Hy, ..., Hg,

Hy- H X = (R’“k Rk*)

we have

R**
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4 Low-rank matrices

with Ry, € KF¥F Ry, € ka(m*k), and Ry, € K(n=k)x(m=k) 1f p__ ig sufficiently small,
we can approximate it by zero and find the rank-k factorization

Hk,...Hle<Rkk Rg*), X~H; - Hf <R’“’f Rg*).

2_‘ 2_H(0 Ri)

and the same holds for the Frobenius norm. If we keep track of R.., we can stop applying
Householder reflections as soon as the remaining error is small enough. If k£ steps are
sufficient, the number of operations is reduced from O(nmp) to O(nmk).

Of course we would like the error to decrease as rapidly as possible. A pivoting strategy
can help us achieve this goal: as long as the norm of the remainder matrix R, is not
small enough, we choose a column with maximal norm, swap it to the first position in
the remainder, and use a Householder reflection to eliminate it. This means that this
column will not contribute anything to the next remainder matrix, and we can hope
that the error norms will decay rapidly.

Let us return our attention to the general case. We can enumerate the row indices
i1,19,...,1n in any order, since the order of the indices does not matter to the House-
holder reflections we are going to apply. In the first step, we choose a column index
J1 € J such that the norm || X[z, ;12 of the corresponding column is as large as pos-

Since the Householder reflections are orthogonal, we have

(25 (% )

i

2

sible. We apply a Householder reflection H; € KZ*Z that eliminates all entries in this
column except for the i1-th.
The remainder matrix is now

(H1X) @\ (i< (7\ (1)

and if it is not yet small enough, we repeat the procedure: we choose a column index
j2 € I\ {1} such that [[(H1X)[(z\ (i })x{jo} |2 is as large as possible and apply the next
Householder reflection.

After k steps, we have sets 7, := {i1,...,i;} and oy, := {j1,...,jx} of row and column
indices and Householder reflections Hi, ..., Hj, and the remainder matrix is

(Hp - H1 X)) (2\ ) (T \og )

Once the remainder is small enough, we can replace it by zero to obtain the right factor
B of our low-rank representation and accumulate the Householder reflections to obtain
the left factor A. This leads to the algorithm summarized in Figure [4.1

The algorithm overwrites the matrix X successively with the results of the Householder
reflections. X|;, o, corresponds to the matrix Ry of our derivation, X \Tkx( T\ox) tO the
matrix Ry, and X|(1\7)x(7\0y) 15 the remainder matrix R... Once the remainder is
small enough, we replace it by zero and have

X: <X|Tk><0'k X|TkX(J\O'k) ) ~ <X‘Tk><0'k X‘Tkx(j\o'k)> — (ITk> X|7— e
Xl@m)x(\ow) 0 0 *
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4.4 Rank-revealing LR factorization and cross approximation

procedure rrqr(X, var A, B);

T0+0; o9+ 0; k<« O0;

while || X|(1\7,)x(7\0p) | 18 too large do begin
Choose an arbitrary ix11 € Z \ 7%;
Choose jit1 € J \ o such that || X|z\r,)x (3 /l2 18 maximal;
Ter1 < T U{ikg1);  Okgr < ox U {Jig1 )}
Find a Householder reflection Hy1 € K\ *(I\T%) guch that

(His1 X[ @vm)x i DIz\en) = 03

Xl@noxow) < He1 Xl @vmx (@2 \on;
k+—k+1

end;

B<—X|;k_kxj; A+ (16k> EKZXTk;

for v =k downto 1 do

Al \r)yxm & Hy A\ 7)) x7
end

Figure 4.1: Rank-revealing QR factorization

where I, € K™*7k denotes the identity matrix, and we only have to apply the House-
holder reflections to the left factor to obtain the rank-k approximation AB* = QpRy.

4.4 Rank-revealing LR factorization and cross approximation

The rank-revealing QR factorization can be significantly faster than the singular value
decomposition, but since applying even the first reflection requires at least |Z||J| oper-
ations, we cannot hope to get less than quadratic complexity.

Sacrificing some of the stability provided by the unitary transformations, we can fur-
ther reduce the computational work: instead of a QR factorization, we employ an LR
factorization.

We start by considering a matrix X € K™"*" that has an LR factorization

X =LR

with a lower triangular matrix L € K™*" and an upper triangular matrix R € K"*".
Given k € [1 : n|, we can split the factors into

b (ikk L ) o L €KPF Ly e KOXE L, e KOVOXOD),
*k *k

R = <Rkk gk*> ’ Rk;k c Kka, Rk;* c ka(n_k), R** c K(n—k)x(n—k).

93



4 Low-rank matrices

As in the case of the QR factorization, we use the first k columns of L and the first k
rows of R for our approximation, i.e.,

=~ ka> <kaRkk kaRk*>
X~X:= R Ri.) = .
(L*k (R i) Ly Ry Ly R

Splitting X accordingly, i.e., into

¥ (:;{(k: ?c*) ’ Xu € K, X, € KFX(n—h),
X € K(n*k)ij X,, € }K(nfk)x(nfk)7

we find

Xk Xge) [ Lk Ry Ry

Ly Rk Lk R
= , 4.12
i.e., the approximation error is given by
> 0 0
X-X= (0 L**R**) : (4.13)

We also obtain the equations
Lk Rk = Xk, Ly R = X Lk Ry = Xk,

i.e., we can compute the approximation X using only the first k£ rows and columns of X.

Finding the LR factorization of X} takes not more than k% operations, solving
LixRps = Xgs by forward substitution takes not more than k?(n — k) operations, while
solving L., Ry = X, by forward substitution (it is equivalent to Ry, L}, = X}, with
the lower triangular matrix R}, ) also takes not more than k*(n — k) operations, so a
total of less than 2k?n operations are sufficient to obtain X.

Remark 4.34 (Comparison with rank-revealing QR) To compare the rank-revea-
ling LR factorization with the rank-revealing QR factorization, we assume that the first
k columns of X are sufficient to approrimate the entire matrix.

In this case, we can construct the first k Householder reflections in O(nk?) operations,
since we only have to apply them to the first k columns. This gives us the factor Q) of
the QR factorization. So far, rank-revealing QR and LR are comparable.

Unfortunately, computing the remaining n — k columns of the factor R = Q*X re-
quires O(n(n — k)k) operations, i.e., the rank-revealing QR factorization has quadratic
complezity with respect to n, even under these particularly convenient conditions.
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4.4 Rank-revealing LR factorization and cross approximation

As in the case of the QR factorization, we can construct the LR factorization induc-
tively by increasing the rank: applying (4.12)) to k = 1, we find

Li1Ri1 = X11, LiuRiv=X1s, LaRii=2Xua, LaRiw+ LuRew = X

As long as X171 # 0 holds, we can satisfy the first equation by choosing Li; = 1,
R11 = X11 and obtaining Ry, = Xi., L. = Xs1/X11, and

L**R** - X** - L*IRI*-

We have found the first row and column of L and R and can proceed by looking for the
LR factorization of the Schur complement

X** - L*lRl* — X** - X*lelle*

to construct as many rows and columns as we need.

The construction breaks down if we encounter X;1; = 0, but as long as X # 0 holds,
we can fix this issue by applying row and column permutations that move one of the
non-zero coefficients into the first row and column.

Now we have to consider the generalization of our approach to general matrices X €
KZ*J . This leads to a class of algorithms known as cross approzimation methods [32,
19, B33, 11, 4].

We construct sets of row pivot indices 73 := {i1,...,ix} € Z and column pivot indices
o = {j1,.--,Jrr € J and apply the standard LR factorization to the matrix X e
KF*E with Zyy = i, j,. The pivot indices are constructed during the LR factorization
algorithm in order to avoid encountering a zero on the diagonal.

We denote the v-th column of L by ¢*) € KZ and the v-th row of R by r*) € K7.

We start by choosing indices 7; € Z and j; € J such that z;, ;, # 0 holds. The first
column of L and the first row of R are given by

rM =z o = Db forallieZ, jeJ.

! Liy,j1
To proceed, we construct the remainder, i.e., the first Schur complement
XM = x — ¢® My
and look to approximate its LR factorization. The resulting algorithm is shown in

Figure [4.2]

It constructs matrices

such that
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4 Low-rank matrices

procedure aca(X, var L, R);
00 oo+ 0 X0 X, ko
while || X*)|| is too large do begin
Choose i1 € Z\ 7 and jgi1 € J \ 0f with a:gfil,jkﬂ #0;
' (k+1) , (k)
or €7 do 7(011-1—1) B fi?)”hj? (k+1)
foric 7 do ¢; T

X+ x () _ plh1) (kD))

Tt < Tk U{ikt1};  okpr < ok U it}
k+—k+1
end
end

Figure 4.2: Adaptive cross approximation

holds, and the algorithm stops as soon as the error X*) = X — LR is sufficiently small,
i.e., we can use

as a rank-k approximation of X.

Remark 4.35 (Rank reduction) This construction follows the pattern of Lemma:
a:= (W is a vector in range(X). Let b € K% be the canonical unit vector equal to one

in the i1-th component and equal to zero everywhere else. We have b*a = KZ(-ll) =1, and
we can apply Lemma[{.4 to find that the rank of

X —ab*X = X — (WM = x1)
is one smaller than the rank of X.

Lemma 4.36 (Cross approximation) We have

XW| 5 =0, X®|1yq, =0 for allv € [0+ k]
and

(=1, 0 =0 forallve[1: k), pel:v—1]

1"5?#0, 7’](:):0 forallve[l: k], pel:v—1].

Proof. We prove the first claim by induction.
For v = 0, we have 79 = () and o, = (), so there is nothing to prove.
Let now v € [0 : k — 1] be given with X*)|. .7 =0 and X®)|7,,, = 0.
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4.4 Rank-revealing LR factorization and cross approximation

Since (1) and r#*tY are just a scaled column and row of X*), our assumption
immediately yields
(Y| =0, r |, =0 (4.14)
and thus
XAV = X, — gD, (D) — g,
X(V+1)’I><cr,, — X(V)|Z><0V _ Z(V-I—l) (T(V+1)|JV)* —0.
Due to 7,41 = 7 U {iy+1} and 0,41 = 0, U {ju+1}, we only have to observe

®)

x. !

(v+1) _ () v+ (v+1) _  (v)  Tigusr () _ .

Ljv+1 x’i:ju+l gl Tju+1 - ‘ri,jy+1 ) miy+1,jy+1 =0 for all 7 € 7,
iu+17ju+l

(v+1) _ () (1) (v+1) _ () z) )

v+l) (v e+l (v+1) (v Vet 1,Jutr (v _ .

Ty =T KiVH r; =T ® z ;=0 for all j € J,

iu+l7ju+l

to complete the induction.
The second claim follows from (4.14) and

()
T .
655) = Z/’)j” =1, r](-f) = ng)]y #0 for all v € [1: k.
Liy g

We define matrices E, R € Kkxk yia

él/u = 51(»5) = 4i, 1 Fop = r](»z) =T, for all v, u € [1: k.

Lemma implies that L is a lower triangular matrix with unit diagonal, while Ris an
upper triangular matrix with non-zero diagonal, i.e., both are invertible, and therefore
S0 are L|Tk><[1:k] and R’[Lk]wk-

Lemma 4.37 (Factorized representation) The matriz X|;, xq, is invertible and the
approximation X can be represented as

5(: =LR = X’ZXUkX|7;1XUkX|Tk><.7'
Proof. (see also [3, Lemma 5.1]) Due to Lemma we have

X‘TkXJ = X(k)”rkxj + L‘TkX[llk]R‘[llk]XJ = L‘TkX[llk‘]R7 (415&)
X|I><ak = X(k)|I><ok + L|I><[1:/€]}{|[1:k]><0;C = LR|[1:/€]><Uk' (415b)

Restricting the first equation (4.15a) to columns in oy, yields

X|Tk><0'k = L|Tk><[1:k}R|[1:k} Xop*
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4 Low-rank matrices

Since L|, x1:4) and R’[l:k]xak are invertible, the same holds for their product X|;, xo,-
Multiplying 1; by L|;k1X 1.4 from the left and (4.15b) by Ryﬁ}k]xak from the right

gives us

LR = X |2 Rl g o Lo X Iroxa
= X’IXO'k (L‘Tk><[12]€]R‘[11k]><0'k)71X|Tk><:7 = X|IXO’]€X|7T]€1><U,€X‘7‘]C xJ

This is the equation we need. [

Remark 4.38 (Partial evaluation) In a practical implementation, we would like to
compute only the coefficients of X that are required to obtain L and R. This means that
we cannot compute the entire matrices X ) for all v € [0 : k].

Our algorithm ensures

X(V) =X - L‘IX[l:V}R’[l:V}Xja
so we have
XNy = Xlzxgiy — Lzxpa Rlpa <

= Xlzegy — AW 7 forallve[0:k], jeJ,
pn=1

XNiwg = Xlxg — Ligg<pa Rlpaxs

=X|{i}xg—2€§“’ (rw)y* forallve[0:k], i e,
pn=1

and this allows us to construct the required rows and columns of X*) based only on the
corresponding rows and columns of the original matriz X and the previously computed
rows and columns of L and R. A typical implementation of the adaptive cross approz-
mation algorithm requires only a way to obtain single rows and columns of the matrix
that has to be approrimated.

In a practical implementation, we have to address two aspects of the cross approxi-
mation that have not been discussed so far: we have to specify a stopping criterion, and
we have to describe how the pivot elements i1, ...,7; and ji,...,ji are chosen.

Remark 4.39 (Stopping criterion) If we construct the full matrices X*), we can
stmply use the Frobenius or spectral norm to determine when to stop the algorithm.
Finding a reliable stopping criterion becomes significantly more challenging if we follow
the partial evalution approach described in Remark[].38: since we cannot check the entire
matriz, we run the risk of missing large entries in the remainder matriz that are outside
of the rows and columns we have chosen so far.
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4.4 Rank-revealing LR factorization and cross approximation

Remark 4.40 (Pivot strategy) The strategy employed to choose the pivot indices
i1,...,% and ji,...,J; i of particular importance if the partial evaluation approach
of Remark[].38 is employed: the algorithm only “sees” a very small part of the matriz
and still has to choose suitable pivot elements that yield fast convergence and ensure that
the stopping criterion is not triggered prematurely.

Simple pivoting strategies may lead to completely inaccurate approximations [7, Ex-
ample 2.2]. It is possible to prove the cross approzimation algorithm will produce good
results if the pivot indices are chosen correctly [19], but the corresponding strategy is com-
putationally expensive. There are attempts [3] to derive efficient and reliable pivoting
strategies, but so far they rely on additional stability assumptions.

Example 4.41 (Rank-one matrix) Let n € N. We consider the funktion

g B2 xR 3R, (wy) s | el YTV
0 otherwise.

We can see that the function is analytic as long as we stay away from the diagonal x =y,
and the techniques of Section [3.8 can be used to prove that interpolation converges.
Let ig, jo € [1 : n]. We consider the points

(
(

o {<3w/2,j/n> if § = jo,
Y; ‘= (

27, j/n) otherwise

9 i e
Tr/' ,Z/n) ZfZ 197 fO?" alli € [1 . n]’
0,i/n) otherwise

for all j € [1:n)].

The matriz G € R™™™ defined by

9ij = 9(xi, y;) for alli,j e [1:n]

satisfies

or alli,j € [1:n),
0 otherwise J Jel ]

_ {—1/\\xi—yju2 if i = o and j = jo,
Gij =
i.e., only one coefficient in the entire matriz differs from zero, and we can choose its
position arbitrarily. It is hard to imagine a pivot strategy that is able to reliably find this
one coefficient without checking the entire matriz.

Remark 4.42 (Error analysis) The error analysis of the adaptive cross approxima-
tion algorithm is discussed in [J)] for boundary element matrices resulting from collocation
methods and in [3] for Galerkin methods.

The results in [, however, should be approached with care, since they appear to be
based on circular reasom'nﬂ. The book [2] presents improved pivot strategies.

'The polynomials py appearing in the proof of [, Lemma 4] can only be defined if the Lagrange
interpolation problem can be solved, and this is what has to be proven.
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4 Low-rank matrices

Remark 4.43 (Interpolation) The result of Lemma can be interpreted as the
result of “algebraic interpolation”: we define the matrix

-1
V = X’IXUkX‘TkXG'k
and denote its columns by v\) for v € 1,. Due to

V|Tk><7'k :X‘TkXUerl =1,

T X0

we have

1 ifv=up

(v) — — ’ 1

v v or all v, € T,
’ v {O otherwise J a

so we can interprete the vectors v, as a “Lagrange basis” of the range of V' corresponding
to the “interpolation points” v. The algebraic interpolation operator for this basis and
these points is given by

J: K - K, T Zv(”)xV:Vx]Tk.

VETE

We have B
JIX = VX|TkXJ = X|I><UkX|7Tkl><O'kX|TkXZ =X,

i.e., the cross approximation matriz X s the result of algebraic interpolation.
For any vector x € KT we have

= V(Vx‘Tk)‘Tk = VX‘TkXO'kX’;]cIXka’Tk = Vx‘Tk = Jz,

therefore J is a projection into the range of V. In general, it is not an orthogonal
projection, and its stability, i.e., whether ||J|| is bounded, depends crucially on the pivot
strateqy.

If all elements in the remainder matriz are checked and the one with the maximal
value is chosen, a simple estimate for ||J|| can be found in [3, Lemma 5.3].

4.5 Hybrid cross approximation

In order to avoid the dubious reliability of partial cross approximation techniques, we
can combine it with a reliable compression scheme that leads to a matrix that is small
enough to apply adaptive cross approximation without partial evaluation, so that we can
use a full pivot search and obtain guaranteed error bounds.

The hybrid cross approzimation method (HCA, cf. [7]) relies on interpolation: we
once more consider a matrix G € KZ*7 given by

9i5 = 9(@i, y5) foralli€Z, j€J

with a suitable kernel function g and points (z;);ez and (y;);es in RY.
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4.5 Hybrid cross approximation

Given an admissible pair (t,s) of clusters ¢t € Tz, s € 77, we choose interpolation
points (&, )ven in t and and (& ,)uen in s with corresponding Lagrange polynomials
(Ut.w)vem and (€5 ,,)uenr- In a first step, we approximate g by interpolation to obtain

Z Z Ce(2) 9ty Eop) Lo (Y) forall zx € t, y € s. (4.16)

veM peM

The matrix S € KM*M given by

Spyp = g(£t7V7§s,u) for all v, L€ M

is sufficiently small to allow us to approximate it by adaptive cross approximation, i.e.,
to find k € N and A € KM*[LK B € KIHAIXM guch that

S~ AB.
Replacing s,,, by this approximation in (4.16|) yields

gl y) = gl,y) = Y Y (@) suulep(y)

veM peM

k
~ Z Z ftﬂj(l‘) (Z au)\b)\u> KS,,LL(y)
A=1

veM peM

k
= Z (Z Ay Et,l,(x)> Z b ls,u(y) forallx €t, y € s.

A=1 \veM pneM

This is a degenerate approximation of g that consists only of k terms instead of |M]|,
and in certain applications k can be significantly smaller than |M|.

Still, having to evaluate the Lagrange polynomials /;, and /s, for all v, u € M makes
working with this approximation a little cumbersome. We can use Lemma, to add
a third approximation step that significantly reduces the complexity: we have

S~ AB = S|0xoySlr o, Slrox

for the chosen sets 7y, ak C M of row and column pivots.
Introducing C := S|-1 _ | we find

T X0

g(xvy)"’gxy Zzgtu SI//L su( )

veM peM

~ Z Z Ce(2)(SMxay, C S|t )uplo,u(y)

veM peM

= Z Z by () Z Z Sux Cxn Sk | Lo, (Y)

veM peM A€oy KETE
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4 Low-rank matrices

= Z Z (Z SuA Etﬂ/(l‘)) Chk Z Snugs,u(y)

A€o, KETE \VEM neM
Z Z (Z gt ) gs )\)gt 1/( )) Cak Z g(gt,m gs,u)gs,u (y)
A€oy, KETE \veM neM

We can see that the sums over v and p represent interpolating polynomials correspond-
ing to g(-,&.) and g(&:x,-), respectively, and we can “reverse” the interpolation by
substituting the kernel functions, i.e.,

> 9(&w Esn) e (@) = g, & 2) for all z € t, A € oy,
veM
Z g(&t,m&s,u)gs,u(y) ~ g(ét,m y) fOI‘ all ) € S, K € Tk
pneM

This approach gives rise to the final degenerate approximation

g(x,y) ~ ghca x y Z Z x fs)\ C)\Iig(‘gt my) for all z € Bta RS Bs

AEo, KETK

that can be evaluated without the need for Lagrange polynomials. Since the cross ap-
proximation algorithm provides us with an LR factorization of S|;, x4, , the multiplication
with C = S|-! _ can be handled by standard forward and backward substitution.

T X0}

Remark 4.44 (Cross approximation) We have seen in Lemma that the stan-
dard cross approximation algorithm matches the pivot row and columns of the original
matriz exactly. The hybrid cross approximation does the same for the pivot interpolation
points and the original kernel function: for all v € 1, and y € s, we have

Jhea étua Z Z é-tl/7£8>\ C\k g gt k' Y Z Z SudCak 9 gtm )

AEoy, KETE ANEoy, KETK
= Z S’TkXO'k )ung gt Ky Y Z Iung gt Ky Y —g(gt,uyy),
KETk KETE

and we can also prove Greq(x,&sp) = g(x, & p) for all p € o, and x € t.

4.6 Global norm estimates

We have seen that we can control the error resulting from the low-rank approximation
of a matrix. In a hierarchical matrix, we use low-rank approximations in all admissible
blocks, and we have to ensure that error estimates for these blocks lead to reliable error
estimates for the entire matrix.

Let Tzx7 be a block tree, let L7 7 denote the set of its leaves.

If we can bound a norm of a matrix X € KZ*7 in terms of the norms of X|;,,
b= (t,s) € Lzx7, we can apply this bound to the error matrix to control the global
error. For the Frobenius norm, this bound is particularly easy to find.
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4.6 Global norm estimates

Lemma 4.45 (Global Frobenius norm) Let X € KZ*J. We have
1/2
1XF = Yo IXlslE
b=(t,s)eLzx 7
Proof. Due to Corollary we have
2 2 2 2
IXUE =D leiilP = > DD lwalf = > I Xlnal

i€T jeJ b=(t,s)€Lrx 7 icl JES b=(t,s)€Lzx 7

and taking the square root yields the equation. [

If we compute low-rank approximations via the singular value decomposition or the
rank-revealing QR or LR decomposition, we have the Frobenius norm of the error at our
disposal and can apply Lemma directly.

If the error results from an orthogonal projection, i.e., if we have

G‘fxé - QtSQ;fksG|i><§

with an isometric matrix @Qs, we can use Lemma to obtain

HG|£><§ - QtSQst|fX§|’2F = ||G|£><§||% - HQtsQ:sGuxéH% = ||G|f><§ 2F - ||Q2<SG|£><§||%‘

This local error equation can now be combined with Lemma If the error is small,
we should keep in mind that the right-hand side of this equation may be very susceptible
to rounding errors.

If we can write the approximations of submatrices in terms of orthogonal projections
with respect to the Frobenius inner product, i.e., if we have a family (Pis)y—(1,)ec;,, Of
linear matrix-valued operators

P Kix8 5 Kix3 for all b= (t,) € L1xy
with
P2 =P, (PuY],Z)p = (Y,PuZ)p forallb=(t,s) € Ly, Y,Z € K>,
we can use Corollary [3.23] to define a global orthogonal projection
P: KM — gI*J
via the equations
P[Y]|jys := Pis[Y o] for all b= (t,5) € L1xg, Y € KI*J.

Pythagoras’ identity yields ||Y — P[Y]||% = ||Y||% — || P[Y]||%. Again, if the error is small,
the right-hand side may suffer from rounding errors.

Handling the spectral norm of a matrix is considerably more challenging, since it is
defined via a maximum, and the element maximizing the norm may differ from subma-

trix to submatrix. The estimate (4.8b|) yields || X||2 < || X||F, but this may be fairly

inaccurate and requires us to have Frobenius norm estimates for all blocks.
If we only have spectral norm estimates, we can still find an upper bound similar to
the one provided by Lemma
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4 Low-rank matrices

Lemma 4.46 (Global spectral norm) Let X € K2*7. We have
1/2

2
2

Xl < > Xl

b=(t,s)eLrx 7

Proof. Let y € K? and z € K7. Using again Corollary we obtain

Yy Xz = Z Z YiTijzj = Z Z Zﬂil‘ijzj = Z y|ZfX|£x§Z 5

1€l jeJ b=(t,s)eLrx g ict JES b=(t,s)eLrx 7

For every block b = (t,s) € L1« 7, we can use the Cauchy-Schwarz inequality and (4.10a))
to get

[ ylE X awals | < lylll2 1 X g szlsllz < lylell2 1 X Tpallz [12]s]]2-

The triangle inequality and the Cauchy-Schwarz inequality applied to the block sum
yield

X< Y Y X iees

sl< D0 il X Tgsllz [121s12

b=(t,s)€Lzx g b=(t,s)EL1x 7
1/2 1/2
< > X gsll3 > lwlel3lelsl3
b:(t,s)GﬂIXj b:(t,s)GﬁIxj

Corollary allows us to rewrite the right-hand term as

Yoo lwllBllsE = Yo DO Il =) > wilPlzl® = lylill-13,

b=(t,s)ELTx 7 b=(t,5)ELrx 7 ici jE3 i€ jeJ

and we conclude

1/2
ly* Xz| < Yo IXleal3 | lwllzlizle:
b:(t»s)eﬁlxj
Now we can apply equation (4.10b)) of Lemma to complete the proof. [

Although the estimate provided by Lemma [4.46] is quite convenient, it is far from
optimal: if we consider the identity matrix X = I, the spectral norm is equal to one, but
the estimate of Lemma [4.46] would be the square root of the number of diagonal blocks,
which may be considerably larger.

We can get a far better estimate if we follow the approach of [20, Satz 6.2] and take
advantage of the sparsity of the block tree.

Theorem 4.47 (Global spectral norm) Let Tzx7 be Csp-sparse, let X € KE*7.
If there are families (ez,0);2, and (e7.0)72 in R>q satisfying

1/2 1/2

HX|5><§ EIJevel(t) 6[7,level(s)

2 < for all b= (t,s) € Lzx7, (4.17)
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4.6 Global norm estimates

o0 /2 /s 1/2
||X||2 < C’sp (Z GI,E) (Z EJ,€> .

we have

=0 /=0

Proof. Let (ez,¢)72, and (EJ 0)72 be families in R>( satisfying (4
Let y € KT and 2z € K. As in the previous proof, we use Corollary [3.23] the triangle

inequality, the Cauchy- Schwarz inequality and m to obtain

X =Yl Xl S Iyl Xl 2ls |
b:(t,S)GEIXJ b:(t,S)GEIXJ
< D> Ml X sz 12152

b:(t,s)GﬁIXj
Now we use (4.17) and apply the Cauchy-Schwarz inequality to the sum to get
1/2 1/2
X< D Myl e e revern 12112

b:(tas)GLIXJ
1/2 1/2

< Z 12113 €2 1evel(r) Z [EIRIE €7 level(s)
b=(t,s)€Lzx 7 b=(t,s)eLrx 7

For the first term, we can take advantage of the block tree’s sparsity and Lemma [3.18
to get

Z €7 level(t) |y| ||2 - Z Z €7 level(t) |y| ||2 < CSP Z €7 level(t) ||y| ||2

b=(t,s)ELIx T te€Tz s€row(t) teTz
= Csp Z > erellylils = sque S il
=0 teTz teTr et
level(t)=¢ level(t)=¢
< cspzmz l? < CspZEU Iyl
1€l

By the same arguments, we also find

[e.9]

Z €7 level(s) HZ|§||% < CSP Z€J7£||z||%>

b=(t,s)eLrx T =0

and combining both estimates yields

oo 12 / 1/2
" Xz < Cyp (Z 618) (Z 5.7,£> lyll2 l|2]]2,

£=0 =0
and equation (4.10bf) of Lemma can again be used to complete the proof. ]

If we have a level-consistent block tree, i.e., if the levels of blocks and their row and
column clusters coincide, this result can be made a little more accessible.
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4 Low-rank matrices

Corollary 4.48 (Global spectral norm) Let Tzx 7 be Cgp-sparse with
level(b) = level(t) = level(s) for allb= (t,s) € Lzx7. (4.18)

Let X € KITXI | We have

1X[l2 < Cop Y max{|| Xj4llz 2 b= (t,5) € Trxg. level(b) = £},
=0
Proof. We simply let
€T = €Eg 0 = max{HX|£X§H2 b= (t, S) S EXJ, level(b) = f} for all ¢ € Ny.

Due to (4.18]), the condition (4.17)) of Theorem is fulfilled and we get
oo
1 X2 < Cop D ez
=0

This is already the desired result. ]
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5 Arithmetic operations

The discretization of integral or partial differential equations typically leads to large
ill-conditioned linear systems that require efficient solvers. Hierarchical matrices offer
an elegant approach to this challenge: we can formulate efficient algorithms that ap-
proximate the inverse or the factorization of hierarchical matrices by simply replacing
standard arithmetic operations by truncated operations that reduce the rank of suitable
submatrices after each step. This approach ensures that all intermediate results can be
handled efficiently.

5.1 Matrix-vector multiplication

Let G € K*J be an H-matrix corresponding to an admissible block tree 77y for
cluster trees 77 and 77, and let (A, B, N) be an H-matrix representation of G.

We are interested in evaluating the matrix-vector product Gy for a vector y € K.
Since we will frequently have to apply this operation to multiple vectors y at once, we
combine multiple vectors into the columns of a matrix Y € K7*M and consider the
computation of GY € KT*M_ Since we will frequently require the restriction to a subset
of the rows of the matrix, we introduce the notation

Xy = Xironq for all X € KM C ¢, (5.1)

where M is an arbitrary finite index set. In order to obtain a flexible algorithm, we
focus on the update operation

X «— X +aGl; Y (5.2)

for a block b = (t,5) € Tzxs with a result matrix X € K*M, an input matrix Y €
K3*M and a scaling factor a € K.

In order to find an efficient algorithm for performing this operation, we distinguish
three types of blocks: if chil(b) # (), the block can be subdivided into blocks corresponding
to its children. If chil(b) = ), the block can be either an admissible or an inadmissible
leaf of the block tree.

In the first case, i.e., if chil(b) # (), we have

chil(b) = chil™(¢) x chil™(s).
By Definition we obtain
GlosVle =GlpsY = > Gl for all ¢’ € chil™ ().

s’€chilt(s)
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5 Arithmetic operations

procedure addeval hmatrix (a, G, b= (t,s), Y, var X);
if b€ L7, ; then
X +— X +aNyYy
elsAe if b e E;XJ then
Y « aBY;
X« X+ AY
else for b’ = (¢, s') € chil(b) do
addeval hmatrix (o, G, V', Y|y, X|3)
end

Figure 5.1: Matrix-vector multiplication X « X + aG|;, .Y

Lemma states that the sets {f : ' € chilt(¢)} are a disjoint partition of Z, so we
may conclude that (b.2)) is equivalent with the operations

X’i\/ — X|£I + aG’E/X§/Y’§/ fOI‘ all b/ - (t,, S/> S Chil(b),

i.e., it suffices to perform updates for all children of b. We can repeat this procedure
recursively until we arrive of the leaves of the block tree. A

Ifb = (t,5) € L7x7 is an admissible leaf, the H-matrix representation yields Aj € K'**
and B, € K** with G|;, , = ApB;. Due to

G’fx§Y = AyByY,
we can compute
Y := aB}Y, X +aG|;, .Y = X + AY.

If b= (t,s) € L7x7 is an inadmissible leaf, the H-matrix representation gives us N; €
K with G|z, ; = Np, and the product

X + O‘G‘fxgy =X+ aNbY

can be evaluated directly. The resulting algorithm is summarized in Figure [5.1
Occasionally we also require an algorithm for computing matrix-vector products with
the adjoint matrix, i.e.,
X+ X +aGY (5.3)

with X € K¥%¢ and Y € K™‘. We can treat the admissible leaves b = (¢, s) € E;Xj by
computing

Y = aAlY, G: .Y = BY,

while the inadmissible leaves b = (t,s) € L7, ; can be handled directly.
Recursively following the structure of the block tree leads to the algorithm summarized
in Figure [5.2
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procedure addevaltrans_hmatrix (a, G, b= (t,s), Y, var X);
if b€ L7, ; then
X+~ X +aNyY
; +
elsAe if be L7, ; then
Y < aA}Y;
X« X+BY
else for v’ = (¢, s') € chil(b) do
addevaltrans_hmatrix (o, G, V', Y|, X|s)
end

Figure 5.2: Adjoint matrix-vector multiplication X «+ X + aG N

Remark 5.1 (Auxiliary vector) It is possible to avoid the auxiliary vectors Y by
treating AyBy as a sequence of k rank-one updates. As in Theorem we let

Ab:(al as ... ak), Bb:(bl by ... bk)
and find
k
ABY =) abY.

v=1
The individual rank-one updates require us to store only the intermediate results b)Y
instead of the entire vector Y, and these intermediate results can be computed and used
component by component, reducing the auziliary storage requirements to O(1).

5.2 Complexity of the matrix-vector multiplication

Now we consider the amount of computational work required to perform a matrix-
vector multiplication by the algorithms addeval hmatrix and addevaltrans hmatrix
presented in Figure [5.1] and Figure Since most of the work is done in the leaves of
the block tree, it is convenient to use their ranks to bound the overall work.

Lemma 5.2 (Maximal rank) Letrz and ry denote the resolutions of the cluster trees
Tz and Tz, and let k denote the local rank of G. The maximal rank of G is given by

k= max{k,rz,r7}. (5.4)
We have

rank(G

iva) < k for all leaves b= (t,s) € L1x7.

Proof. Let b= (t,s) € Lzx7. If b is an admissible leaf, Definition implies that the
rank of G|, ; is bounded by k. If b is an inadmissible leaf, Definition implies that
t or s has to be a leaf, so the rank of G|;, ; is bounded by 77 or rz. |
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5 Arithmetic operations

Since the algorithms only consider blocks and their descendants, the computational
work should only depend on these blocks. To express this property, we introduce subtrees
of cluster and block trees.

Lemma 5.3 (Subtree) Let T = (V,r,E) be a tree, and let v' € V.. Let V! CV be the
minimal subset satisfying

o ' €V and
e chil(v) C V' for allveV'.

Let E' := EN (V' x V). Then T':= (V',7',E') is a tree, and we call it the subtree of
T for the root r’.
We have V' = desc(r’), i.e., the nodes of the subtree are the descendants of its root 1.

Proof. Let v € V'. Since T is a tree, there is exactly one sequence vy, ...,vp € V, £ € Ny,
such that

(vi—1,v) € E for all i € [1: 4],

and vog =7, vy = v. Let A :=min{i € [0:¢] : v; € V'}. Due to the minimality of X, vy
is not a child of an element in V'. Due to the minimality of V', it therefore has to be 7’.
We conclude that vy, ..., v, is a sequence in V' connecting ' = vy to v = v,.

If we have two sequences connecting r’ to v, we can extend them to sequences con-
necting r to v. Since these sequences are unique by definition of the tree T, so are the
sequences in the subtree 7’. We may conclude that 77 is indeed a tree.

The definition of V' compared to Definition immediately implies desc(r’) C V'.
On the other hand, we have already proven that every v € v’ is a descendant of /. m

Notation 5.4 (Subtrees) We introduce the following abbreviations:
For every t € Tz, we denote the subtree of Tz with the root t by T;.
For every s € Tz, we denote the subtree of T7 with the root s by Ts.
For every b € Trx 7, we denote the subtree of Tz« with the root b by Tp.
The cardinality of the set of nodes of a tree T = (V,r, E) is denoted by |T| := |V|.

In order to obtain a bound for the number of operations required by the matrix-vector
multiplication, we use three steps: first we derive a recursive estimate that closely follows
the structure of the algorithm. This estimate can be used to express the work as a sum
of the numbers of operations in all blocks. Finally we use properties like sparsity to
translate the second estimate into an explicit upper bound.

This approach provides us with auxiliary results that are very useful for more sophis-
ticated algorithms like the H-matrix inversion or the H-matrix multiplication that use
the matrix-vector multiplication of submatrices in intermediate steps.
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Lemma 5.5 (Computational work) We define

2k | M| ([] + |3]) if (t,) € L1x.7,

Wmv t, ,M =
. {Z(t’,s’)EChil(t,s) Wow(t', 8", M) otherwise

for allb = (t,s) € Tzxy and finite sets M.

If we call the algorithm addeval_hmatriz for a block b= (t,s) € Trxg with matrices
X € KMM gnd Y € KM or the algorithm addevaltrans_hmatriz for a block b =
(t,s) € Trxg with matrices X € KM and Y € KM, it performs not more than
Wiw(t, s, M) operations.

Proof. We consider only addeval hmatrix, since addevaltrans_hmatrix performs the
same number of operations, just exchanging the roles of A, and By, for admissible leaves
and using the adjoint in inadmissible leaves.

By induction on |7p| = | desc(b)].

Let b= (t,s) € Tzxs with |Tp| = 1. Then we have chil(b) =0, i.e., b € L1« 7.

If b is admissible, the algorithm computes

Y + aB}Y, X+ X + AY.

The multiplication with B; takes k|M| (2|5 — 1) operations, scaling the result takes
k | M| operations, the multiplication with A, takes |f| M| (2k—1) operations, and adding
the result to X|; takes [{||M]. In total, the algorithm addeval hmatrix requires not
more than

2k M| (| + |5]) < 2k | M| (|| + |5]) operations.

If b is inadmissible, we have to distinguish to cases: if |{| < |3|, we compute
X +aGly Y = X +a(VY)

using || |[M]| (2|3] — 1) operations for the matrix multiplication, ||| M| operations for
scaling with «, and finally |{|| M| operations to add the result to X. Due to |{| < |3,
the total number of operations is bounded by

21t |M] [3] + M [E] < 20t |M] ]3] + [M] min{[E], 3]}
If, on the other hand [{| > ||, we compute
X +aGlp Y = X + Ny(aY).

Scaling Y takes | M| || operations, multiplying by N, takes || | M| (2]8] — 1), and adding
to X|; takes [£||M|. Due to || > |3, the total number of operations is bounded by

20t |M] [5] + [M] ]3] < 20E[]M] |3] + [M] min{|d], |3]}.

Since Tzx 7 is an admissible block tree, either ¢ or s has to be a leaf. In the first case,
we obtain the bound

21| [M][3] + |M| min{[#], 3]} < 2rz [M][3] + |M][#] < 2k |M]|(|E] + |3]).
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In the second case, we find
213] | M| [#] + | M| min{[£], [3]} < 2rg|M][E] +[M][3] < 2k |M] (JE] +3]).
Combining our three estimates, we conclude that the algorithm requires not more than
2k IM| (2] + |3]) = Wine(t, s, M) operations

if b = (t, s) is a leaf block.

Let now m € N be given such that our claim holds for all b = (¢,s) € Tzxs with
|To| < m.

Let b = (t,8) € Tzxy with [T,] = m + 1. Then we have chil(b) # () and the algorithm
addeval hmatrix calls itself recursively for all ' = (¢, ') € chil(b). Due to |Tp| < m,
we can apply the induction assumption to find that each of these recursive calls requires
not more than Wy, (¥, s', M) operations, so the total is bounded by

> Wt s', M) = Wany(t, 5, M).
(t,s')echil(t,s)

The induction is complete. |

Theorem 5.6 (Complexity) Let M be a finite set. Calling addeval_hmatriz or
addevaltrans_hmatrizc with b = (t,s) € Tzx s requires not more than

Wono(t, 5, M) < 2k | M| Z (|¢'] + |5"]) operations. (5.5a)
b'=(t',s")ETp

If Tzx 7 is Csp-sparse, we find
Won(t, s) < 20spk |M|(pz< s + 1)(|E] + |3]). (5.5b)

Proof. We prove by induction on |7;| = | desc(b)|.
Let b= (t,s) € Trxg with |Tp| = 1. Then b is a leaf and the estimate follows directly
from Lemma 5.5
Let now m € N be given such that holds for all b = (t,5) € Tzxg with |Tp| < m.
Let b = (t,s) € Tzxs with |Ty| = m + 1. According to Lemma we have

Wi (t, 5, M) = > W(t',s', M),
(t',s")€echil(t,s)

and due to |Ty| < m for all v/ = (', s") € chil(b), we can apply the induction assumption
to obtain

Wy (t, s, M) < Y S 2k M +15")
b/ =chil(b) b""=(t" 5" )Ty

<2k M| D]+ 18],
veTy,

Combining (5.5a)) with Lemma yields ([5.5b)). ]
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5.3 Truncation

5.3 Truncation

In order to approximate the results of arithmetic operations, we require an algorithm
that keeps the rank of the resulting matrices as low as possible. The truncation strategy
based on the singular value decomposition discussed in Section[.2]yields the best possible
result (cf. Theorem , but computing the decomposition “from scratch” would lead
to a very high computational complexity. Fortunately, we can arrange a number of
important arithmetic operations in a way that yields R(k)-matrix representations of
submatrices, where k£ may be higher than necessary, but not too high. Taking advantage
of the factorized form, we can obtain the singular value decomposition by an efficient
algorithm.

We assume that a matrix X € KZ*7 is given in R(k)-matrix representation, i.e., that
there are matrices A € KZ** and B € KY** such that

X = AB*

holds. Instead of multiplying A and B* to form X, we first compute a thin QR factor-
ization of A, i.e., we find an isometric matrix Q@ € KZ** and an upper (according to an
arbitrary ordering of indices) triangular matrix R € K*** satisfying

A= QR.
We find
X =AB*=QRB*
and introducing R
X := RB* ¢ K"*J
this equation takes the form R
X =QX.
Assuming that k is not too large, we can afford to compute its singular value decompo-
sition L
X=UxVv*
and obtain R
X=QUXV*=U%V"

with U := Q(/]\

We can, of course, interchange the roles of A and B: we can also compute the QR
factorization B = QR with an isometric matrix @ € KJ <k and an upper triangular
matrix R € KF**_ set up X = AR*, compute the SVD X = UZV* and obtain

X =XQ*=USV*Q* = UxV*

with V = Q‘A/. Depending on the implementation of the QR factorization and the
singular value decomposition and on the cardinalities |Z| and | 7|, one of the two versions
may be more efficient than the other.
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5 Arithmetic operations

procedure trunc_rkmatrix (e, var A, B);
Compute QR factorization A = QR with Q € KI*k, R e Kkxk.
X « RB*;
Compute singular value decomposition X=U SV,
U+ QU;
Choose rank k € [0 : k];
A= UlniZlig B Viga
end

Figure 5.3: R(k)-matrix truncation, X is overwritten by an approximation.

Given the SVD, computing a rank-k approximation for a given ke [0 : k] consists
of merely copying the appropriate columns of U and V' and scaling one of them by the
singular values. The resulting algorithm is presented in Figure [5.3

Assumption 5.7 (QR and SVD) We assume that there is a constant Cy, such that
the QR factorization of a matriz X € KI*J can be computed in not more than

Cor|Z||T| min{|Z|,|T|} operations
and that applying Q or Q* to a matriz Y € KI*X takes not more than
Cor|Z| K| min{|Z|,|T|} operations.

We also assume that there is a constant Cy,q such that the singular value decomposition
of X can be computed in not more than

Cspa|Z| |T| min{|Z|,|T|} operations.

In practice, we of course only refer to computations with error tolerances reasonably
close to machine accuracy.

Lemma 5.8 (Complexity of R(k)-SVDs) Our algorithm computes the singular va-
lue decomposition of a matriz X € KX*J given in R(k)-matriz representation in not
more than
Crrsodk®(|Z] + |T|) operations,

where Chrysyd := max{2Cy, Cspq + 2}.

Proof. By Assumption[5.7] the construction of the QR factorization takes not more than
Cyrk? |Z| operations, the product X = RB* can be computed in not more than 2k? |7 |
operations, its singular value decomposition takes not more than Cy,qk? | J| operations,

and finally the product U = Qﬁ can be obtained in qukz |Z| operations.
Adding the contributions yields

20k |Z| 4 (Cova + 2)k* | T| < Crrsvak?(IZ] + |T1).-
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5.4 Low-rank updates

procedure add rkmatrix (¢, a, A, B, var Ax, Bx);
Ax (AX A), Bx + (BX dB)
trunc_rkmatrix(e, Ax, Bx)

end

Figure 5.4: R(k)-matrix addition, X is overwritten by an approximation of X + aY.

Corollary 5.9 (Complexity of R(k)-truncations) For any k€ [0: K], our algo-
rithm trunc_rkmatriz computes a rank-k approximation of X in not more than
Cuk*(|IZ) +|J|) operations,
where Cyp := Crispg + 1.
Proof. We compute the R(k)-SVD and let
A= Ul Bl B =Vl
The multiplication by the diagonal matrix requires not more than
k|Z| < k*|Z| operations,

and adding the estimate of Lemma yields the required bound. [

5.4 Low-rank updates

We consider the addition of two matrices X,Y € KZ*7 i.e., the computation of Z =
X 4+ aY with a € K.

If X and Y are given in R(k)-matrix representation, i.e., if there are matrices Ax, Ay €
KZ*%k and By, By € K7** such that

X = AxB%, Y = Ay B},

we immediately obtain an R(2k)-matrix representation
X +aY = AxBY + aAy By = (AX Ay) B;(
X Y aBs

= (AX Ay) (BX @By) = AzB}

-~

=:Ay =:by

of the sum X +Y and can apply the truncation algorithm to compute an approximation
of reduced rank.
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5 Arithmetic operations

Corollary 5.10 (Complexity of R(k)-addition) Let X,Y € KZ*T be given in R(k)-
matriz representation X = AxBY and Y = Ay By,. For any k € [0 : 2k], the function
add_rkmatriz computes a rank-k approximation of X + Y in not more than

Cadk®(|Z| +|T|) operations,
where Cuqq := 4Ckspq + 2.

Proof. Constructing Az and By requires k | 7| multiplications for scaling By . According
to Lemma we can obtain the singular value decomposition UXV* = Az B}, in not
more than

Ciksvd (2K)*(IZ] + |7]) = 4Csvak® (IZ] + 7))
operations. Finally multiplying Ul ; and X|; ; takes not more than 2k |Z| multiplica-

tions, since ¥ is a diagonal matrix and k < 2k.
The total number of operations is bounded by

k| T| + ACksvak® (2] + |T)) + 2k |Z| < 4Crsvak®(|Z] + | T|) + 2K*(|Z] + |T|)
= Coaak®(IZ| + |T)).

In order to approximate the matrix-matrix multiplication, we have to be able to add
a low-rank matrix to a hierarchical matrix, i.e., we require an efficient algorithm for
performing low-rank updates to hierarchical matrices. The restriction of a low-rank
matrix Y € KZ*J to a block b = (t,s) is again of low rank: if Y = AB* is an R(k)-
matrix representation, we have

Yl = (ABY)

ixs — A|{><kB|Z><k;7

so an R(k)-matrix representation of Y|;, . is readily available to us, and we can split Y’
into submatrices that fit the block structure of a hierarchical matrix X.

As in the case of the matrix-vector multiplication algorithm, we can use a recursive
strategy to distribute the low-rank matrix Y among all leaves of a hierarchical matrix
X. For inadmissible leaves, we simply multiply A and B* and add the result to the
corresponding nearfield matrix. For admissible leaves, we use the function add_rkmatrix.
The resulting algorithm is given in Figure [5.5

Lemma 5.11 (Complexity of low-rank updates) Let b = (t,s) € Tzx7. A call to
the function add_rkmatriz_hmatriz for this block requires not more than

Wap(t,s) = Cupkk Y [T +18|
b'=(t",s")ETp

operations, where Cy, = max{2, Cyg4q}-
If Tzx g is Csp-sparse, we find

Wap(tss) < CupCopk®(pzx7 + 1)(JE] + [3]).
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5.4 Low-rank updates

procedure add _rkmatrix hmatrix (b= (¢,s), €, a, A, B, var X);
{ H-matrix representation (Ax, Bx,Nx) of X }
if b€ L7, ; then
NX,b — NX,b + aAB*
else if b € E;XJ then
add,rkmatrix(e, a, A, B, AX,b7 BX,b)
else for all ¥ = (/,s') € chil(b) do begin
add _rkmatrix hmatrix(V/, ¢, a, A, B, X)
end
end

Figure 5.5: R(k)-matrix update, X is overwritten by an approximation of X 4+ aY.

Proof. We prove the estimate by induction on |7], i.e., the cardinality of the subtree
with root b = (¢, s).

Let b= (t,s) € Tzxg with [T, = 1|. Then b is be a leaf of the block tree Tzx 7.

If b is an inadmissible leaf, we add aAy B} to Nx,. If [{| < |§|, we first apply the
scaling factor a to Ay and then add the product (aAy)B5- to Nx . Otherwise we apply
the scaling factor to By and add the product Ay (@By)* to Nx. This takes not more
than 2k |£||3| + kmin{|f|, |5} operations. Since Tz is admissible, either ¢ or s has to
be a leaf. If ¢ is a leaf, we have

2k [£] 8] + kmin{[£], |3} < rz2k |3 + k [£] < Cupk k(JE] + [3]).
If s is a leaf, we have
2k [£]|8] + kmin{[Z], |3} < rg2k|E] + k3] < Cuph k(JE] + |3]).

If b is an admissible leaf, we use the function add_rkmatrix. Due to Corollary [5.10] this
requires not more than

Cadaak?([E] + 15]) < Cupk k(|| + |3]) operations.

Now let n € N be given such that the estimate holds for all blocks b = (t,s) € Tzx7
with [Ty < n.

Let b € Tzxg with |Tp| = n + 1. The block b cannot be a leaf, so the function will
call itself for all children b’ of b. Due to |Ty| < n for all &' € chil(b), we can apply the
induction assumption and obtain

Wipt.s) = > Wyt s) < Copkk > S 1+
(t',s’)€Echil(t,s) b’ echil(b) b =(t",s" )Ty

< Cwkk Y "+ 13.
YI=(t",s")ET,

Applying Lemma yields the final estimate. [ |
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5 Arithmetic operations

5.5 Merging

The low-rank update requires us to split a low-rank matrix into submatrices. There are
also algorithms that require us to merge several low-rank submatrices into a larger low-
rank matrix, e.g., if intermediate results have been computed and have to be combined
to form the final result. Let X; € KI*N . X, € KZ*J be low-rank matrices with
o > 1 and disjoint index sets [Ji,...,J,. We are looking for a low-rank approximation
of the matrix

Z:= (X1 ... X,) ek, J=0U...UJ,.

We assume that the X, are given in R(k)-matrix representation, i.e., that there are
A, e KI¥k B, € K%*k guch that

X, =AB; forall v € [1:0].

As in the truncation algorithm, we can make use of QR factorizations to reduce the
computational work: we compute isometric matrices Q, € K7** and triangular matrices
R, € KF¥F guch that

B, =Q.R, for all t € [1: o]

and rewrite Z in the form

Z=(X1 ... X,)=(AB}f ... A,BY)
= (A(Q1R)* ... As(QsR,)*) = (ARIQ% ... A,R.Q})
Q7
= (AR} ... A,R})
Q5
We define
Q1
Z:= (AR} ... A,R:) e KIX(h), Q= e KI*(k)

Qo
and write the equation in the short form
7 =27Q"

Now we can proceed as before: we find a singular value decomposition Z=UXV*of Z
and see that
Z=7Q"=UxV*Q*=U%(QV) =UxV*

holds with the isometric matrix V := Q‘7
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procedure rowmerge rkmatrix (Xi,...,X,, var Y);
{ R(k)-representations X, = A, B for all L € [1: 0] }
{ R(k)-representation Y = Ay Bj for the result }
for L€ [1:0] do
Compute QR factorization B, = Q,R, with Q, € K>k R, € KF¥F,
Z « (AiR} AsRy ... A,R:) € KTX(OM)
Compute singular value decomposition Z=U Z‘A/*, rank p < ok;
Choose rank k;
for L€ [1:0] do
V‘j,,xfc — Qu(V) s
Ay < Ul iZliwis By + Vigi
end

Figure 5.6: Merging R(k)-matrices in a row, Y is overwritten by a rank-k approximation
of Z.

Since @ is a block-diagonal matrix, we can apply it efficiently to V € Kek)xp by
splitting

Wi
v=|": with V, e KF*P forall L € [1: o]
Vs
and using
QW
V= : e KI>P,
Qoo

Obtaining an optimal low-rank approximation is now straightforward, the resulting al-
gorithm is summarized in Figure [5.6
We also need an algorithm for merging column matrices. Let X; € KI'*J X, €

K2xJT . X, € Ko*J be low-rank matrices with ¢ > 1 and disjoint index sets
I1,...,Z5. We are looking for a low-rank approximation of
X1
Z=|: | ek, IT:=T1ULU...UL,.
Xo

Applying the same procedure as before to Z* instead of Z yields the algorithm summa-
rized in Figure we use QR factorizations @, R, = A,, construct 7 e KJ*(k) " and
obtain a singular value decomposition of Z* instead of Z.

Essentially we only have to switch the roles of the low-rank factors A and B in both
the input matrices and the result in order to merge rows instead of columns.
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5 Arithmetic operations

procedure colmerge rkmatrix (Xi,...,X,, var Y);
{ R(k)-representations X, = A,B for all L € [1: 0] }
{ R(k)-representation Y = Ay Bj for the result }
for .€[1:0] do
Compute QR factorization A, = Q,R, with Q, € KI** R, € KF*F,
Z « (BiR; --- B,R:) e KIX(h)
Compute singular value decomposition Z=U Z‘A/*, rank p < ok;
Choose rank k;
for L€ [1:0] do
Viz i < QVilpuis
B Ulyp A VipgZi
end

Figure 5.7: Merging R(k)-matrices in a column, Y is overwritten by a rank-k approxi-
mation of Z.

Lemma 5.12 (Complexity of merging matrices) Let 0 € N, and let X; € KZxTn
..., Xo € KI%Jo be rank-k matrices in R(k)-matriz representation, let k € [0 : ok].
The algorithm rowmerge_rkmatriz computes an R(k)-matriz approrimation of

Z:(X1 XU)EKIXJ, J=0U...UT,,
i not more than
Cngo®k*(|Z| + |T|) operations

with Crg := max{2Cy, 3 + Cyyq}-

Let X1 € KB | Xy ¢ KB2XI . X, € K% be rank-k-matrices in R(k)-matriz
representation, let k € [0 : ok]. The algorithm colmerge_rkmatriz computes an R(k)-
matriz approximation of

X1
e KI*J, I:=T,U...UZ,

N
I

Xo
in not more than

Crngo’K*(|Z] + |T|) operations.

Proof. Due to Assumption the QR factorizations B, = ), R, can be constructed in
not more than

Z Coel .| k* = Cqek? | T | operations.
=1

The matrix R
Z = (AlR’{ AR5 ... AURZ;)
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5.5 Merging
can be computed by multiplying Z x k£ and k x k matrices in

g
> 2k |T| = 20k |I| < 20°k* |Z| operations,
=1

and its singular value decomposition can be found in not more than
Csva|Z| (0k)* = Cyyqo®k? |Z| operations.
Applying the matrices ), to ‘A/L| kx i requires not more than
g

Y Coqrl Tl kk = Cq|T|kk < Cqok? | T| operations

=1
due to k < ok, and the product of Ulz,j and X[z ; can be computed in

IZ| k < |Z| (ok) < 0®k? |Z| operations.

Adding these estimates yields the required bound.
The same arguments can be applied to colmerge _rkmatrix. [

Remark 5.13 (Inductive merge) Typical cluster strategies lead to clusters with two
or three children, i.e., we will have o € {2,3}, and the quadratic dependence of the
computational work on o does not matter too much.

If we want to merge a larger number of submatrices, we may consider merging them
step by step: we first compute the singular value decomposition

(A1R;  AsR3) = UpaSia Vi

Now we truncate to §~]12 € KF** gnd ‘712 c K@k)xk,
In the next step, we have

(AR} AxR; A3R3) =~ (Ul,2il,2‘7ff2 A3R§) = <U1,2§31,2 A3R§> (VLQ I)

We have ULQiLQ € KZ*k and AsR; € KZ*k so the singular value decomposition
<U1,2§31,2 ASR§> =U13%13V)5

can be computed in not more than Csya(k + k)2 |Z| operations. Again we can truncate to
Y13 € KF¥F and Vi 3 € KETRIXE gnd find

(A1R’{ AR5 A3R§)mU1,3i1,3‘7ﬁ3 <Vl’2 I> .

If we keep repeating the procedure, we only require O(co(k + k)2(|Z| + |J|)) operations,
the computational work only grows linearly with o, but the intermediate truncation steps
influence the accuracy and we will not always compute the best low-rank approximation.
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5 Arithmetic operations

5.6 Matrix multiplication

With efficient algorithms for matrix-vector multiplications, low-rank updates, and merg-
ing submatrices at our disposal, we can face the challenge of finding an efficient algorithm
for approximating the product of two H-matrices.

We assume that X € KI*7| Y € K%K and Z € KI*X are H-matrices of local rank
k for the admissible block trees Tzx 7, T7xx and Tzxx, respectively. Let (Ax, Bx, Nx),
(Ay, By, Ny) and (Az, Bz, Nz) be H-matrix representations of X, Y, and Z.

We let a € K and consider the update operation

Z < Z +aXY.

As in the case of the matrix-vector multiplication, we split the matrices into suitable
submatrices and develop an algorithm for performing the update

Z

ixp S Z’fx? + O‘X‘EX§Y‘§><72 (5'6)

for suitable clusters t € Tz, s € Ty and r € T such that (t,s) € Tzx7 and (s,7) € Trxx-

Case 1: (s,r) is a leaf. If b = (s,r) is a leaf, the rank of Y|s;x; is bounded, either
because b is admissible, i.e., Y|sxs = AypB5,, or because either s or r is a leaf, cf.
Definition and therefore |$| or || are small.

Case la: (s,r) is an admissible leaf. If b = (s,r) is an admissible leaf, we have
Y|sxr = Avp By,

and therefore
X |£><§Y

axi = X

*
AngY,bBY,v

We can compute
A= X Avp

by applying the algorithm addeval hmatrix (cf. Figure to the matrix Ay,. The
update (5.6 takes the form

Zlixs < Zlixs + @AByy,

of a low-rank update that can be handled by the algorithm add_rkmatrix hmatrix (cf.

Figure .

Case 1b: (s,r) is an inadmissible leaf. If b = (s,7) is an inadmissible leaf, either s or
r has to be a leaf cluster due to Definition [3.28
If s is a leaf, we have |§| < rs and the product

Xl sY sxi = Xl s Nvp

tx§
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5.6 Matrix multiplication

is already a factorized low-rank representation. We only have to convert the H-matrix
into a standard matrix, e.g., by applying addeval _hmatrix to the identity matrix Iz €
K**% to get

A X T € KPS

Once we have A and Ny at our disposal, the R(5)-matrix

with |5] <77 can be added to Z|;,; using the function add_rkmatrix_hmatrix.
If r is a leaf, we have |7| < r¢ and compute
A= XY

ix3

sxi = X | :Nyp

by applying addeval_hmatrix to the matrix Ny,. Now

> %

X’A Y|§><f = A\I

tx§

<

is a factorized low-rank representation of rank not larger than || < rx. and we can
perform the required update again by using add_rkmatrix _hmatrix.

Case 2: (t,s) is a leaf. If b= (t,s) is a leaf, the rank of X|;, , is bounded, again either
because b is admissible or because the number of rows or columns is small.

Case 2a: (t¢,s) is an admissible leaf. If b = (¢, s) is an admissible leaf, we have
KXlixs = AxpBxp

and therefore

*

§><fBX,b)*'

XlisY lsxr = AxpBxpY [sxr = Axp(Y

We can compute
B:=Y

;X'f’szb
by applying the algorithm addevaltrans hmatrix (cf. Figure to the matrix Bx .
The update (5.6 takes the form

A4 Ixi — Z|£><” + OéAX’bE*

7

of a low-rank update that can be handled by the algorithm add_rkmatrix_hmatrix (cf.

Figure .
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5 Arithmetic operations

Case 2b: (t¢,s) is an inadmissible leaf. If b = (¢, s) is an inadmissible leaf, either ¢ or
s has to be a leaf cluster due to Definition [3.28

If s is a leaf, we have |§| < ry and the product is already a factorized low-rank
representation. We convert the H-matrix Y|z« into a standard matrix, e.g., by applying
addevaltrans_hmatrix to the identity matrix I; € K***, and obtain

B = Y|z><fI§
such that
XlixsY |sxi = NxpB".

Once again we can use the algorithm add_rkmatrix hmatrix (cf. Figure|5.5)) to add this

low-rank matrix to Z|;, .
If ¢ is a leaf, we have |f| < r7. In this case, we compute

~

B = (XY laxs)” = Y5uiNxp

SXT
by applying addevaltrans hmatrix (cf. Figure D to the matrix N% ,. Now

ixsY |sxi = [;B*

is a factorized low-rank representation of the product, with a rank bounded by \ﬂ <rg,
and we can perform the required update again by using add_rkmatrix hmatrix.

Case 3: (t,s) and (s,r) are not leaves. We can handle this case be recursion: with
the notations of Lemma [3.21] we have

chil(t, s) = chil™ (¢) x chil™(s), chil(s,r) = chil™(s) x chil™(r),
and can replace by the updates
Do < Zlpyw +aX|py oY |grsi  for all ' € chil™(¢), s’ € chil®(s), ' € chil™(r).
If (t,r) is not a leaf, we have
chil(t,r) = chil ™ (¢) x chil™(r)

and can apply recursion directly.

Otherwise, i.e., if (t,r) is a leaf, we have to split Z|;, . into auxiliary submatrices
Zlpryp for all ¢ € chil®(¢) and 7’ € chil®(s), treat these submatrices by recursion, and
the merge them again.

If (t,7) is an inadmissible leaf, splitting means copying submatrices, and merging
means combining them again into the final result. An alternative is to work directly
with submatrices of Nz ;,) and avoid copy operations.

If (t,r) is an admissible leaf, we have Z|;, . = AZV(M)B}’@” and find

Zlpsir = Az ) i Bz, 7 xk for all ¢’ € chil™(t), s € chil®(s),

we can use rowmerge_rkmatrix (cf. Figure[5.6)) and colmerge rkmatrix (cf. Figure|5.7))
to merge the submatrices.
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5.6 Matrix multiplication

procedure addmul hmatrix(t¢, s, r, o, X, Y, var Z);

{ H-matrix representations (Ax, Bx, Nx), (Ay, By, Ny),
and (Az,Bz,Nz) of X, Y and 7 }

if (As,r) € ﬁ}xK then begin R
A<+ 0c K>, addeval hmatrix(1, X, (t,s), Ay sy A);
add rkmatrix hmatrix((¢,7), o, A, By,(s,), Z)

end else if (s,7) € L ) then begin
if || < |#| then begin

A<« 0€ K™ addeval hmatrix(l, X, (t,s), Is, A); B+ Ny

»(s7)
end else begin

Acoe Kix’;; addeval hmatrix(1, X, (t,5), Ny,(), 2)7 B+ I
end;
add_rkmatrix hmatrix((t,r), «, E, §, Z)
end else if (t,s) € L7, ; then begin
B+ 0 € K**; addevaltrans hmatrix(l, Y, (s,r), Bx (t,5)5 B);
add rkmatrix hmatrix((¢,7), o, Ax ), B, Z)
end else if (t,s) € L7, ;7 then
if |5| < |t| then begin
B«oc K"™*3; addevaltrans_ hmatrix(1, Y, (s,r), I3, E), A Nx (t,9)
end else begin

~

B« o0¢ Kixg; addevaltrans hmatrix(1l, Y, (s,r), N;(,(t,s)’ B\), AT
end;
add_rkmatrix hmatrix((t,r), «, E, E, 7)
end else
if (t,7) & Tzxk \ Lzxx then begin
Split Z|;,.; into submatrices;
for ¢’ € chilt(¢), s’ € chil™(s), r' € chil™(r) do
addmul hmatrix(t, s, ', a, X, Y, Z);
Merge submatrices into Z|;, .
end else
for ¢’ € chilt(¢), s’ € chil™(s), r' € chil™(r) do
addmul hmatrix(t, s, ', o, X, Y, Z)

end

Figure 5.8: H-matrix multiplication, Z|;, ; is overwritten by an H-matrix approximation

of Z’fxf + O‘X‘fx§Y|§><f‘

Remark 5.14 (Conversion) In a practical implementation, it is advisable to treat in-
admissible leaves by separate algorithms: converting an H-matriz directly to a standard
matriz is simpler than using addeval_hmatriz, and approximating a standard matrix
using the singular value decomposition is simpler than using add_rkmatriz_hmatriz.
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5.7 Complexity of the matrix multiplication

In order to analyze the complexity of the multiplication algorithm given in Figure [5.8
we require a number of fairly straightforward assumptions and definitions.

o Assume that the block trees Tz« 7, T7xx, and Tzxx are admissible and Cgp-sparse.

e Let pr, p7, and px denote the depths of the cluster trees Tz, 77, and Tx, and
define the maximal depth by

P = max{pzr,ps, K} (5.7)

Lemma [3.33| states that p is also an upper bound for the depths of the block trees
Tzx7, Tyxx, and Trxi.

e Let r7, r7 and rx denote the resolutions of the cluster trees Tz, 77, Txc. Then the
rank of both admissible and inadmissible leaf blocks of Tzx 7, T7xi, and Tzxx is
bounded by

k = max{k,rz,rz,rc}. (5.8)

e Let o denote an upper bound for the number of children of clusters in 7z and Tk,
i.e., assume

| chil(t)| < o, | chil(r)| < o for all t € Tz, r € Tk. (5.9)

In order to find a bound for the computational work involved in the approximate H-
matrix multiplication function addmul hmatrix, we consider the triples (¢,s,r) that
appear as its parameters. Following the recursive calls yields a new tree structure: our
algorithm stops the recursion only if either (¢, s) or (s,r) is a leaf.

Definition 5.15 (Product tree) A tree Tzxgsxx = (V,0,E) is called a product tree
for Tzxg and Trxic if

e the nodes are triples of clusters, i.e.,

V C Tz x T7 x Tk, (5.10a)

e the root consists of the roots of Tz, Ty and Tk, i.e.,
root(Tzx 7xx) = (root(7Tz), root(T7),root(Tx)), and (5.10b)
e the children of p = (t,s,1) € TrxgxK are given by
chil(p) = {chﬂ*(t) x chil™(s) x chil™(r)  if (t,8) & Lzx7 A (5,7) € LTxk,

0 otherwise.
(5.10¢)
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Lemma 5.16 (Relation to block trees) We have (t,s,1) € Tzxgxi if and only if
(t,s) € Tzxg, (s,7) € Tyxxc and level(t, s) = level(s, r) hold.

Proof. We first prove
(t,s,7) € Trxgxik = ((t,s) € Tzxg A (s,7) € Trxic Nlevel(t, s) = level(s,r)) (5.11)

by induction on level(t, s, 7).

If level(t, s,7) = 0, we have t = root(77), s = root(77) and r = root(7Tx), and
implies (¢, s) = root(Tzx7), (s,7) = root(T7xi), and level(t, s) = 0 = level(s, r).

Let now n € Ny be given such that holds for all (¢,s,7) € Trxgxx Wwith
level(t, s, ) = n.

Let (t,s,7) € Trzxgxi with level(t,s,r) = n + 1. Then there has to be a parent
(tt,sT,rT) € Trx7xic with level(tT, st rT) = n. By the induction assumption, we have
(tt,s1) € Trxg, (sT,r1) € Trxic, and level(tT, sT) = level(s™,rT).

Due to , we have t € chil™(t*), s € chilt(sT) and r € chilt(r), and
yields (¢,s) € chil(tt,s') C Tzxs and (s,7) € chil(st,rt) C T7xx. Due to
level(t, s*) = level(s™, r™), this implies also level(t, s) = level(s, r).

Now we prove

((t,s) € Tzxg A (s,7) € Tyxk Nlevel(t,s) = level(s,r)) = (t,s,7) € Tzxgxk (5.12)

by induction on level(t, s).

If level(t,s) = 0, level(t,s) = level(s,r) yields level(s,r) = 0, and (3.13al) implies
t =root(7z), s = root(77) and r = root(7x). Due to - we have (¢, s r) € TrxgxK-

Let now n € Ny be given such that ([5.12) - ) holds for all (¢, s) € Tzx7 Wlth level(t, s) = n.

Let (t,s) € Tzxs and (s,r) € Trxk with level(¢,s) = level(s,7) = n + 1. Then
there have to be parents (t7,s%) € Tzx7 and (s*,r") € Ty« of (¢,5) and (s,r) with
level(tt,s%) = n and level(sT,r") = n. We can apply the induction assumption to
obtain (t7,s™,r") € Tzx7xK-

Due to (t, s) € chil(t*,sT) and (s,r) € chil(s™,rT), both (¢7,s") and (s*, ") cannot
be leaves, and yields chil(tt, st,r) = chil ™ (¢+) x chilT(s) x chil*(rT). With
(3.13b)), we find ¢ € chil™(t*), s € chil*(sT) and r € chil" (), and conclude (¢, s,7) €
chil(tT,sT,7%) C Trx7xk- [

The product tree Tzx 7xx describes our algorithm’s recursive structure. In order to
derive a bound for the complexity, we have to investigate how many operations are
performed for each of its nodes. In order to keep the notation short, we introduce the
abbreviation

o ld] (L) € Tons
BIxj(t, 8) = {E(t »S )67—(t,s) ’ ‘ ‘ | ( ) IxJ

forall t € Tz, s € Ty,
|t] + || otherwise

(5.13)

where the case (t,s) € Trx 7 is required to handle the special case of temporarily created
auxiliary matrices appearing in Case 3 of the algorithm. Theorem and Lemma [5.11
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can be written in the short form

Wiy (t, 8, M) < 2k |M| Bry (8, 5) for all (¢,5) € Tzxy and finite sets M,
Wap(t, 8) < Cupk®Bry 7(t, s) for all (¢, s) € Tzxg-

We define By and Brxx in the same way for the block trees 77xx and Trxk.

Lemma 5.17 (Leaves) Let (t,s,7) € Trx7xx be a leaf of the product tree Trx 7xic. If
the function addmul_hmatriz is called with the parameters t, s and r, it performs not
more than

Comik? (Bzx7(t,8) + Byxic(s, 1) + Brxic(t,r)) operations
with Cpymy = max{Cly,, 2}.

Proof. Since (t,s,r) is a leaf, we have (t,s) € Lzx7 or (s,7) € Lgxk.
Case la: If b := (s,7) € E}xl@ we compute A = X|;, Ay, by using the function

addeval hmatrix for the matrix Ay, with £ columns. Theorem yields that this
takes not more than

Wiy (t, 5, [1 : k]) < 2k?Br7(t, s) operations.
If (¢,r) € Tzxx, Lemma states that adding aﬁByyb to Z|;,; takes
Wp(t,r) < Cup];IQBIXK(t,T) operations,
giving us a total of not more than
Cram1k? (Bzx 7(t,s) + Brxx(t,r)) operations.

If (t,7) &€ Tzxx, the low-rank matrix is added to an auxiliary low-rank matrix. Due to
Corollary and the special case in the definition (5.13]), this takes not more than

Cupk?(|t] + |#]) < Coumik®>Brxic(t, ) operations,

and we obtain the same estimate as before.
Case 1b: It b := (s,r) € L7 i the admissibility of the block tree implies s € L7 or

r € Lx. In the first case, we have |§| < r; < k, in the second case |#| < r¢ < k, so we
can conclude min{|3|, |7|} < k.
If now || < || holds, Theorem [5.6 states that the call to addeval hmatrix requires
not more than
Wi (t, 5,8) < 2k? Bz, 7(t, s) operations.

Otherwise, the call requires not more than

Winy(t, s,7) < 2k* Bz 7(t, s) operations.
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In both cases, we obtain a factorized low-rank representation with a rank bounded
by min{|$|,|#|} < k, and Corollary and Lemma yield that the call to
add_rkmatrix_hmatrix requires not more than

Wp(t,r) < CuplAcQBIX;C(t,T) operations,
which brings the total to not more than

CmmllAfQ (Bzx7(t,s) + Brxk(t,r)) operations.

Case 2a: If b = (t,s) € E%XJ, we compute B=Y ix#Bx,(t,5) by using the function
addevaltrans hmatrix for the matrix By ;) with & columns. Theorem @ yields that

this takes not more than

Wiy (s, 7, [1 : k]) < 2k*B7xx(s,7) operations.

As in Case 1a, we can use Corollary and Lemma to see that adding the resulting
low-rank matrix to Z|;, ; requires not more than

C’upl?BIX;C(t, ) operations,
for a total of
2]}:23ij($, 7“) + Cup/;'QBIX;C(t, T‘) < Cmmﬂ;'z(Bij(s, T‘) + Blec(t, 7“))

Case 2b: If b = (t,s) € L7, 7, the admissibility of the block tree implies ¢ € L7 or

s € Ly, and as in Case 1b we obtain min{|#|, |3} < k.
If |3] < |#|, Theorem [5.6|states that the call to addevaltrans hmatrix takes not more
than
Winy(s,7,8) < 2k2B7xxc(s,7) operations.

Otherwise, the call requires not more than
Wiy (s, 7, 1) < 2k*B7xx(s,7) operations.

In both cases, the rank of the resulting low-rank representation is bounded by
min{[¢],|3]} < k, and Corollary and Lemma yield that the call to the
function add_rkmatrix hmatrix requires not more than

C’upl?BIX,C(t, 1) operations,
for a total of
2k° Bk (s,7) + Cuph®Brocc (t,7) < Conmlh® (B i (s,7) + Bk (t,7)).

This covers all leaf cases and the proof is complete. [

129



5 Arithmetic operations

Theorem 5.18 (Complexity) For all (t,s,r) € Tzxgxic, we define

Cmmll%Q(BIXj(t7 S) + BJXIC(Sa T) + BIXIC(ta T‘)) Zf Chﬂ(t, S, T) = @,

Wom(t, s,1) = QCmgl%QO-gﬂﬂ + |7]) + 3 Wom(t', 8", 7") otherwise.
(t',s',r")Echil(t,s,r)

If we call the algorithm addmul_hmatriz with (t,s,r) € TrxgxK, it requires not more
than Wym(t, s, 1) operations.
We have

Wonm(t, 5,7) < CoumnC2 k% (5 + 1)2([E] + [3] + |7]) for all (t,s,7) € Trxgxk
with Cpym = 3 max{Cpymi, ZCngS}.

Proof. We denote the subtree of 77 7xx for the root (t,s,r) (cf. Lemma by Ti,sr)
and prove the first part by induction over |7 s ).

If we have [T, = 1, (t,5,7) has to be a leaf of the product tree Trx7xx, and
Lemma, yields the required bound.

Let now n € N be such that the complexity bound holds for all (t,s,7) € Trx7xk
with ’7-(15,5,7")‘ <n.

Let (t,s,7) € Trxgxk with [Ty = n + 1. The triple (¢,5,7) cannot be a leaf
of Tzx7xic, so the algorithm addmul hmatrix calls itself recursively for all (¢, s',7") €
chil(¢, s,7). For each of these triples (¢',s’,r") € chil(t, s,r), we have [T g | < n and
can apply the induction assumption to find that the recursive call requires not more
than Wi (¢, s', ") operations.

If we have (t,7) € Tzxk \ Lzxik, no additional operations are required. If (¢,r) &
Trxic \ Lzxk, the auxiliary submatrices created by our algorithm have to be merged
using rowmerge rkmatrix and colmerge rkmatrix. According to Lemma this
takes not more than

Crgo B2 ([T|+ 7))+ Y Craga®B*(17'] + |17])
t/ €chil ™t (¢)
< Crag0 k2 (|| + |7]) + Crngo k2 [E] + Cingo® k2|7
< 2Cmga K (JE] + |7])
operations if we merge the rows (corresponding to the children of ¢) first, followed by
the columns. This completes the proof of the first part.

To prove the second part, we introduce C’mm := max{Cpml, 2Cmga3} A straightfor-
ward induction using

It + |#| < Brxx(t,r) for all (¢,s,7) € Trx7xK

yields the estimate

Wmm(ta S, T) S C'\mmi€2 Z BIXJ(t/7 5/) + BJXIC(Sla T,) + BIXIC(tla 7“/)
(tlvslzrl)eﬁt,s,r)
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for all (t,s,7) € Tzx7xK-
Let (t,s,7) € Tzxgxk. Due to Lemma we have

> Brgts)<s Y > Brug(t.s)

(t,aslarl)glr(t,s,r) (t,75,)€7'(t,s) €Tk
(8/ 7T/)€TS,T)

S C’sp Z BIXJ(tlv 5/)
(t/78l)67—(t,s)

=Cyp Y > T+

(tlys/)elr(t,s) (t/lvsﬂ)e'r(t’,s’)

<Cp > > 1+

(t",5")ET(1,5) (',s")Epred(t”,s"”)

< Cyplpzxg +1) Y [+18"].
(8" )€ (¢,5)

Now we can apply Lemma to conclude

Yo Brxg(ths) < Chlprxg + V(I + 13]). (5.14a)
(t/7slvr/)€7—(t,s,r)

We can use the same arguments to find

> Bauxls,r) < C(pgxx + 1)%(|3] + |F]). (5.14b)
(tlvsla"’/)etr(t,s,r)

For the third term, we have to distinguish between the triples (',s',7") € T 5,y with
(t',7") € Tzxx and the remainder. Using Lemma we obtain

> Bok,r)< ) > Brux(t,r)

(tlvslv’r/)eﬁi,s,r) (tlvr/)EEX]C SIETJ
(') ETTx (s )eTIx g
/ /
SCsp Z BIXIC(t7T)
(t,’T,)GEXK:

and can proceed as before to get

> Bt ) < C2(poac + 1P + 7). (5.14c)
(tlvslv’r,)eﬁt,s,r)
(t' )Tz

If we have (t',s',7") € T(ysry With (¢',7") & Tzxx, our definition implies Bz (t',7") =
[t'| +|#'| and we can use Lemma again to find

Y. Box(,)= > [+

(tl75/77‘/)€7~(t,s,7‘) (tlvslvr/)e,]-(t,s,'r)
(tlvrl)QEXlC (tlv”"/)QEXK
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< ¥ S+ > >

(t',8")€T 1,5y 7€Tk (s'r")E€Tsmy  VETT
(SIVTI)GIT(S,'P) (tlvsl)elr(t,s)
g N
S C(sp Z ’t ‘ =+ Csp Z |T |
(t',8")ET (1,8 (") ET(5,r)

Once again we can use Lemma to obtain

> Brux(t',r) < C(pzxg + VIE + C2(pgxk + 17|
(t/75/,7'/)€7-(t,s’7,)
(t/ﬂ"/)QTIxIC

< C2(p+ 1)(JE + 7). (5.14d)

Accumulating the estimates (5.14a)), (5.14b)), (5.14c) and (5.14d]) yields

Wmm(tv‘S,T) S amm Z BIXJ(t/75/) +BJX]C(S/7T/) +BI><]C(t/aT/)
(tlvslarl)elr(t,s,r)

< CoamCE, (0 + 12 (18] + 18] + 18] + 7] + [£] + 7] + [£] + [7])
< 3CumCL (B + 12 (IH] + [8] + 7).

Due to Coym = 36mm, this is the required result. [ ]

Exercise 5.19 (Adjoint matrices) Develop algorithms for efficiently performing the
updates

Zligi < Dligr T X5 1Y [sxrs
Z‘ixf = Z|£><f + O‘X|£><§Y|;><§v
Zii 4 Zligr + X[ Y [Fxs
for (t,s,7) € Tzxgxic and approzimating the results by H-matrices.
In the first and third case, X is an H-matriz for the adjoint block tree T7, ; constructed
from Tzx 7 by swapping row and column clusters.

In the second and third case, Y is an H-matriz for the adjoint block tree Tz, con-
structed from Trxxc by swapping row and column clusters.

Exercise 5.20 (Cluster tree) Prove that the product tree Trx 7xx s a cluster tree for
the index set T x J X K.

Exercise 5.21 (Sparsity) Assuming that Tzxy and Tyxx are Csp-sparse, prove

H{(s,r) €Ty x T : (t,8,7) € Tzxgxk } §C’§p for allt € Tz,
H{(t,r) € Ty x T = (t,8,7) € Trxgxict < Cs2p forall s € Ty,
H{(t,s) € Ty x T : (t,s,7) € Trx7xic} §C§p for allr € Tk.
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5.8 Inversion

With an efficient algorithm for the approximation of the product of two matrices at
our disposal, we can consider another important algebraic operation: the inversion of a
matrix, i.e., the construction of G=! for a given H-matrix G.

As in the case of the multiplication, we consider the more general problem of inverting
a square submatrix G|, ;, since this allows us to formulate a recursive algorithm.

In this chapter and the next, we assume

e that G € KZ*Z is an H-matrix for the Csp-sparse admissible block tree Tzxz,
e that G|r(x\ is invertible for all subsets M C Z, and
e that for any ¢t € L7, we have (t,t) € L7, ;.
The third condition is required to ensure that we can compute the inverse of small

diagonal blocks by the usual algorithms.

Case 1: tis aleaf. In this case (¢,t) has to be an inadmissible leaf of 777, i.e., we have
Glsy; = Ny for b= (t,t) € L1xz. We enumerate the indices, i.e., we have t = {i1,...,i,}
with n := |f|, and define

Gop =G, for all v, € [1 : n|
so that we can write the matrix in the usual form

gir ... Yin

gnl --- Gnn

In order to construct the inverse by recursion, we have to be able to reduce the dimension.
We introduce

g21 g22 ... gon
Gis = (q12 --- 9in), Ga=1| 11, Guw = | :
9nl gn2 -+ Gnn

g1 G«
Glixi = (G*ll G;) .

Assuming g11 # 0, a partial LR factorization is given by

G|A - < 1 > (gll Gl* )
txt G*191_11 1 Gax — G*lgﬁlGl*

The inverse can be obtained by inverting both triangular factors and multiplying them
in reversed order. For the lower triangular factor, we have

1 -1 1
(G*lglf I) ‘<—G*1gn1 I)‘

and find
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Introducing the Schur complement S := Gy — G*lgl_llGl*, we find
-1 _ _ _
gi1 Gl* _ 9111 _glllGl*S 1
S St ’
and the inverse is given by
1 -1

1 _ (9u Gu 1
ixt S G*lg]__]_l I

_ (o' —9n'GuST! 1
St —G*1gf11 1

_ (91_11 + 911 G1.5 " Gaagry —911G1*51)

G

—S7 Gyt St

The entire computation can be split into eight steps:

1. Invert gi;.

2. Compute H, := G197,
Compute Hi, := gﬁlGl*.
Compute S := Gy — G*lgl_llGl* = Gusx — Hi1G1s.
Invert S, and let Z,, := S~
Compute Z,q := —SilG*lgﬁl =—-S"'H,,.

Compute Z1, := —gﬁlGl*S*1 = —H,.S7L

© N s W

Compute 211 := g7 + g1, G195 Guagry' = 911 — H1sZa1.

Gl = 211 Zix
txt Z*l Z**
We can see that all steps except for the first and the fifth require only multiplications
of submatrices, while the first and fifth step require us to invert submatrices. The first
step is trivial, the fifth can be handled by recursion.

Since the submatrices Gy, S and S~! appearing in this approach are always of the
form

The inverse is then given by

9kk --- Gkn

9nk --- Gnn
we can avoid using an explicit recursion by using a loop that runs over £ = 1,2,...,n
and performs the steps 1 to 4 for the corresponding submatrices, and a second loop that
runs over k = n,n — 1,...,1 and performs the steps 5 to 8, computing the inverses of
the lower right submatrices.
The resulting algorithm is given in Figure [5.9
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procedure invert_amatrix(var G, H);
for £k =1 to n do begin
Jkk gk_k1§
for i € [k +1:n] do hiy < gikgkk;
for i € [k‘ +1: n] do hi; < Gri9ki;
for i,j € [k +1:n] do gij < gij — hikgr;j
end;
for £k = n downto 1 do begin
for i € [k +1:n] do begin

gik < 0;
for j € [k+1:n]| do gk < git — gijhji;
gki < 0;
for j c [kﬁ +1: n] do Oki < Gki — hkjgji
end;
for i € [k +1:n] do gkk < grk — hriGik

end

Figure 5.9: Inversion of a matrix in standard array representation.

Lemma 5.22 (Complexity) The algorithm invert_amatriz takes 2n>—n? operations
to compute the inverse of an n X n matriz.

Proof. The algorithm takes

n n—1 n—1
144 —k)+6(n—k)?=n+4> L+6> ¢
k=1 =0 =0

n(n—1 nn—1)2n -1

(0-1) , guin=1)en =
=n+2nn—-1)+nn-1)(2n—-1)
=n+n(n—1)2n+1)
=n+2n*(n—1)+n(n—1)=2n%*(n—1) +n?
2

=n+4

=23 —n operations.

We note that the inversion takes eractly the same number of operations as the straight-
forward computation of G \?X o although in practice divisions take far longer than multi-
plications on modern processors.

Case 2: t is not a leaf. In this case, G|;,; has to be subdivided, i.e., we have chil(b) =
chil(¢) x chil(t). We proceed as in the first case, but replace individual indices by child
clusters: we let {t1,...,t,} := chil(¢t) with n := |chil(¢)| and define submatrices

Gup = Glg, for all v, u € [1: n],

Xty
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so that we have the block matrix representation

We define submatrices

G21 G22 P GQn
Gy = (G12 <. Gln) s Gy = s Gix 1= )
Gnl Gng . Gnn

assume that (G1; is invertible to introduce the partial block LR factorization

1 G G« _

and obtain the representation

L (Gun Gu\T (I (G —GLlGLSsT! I
ixi S GGt T S—1 —GaG T

(G + G GLSTIGaG GG ST
B —S71G. G 51

G

G

for the inverse of G|;, ;. We can compute this matrix by exactly the same procedure as
before, as long as we replace individual coefficients by submatrices and multiplication
and inversion of submatrices by the corresponding approximative H-matrix operations.
The resulting algorithm is given in Figure [5.10]

Our goal is now to obtain an upper bound for the number of operations requires by
invert hmatrix. We can follow the same approach as for the matrix multiplication,
i.e., we can start with an inductively defined bound inspired by the recursive structure
of the algorithm.

Lemma 5.23 (Complexity bound) Let t € Tz. The number of operations required
by the function invert_hmatriz to approrimate the inverse is bounded by

21 — [#? if chil(t) =0,
Wznv(t) = Zt’échil(t) Wlnv(t/) + Zt’,S/,T/EChﬂ(t) Wmm(t/, 8/, ’I“,) otherwise,
LSt !
for allt € T7.
Proof. Let t € Tz. If chil(t) = (), the call to invert_amatrix requires
2|£)> — |£|?> = Winy(t) operations

according to Lemma [5.22
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procedure invert hmatrix(¢, var G, H);
if chil(t) = 0 then
invert amatrix(t, Ng 1), N t1));
else begin
n < |chil(t)|;  {t1,...,tn} < chil(¢);
for £k =1 to n do begin
invertllmatrix(tk, G, H);
forick+1:n]d
zero_hmatrix(t;, tk, H); addmul hmatrix(t;, tg, tg, 1, G, G, H);
foriclk+1:n]d
zeroJlmatrix(tk, t;, H); addmul hmatrix(ty, tx, t;, 1, G, G, H);
for i,j € [k +1:n] do addmul hmatrix(t;, tx, tj, -1, H, G, G)
end;
for £k = n downto 1 do begin
for i € [k +1:n] do begin
zero_hmatrix(t;, tx, G);
for j € [k +1:n| do addmul hmatrix(t;, t;, tx, -1, G, H, G);
zero_hmatrix(tg, t;, G);
for j € [k +1:n| do addmul hmatrix(ty, t;, t;, -1, H, G, G)
end;
for j € [k +1:n] do addmul hmatrix(ty, tj, ty, -1, H, G, G)
end
end

Figure 5.10: Approximative inversion of an H-matrix.

If chil(t) # 0, we let n := |chil(¢)| and {¢1,...,t,} := chil(t). We call the function
invert_hmatrix recursively for ¢, with k € [1 : n], and this takes

Z Winy(tr) = > Winy(t') operations.
t'echil(t)
The calls to addmul_hmatrix require

Z Z Wmm(tzatk7tk)+z Z Wmm(tkvtkvti)

k=1 i*k—i—l k=11i=k+1

+Z Z Z Wmm tl,tk, +Z Z Z Wmm twtjvtk)

k=1i=k+1 j=k+1 k=1i=k+1 j=k+1

n n n n n
+Z Z Z Wmm(tk,tj,ti)—i—z Z Winm (tk, ti, ti;) operations.

k=11i=k+1 j=k+1 k=1i=k+1
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The corresponding index sets are given by

S1:={0,4,k) : i,j,ke[l:n], j= min{i, j, k}, i > j},
Sy :={(1,5,k) : 1,5,k € [1:n], z—j—mln{z gk}, k>i},
Ss:={(i,5,k) : 1,5,k €[l:n]|, j =min{i,j,k}, i,k > j},
Sy :={(,4,k) : i,j,k € [1:n], k=min{i,j,k}, i, > k},
Ss :={(,4,k) : 4,4,k € [1:n], i =min{i,j,k}, j, k> i},
Se =1, 4, k) : i,4,k€[l:n], i=k=min{i,j k}, j> i},

and they are disjoint due to the different positions the minimal index takes in the triples.
In the sets Sp, So and Sg, exactly two indices equal the minimum, in the sets S3, Sy
and Sy, exactly one index equals the minimum, so the only missing combinations are
the ones where all three indices equal the minimum This observation implies

S1USyUS3US USsUSs ={(4,4,k) : i,5,k€[l:n], i#jVi#k},
and we conclude

A
Winv( g Wine (t)) + g W (t', ', r").
t/echil(t) s’ ' echil(t)
t'#£s'vit' #£r!

Theorem 5.24 (Complexity) We have
Winv(t) < Wmm(t7t7t> fOT' allt € T1.

Proof. By induction on |T|.
Let ¢t € Tz with |T;] = 1. Then we have chil(t) = () and

Wine(t) = 2|82 — [{1? < 2[#)® < Coumik?[E] < Winm (£, £, 1).

Let now m € N be such that the inequality holds for all ¢ € Tz with |T;| < m. Let t € Tz
with |T;| = m + 1. Then we have chil(¢) # () and

/ / / .
Winy ( E Winy (') + E Wim(t', ', ") operations.
t'echil(t) t',s' 1’ echil(t)
s’ At V! £t

For all ¢ € chil(t), t € Ty implies |Ty| < m, so we can apply the induction assumption
to find

Winy (t') < Wam (t',1',') for all #' € chil(t).

This yields
Wiw () < Y Wam(t,s',1") < Wam(t,£,8).
t/,s’ ' echil(t)
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5.9 Triangular factorizations

Corollary 5.25 (Complexity) The approximate inversion of an H-matriz requires
not more than

603p0mm/2:2 (p + 1)?Z| operations.

Proof. Combine Theorem with Theorem ]

5.9 Triangular factorizations

Frequently, computing the inverse of a matrix is not really necessary, since a factorization
can be used instead. We consider the LR factorization as a typical example, i.e., the
factorization of a matrix G = LR into a left lower triangular matrix L and a right upper
triangular matrix R.

Before we consider the construction of a factorization, let us first investigate the
corresponding procedure for solving a linear system Gz = b. If we have the lower and
upper triangular matrices L and R with G = LR at our disposal, we can introduce an
auxiliary vector y and obtain

Ly =10, Rx =y,

so we only have to be able to solve triangular systems. The well-known forward and
backward substitution algorithms handle this task very efficiently.

We have to assume that the index set Z is totally ordered, since otherwise there is no
useful way to even define triangular matrices. We also have to assume that the order of
the index set is compatible with the cluster tree.

Definition 5.26 (Compatible order) Let Tz be a cluster tree for a totally ordered
index set L. The order of T is compatible with the cluster tree if

(Fiet,jed :i<j)=(Viet,je€d :i<yj) foralteTz, t', s €chil(t),
with t' # 5,

i.e., if all indices corresponding to one child are either strictly greater or lesser than all
indices corresponding to their siblings.

Remark 5.27 (Compatible order) In practical implementations, a total order on T
is constructed along with the cluster tree: if t is a leaf, we choose a total order for t. If
t is not a leaf, we choose a total order for chil(t).

Given i,j € T with i # j, we find the cluster t € Tz of maximal level such that i,j € t.
If t is a leaf, we use the order given for leaf clusters. If t is not a leaf, there are children
t' and s with i € ' and j € §. Since we have chosen t to have the mazimal level, we
have j & t' and therefore t' # s'. We use the order given for the children: if t' < s', we
let 1 < 7, and we let j < i otherwise.
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5 Arithmetic operations

Unless we are dealing with one-dimensional problems, the “natural” order imposed by
an implementation of the discretization will usually not be compatible with the cluster
tree Tz, therefore we have to bear in mind that a triangular H-matrix is triangular
with respect to a compatible order, not necessarily the order used by the underlying
application.

In the following, we assume that the order of Z is compatible with 77.

Solving triangular systems

Let now L be a left lower triangular H-matrix. As in the case of the multiplication and
the inversion, we consider the task of solving

L

ixit =Y (5.15)

for a given cluster ¢t € 77 and vectors z,y € K.

Case 1: ¢ is a leaf. In this case (¢,t) has to be an inadmissible leaf of Tz.7, i.e., we
have L|; ; = Ny for b = (t,t) € L1xz. As in the case of the inversion algorithm, we let

n:= || and £ = {iy,...,4,}. Since we have an order on # at our disposal, we ensure
v<p =i, <, for all v, u € [1: n].
Using
oy =1, ;,, Ty = Ty, Yy 1= Y, for all v, u € [1: n],

and taking advantage of the fact that L is left lower triangular, we have

11 1 Y1

L R Sty Tn Yn

The forward substitution algorithm can be interpreted as a recursive procedure: we let

U1 la2 ) Y2

ln1 lha .. Ayy Tn Yn

and have that (5.15]) is equivalent to
(11 T\ _ (»n
L Ly Lx Y« ’

éllxl = Y1, Lysxy = Yx — L*lml-

i.e., to the two equations
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5.9 Triangular factorizations

procedure lowersolve_amatrix(L, var X);
for £k =1 to n do begin
fOI‘j € M do Tk,j < xk,j/ﬁkk;
foric[k+1:n],j e Mdowx;; « x;; — lixTr;
end

procedure uppersolve_amatrix(R, var X);
for £k = n downto 1 do begin
for j € M do xy ; < xpj/Tkk;
for i € [1 k- ”, j € Mdo Tij ¢ Tij — TikTkj
end

Figure 5.11: Solving triangular systems with a dense matrix.

The first can be solved directly, the second by applying the procedure recursively to the
submatrix starting in the second row and column of L. Using an index k € [1 : n] to keep
track of the current submatrix, we obtain the algorithm given in Figure Similar
to addeval hmatrix, it works with multiple right-hand sides represented by matrices
X € KM and overwrites the right-hand side by the solution.

Lemma 5.28 (Complexity) The algorithm lowersolve_amatriz takes |t|>|M| oper-
ations to solve LX =Y.
The algorithm uppersolve_amatriz takes |t|?| M| operations to solve RX =Y .

Proof. Let 5 € M. For the j-th column, the algorithm lowersolve_amatrix requires

n n—1
n(n—1)
kzl +2(n ) n+mZ::0m n+ 5

= n(n — 1) +n = n? operations.
By the same argument, we find that the algorithm uppersolve_amatrix requires

n n—1
Zl+2(l€—1) :n+22m:n+n(n—1) = n? operations.
k=1 m=0

Multiplying by the number of columns yields the result. ]

Case 2: ¢ is not a leaf. In this case (¢,¢) has to be subdivided, i.e., we have chil(¢,t) =
chil(¢) x chil(¢). As in the case of the inversion algorithm, we want to denote the children
of t by {t1,...,t,} with n = |chil(¢)|, but we have to preserve the triangular structure.

Lemma 5.29 (Ordered children) Let ¢ € 7Tz and n := |chil(t)]. There are
ti,...,tn € T such that chil(t) = {t1,...,t,} and

V<u:>Vi€fy,jEfH:i<j for all v, € [1: n).

141



5 Arithmetic operations

Proof. We prove for all m € Ny that for all o C chil(t) with |o] = m we can find
ti1,...,tm € o such that o = {¢1,...,t,} and

v<u=Vi€t, jeEt, : i<j for all v, u € [1: m)] (5.16)

by applying induction to m.
For o C chil(t) with |o| =0, i.e., o = (), the statement is trivial.
Let now m € Ny be such that our claim holds for all o C chil(t) with |o| = m.
Let o C chil(t) with |o| = m + 1. Since Z is a totally ordered set, we can find

Jme1 =max{j €t : t €},

and there exists t,,11 € 0 With ji1 € tmy1. We let o/ := o \ {t;ny1} and observe
|o’| = o] —1 = m, so we can apply the induction assumption to find ¢1,...,t, € o

satisfying .

By construction, we have {t1,...,tm,tmy1} = 0. Let v,u € [1: m + 1] with v < p. If
v, < m, yields i < j foralli € £, and j € tA“. Otherwise, we have v < y =m+1.
Due to the Definition of the cluster tree, jm+1 € £m+l implies j1+1 € t,, and since
Jm+1 Wwas chosen as a maximum, we have i < j,41 for all i € t,. Definition yields
i<jforalli€f,,andalljefuztm+1. [}

Let t1,...,t, € chil(t) be as in Lemma We define
Ly =L, 4, Xy = X|;, Y, =Y for all v, € [1: n]
and observe
v<p= L, =0 for all v, € [1: n],
since L is left lower triangular, so we have

L1y Xy Yy
L‘Esz E '.‘ s X: 3 y X: E
Loi ... Ly Xn Y,

As in the case of the leaf cluster, we let

Loy Los Xo Ys
L*l = : 5 L** = : 5 X* = : ; Y:k = :
Lnl Ln2 Lnn Xn Yn
and find
L11 Xl _ Yl
L*l L** X* Y* ’

which is equivalent to

L1 X1 =17, L. X.=Y,— L.X;.
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5.9 Triangular factorizations

procedure lowersolve hmatrix(L, ¢, var X);
if chil(t) = 0 then
lowersolve amatrix(N( ), X);
else
for £k =1 to n do begin
lowersolve_hmatrix(L, tg, X);
for i € [k +1:n| do addeval hmatrix(—1, L, (¢;,tx), X, X)
end

procedure uppersolve hmatrix(R, ¢, var X);
if chil(t) = () then
uppersolve amatrix(N( ., X);
else
for £k = n downto 1 do begin
uppersolve hmatrix(R, tx, X);
for i € [1: k—1] do addeval hmatrix(—1, R, (¢;,tx), X, X)
end

Figure 5.12: Solving triangular systems with a hierarchical matrix.

The first equation can be solved by applying the procedure recursively to L1 = L|£1><t1,
the second equation by applying it recursively to the submatrix L,... The second step
leads to submatrices of the form

Ly
Lok .. Luom

so a single index k € [1 : n] is sufficient to keep track ot the submatrix, just as in the
case of the inversion algorithm. The resulting algorithm is summarized in Figure [5.12

Lemma 5.30 (Complexity) Let t € Tr. The number of operations required by the
function lowersolve_hmatriz to solve L|;, ;X =Y is bounded by

121M| if chil(t) = 0,
> vechilr) Wiso('s M) + 3o vechitry Wino(t', 8, M) otherwise.

t'>s'

Wisy(t, M) :=

The number of operations required by the function uppersolve_hmatriz to solve
R|; ;x =y is bounded by

2| M| if chil(t) =0,
> vechilry Wrso(t's M) + 320 vechitry Wimo(t', 8, M) otherwise.

t'<s

Wso(t, M) =
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5 Arithmetic operations

We have
Wlsv(ta M) + Wrsv(ta M) = Wmv(tv ta M)

Proof. We prove the first claim by induction on |T¢|.

If | 7¢| = 1, we have chil(t) = () and the bounds Wig, (¢, M) and Wys (¢, M) have already
been obtained in Lemma [5.28]

Let now n € N be given such that Wi, (t, M) and Wy (t, M) are bounds for the
computational work of lowersolve hmatrix and uppersolve hmatrix for all ¢t € 77
with |T¢| < n.

Let t € Tz with |T;| = n + 1. This implies chil(t) # (. Since |Ty| < n holds for all
t' € chil(t), we can use the induction assumption to find that the number of operations
for lowersolve hmatrix is bounded by

ZVVlsv(tkaM)+ Z Wmv(tiatkaM) = Z VVlsv(t/,M) + Z Wmv(tlaslaM)>
k=1 i=k+1 t’ echil(t) t’,s’ echil(¢)
tl>8l

and the number of operations for uppersolve hmatrix by

n k—1
ZWrsv(tk‘yM) +ZWmv(tiatkaM) = Z Wrsv(t,aM) + Z Wmv(tlyslaM)'
k=1 i=1 t/€chil(t) t’,s’ echil(t)

t'<s

For the second claim, we also use induction on |7y
If | 7¢| = 1, we have chil(¢) = 0 and find

Wise (t, M) + Wase (t, M) = [HPIM] + [E2 M| = 2[F2| M| = Wi (2,2, M).

Let now n € N be given such that Wig, (t, M) + Wygy(t, M) = Wiy (t,t) holds for all
t € Tz with |T¢] < n.
Let t € Tz with |T;| = n+ 1. This implies chil(¢) # 0 and we have

msv(t7M)+WrSV(t7M) = Z (Wlsv(tlaM)+WrSV(t/7M))+ Z Wmv(tlus/aM)7
t/echil(t) t’,s’ chil(t)
t' s

and due to |Ty| < n, we can use the induction assumption to find Wi, (¢, M) +
Wisy(t', M) = Wiy (¢, 8/, M) for all ¢’ € chil(¢) and conclude

I/Vlsv(t;M) + WI‘SV(t7M) = Z WmV(t/7t/7M) + Z WmV(t,7S/7M)
t/€chil(t) t’,s’ €chil(t)
tl7£Sl

= Z Wmv(t',s',/\/l) = Wmv(tataM)

t’,s’ echil(t)
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Corollary 5.31 (Complexity) Let Tzxz be admissible and Cs,-sparse. Then calling
lowersolve_hmatriz and uppersolve_hmatriz to solve GX = LRX = B does not
require more than

4Csp max{k,rz}(pzr + 1)|Z| | M| operations.

Proof. Combine Lemma [5.30| with Theorem [5.6] and bound the depth of Tzx7 by pz. =

Solving block systems

Now that we have efficient algorithms for solving triangular systems at our disposal, we
can consider the construction of appropriate factorizations. As an intermediate step, we
require an algorithm that solves

LX =Y

with a left lower triangular H-matrix L and an H-matrix Y, where we are looking for
an H-matrix approximation of X. In order to be able to use recursion once more, we
consider the subproblem

LlpiXling = Ylixa (5.17)

for (¢t,t) € Tzxz and b = (t,s) € Tzx7-

Case 1: b = (t,s) is a leaf. If b is an inadmissible leaf, we have Y|; . = Ny, and
Xlixs = Nxp and can apply lowersolve hmatrix to Ny to find Nx .

If b is an admissible leaf, we have Y|;, . = Ay}bB;b and can apply lowersolve hmatrix
to AY,b to find AX,b with

LlzyiAx (t,5) = Ay, (t,)5

and using Bxy := By and X|;, ;= AxBY, yields

. * . * _ * .
L|£x£X|£x§ - L|fx£AX7bBX,b - AY,bBX,b - AY,bBY,b - Y|£x§-

Case 2: b= (t,s) is not a leaf. We let n := |chil(¢)| and use Lemma again to find
t1,...,t, € chil(t) with chil(t) = {t1,...,t,} and

u<u:>Vi€fV,j€fu:i<j for all v, u € [1: n).
We let m := | chil(s)| and chil(s) = {s1,...,sn} and define

Lup=Llj, i Xuw=Xlj, x50 Yue =Yl s, forallvpefl:n], kell:m]

and obtain
L1t
Llpi = :
L,w ... Lu,
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procedure lsolve hmatrix(L, b = (t,s), var X);
if chil(b) = 0 then begin
if b admissible then
lowersolve hmatrix(L, t, Axp)
else
lowersolve hmatrix(L, t, Nx )
end else
for k=1tondo
for s’ € chil(s) do begin
lsolve hmatrix(L, (t,s), X);
for i € [k +1:n| do addmul hmatrix(t;, tg, s, —1, L, X, X)
end

Figure 5.13: Solve L|; ;X |; ;=Y

ix3s*
as before and
X111 ... Xim Yii ... Y1
Xlixs = ) Y= .
X oo Xam Yoi oo Yam
We can solve the system
L1 X1 ... Xim Yii ... Y1,
Do . |=Lx=v=|: -
Ly ... Ly, X1 oo Xam Yoi oo Yam

by applying block forward substitution to the columns of Y and X. In order to obtain
an H-matrix approximation X, we have to replace the exact matrix products by the ap-
proximations provided by addmul_hmatrix and arrive at the algorithm 1solve_hmatrix
given in Figure 5.13

We also require an algorithm that solves

XR=Y

with a right upper triangular H-matrix R and an H-matrix Y, where we are looking for
an H-matrix approximation of X. Since we will again use recursion, we consider the
subproblem

X

for b= (t,8) € Trx7 and (s,8) € Trx7-

R

axsg =Y

ix3 ix3 (5-18)

Case 1: b = (t,s) is a leaf. If b is an inadmissible leaf, we have Y|; . = Ny, and
Xlixs = Nxp and are interested in solving

NxpRli ;= Nyp <= R[; ;Nx, = Ny,

*
txt
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procedure lowersolvetrans_amatrix(R, var X);
for £k =1 to n do begin
for j € M do Th,j < xk,j/fkk;
foric[k+1:n],j € Mdowx; x;; — TpiTrj
end

procedure lowersolvetrans hmatrix(R, t, var X);
if chil(t) = () then
lowersolvetrans amatrix(Nyy), X);
else
for £k =1 to n do begin
lowersolvetrans hmatrix(R, tx, X);
for i € [k +1:n| do addevaltrans_hmatrix(—1, R, (tk,ti), X, X)
end

Figure 5.14: Solve adjoint systems R|? X =Y with a right upper triangular hierarchical

matrix R.

Since R ;fx ; 1s again a left lower triangular matrix, we can use the same approach as
in lowersolve hmatrix, only for the adjoint matrix R ;fxf instead of L|;, ;. The corre-
sponding algorithms are summarized in Figure [5.14} and applying them to the adjoint
matrix N{%b yields N)*(7b, ie., Nxp.

If b is an admissible leaf, we have Y|; . = Ay,ng"/’b and can solve

Bxyhlii = Byy < Rlj;Bxp= Byp
using lowersolvetrans hmatrix and let X|;, , = Ay,bB}yb.
Case 2: (t,s) is not a leaf. We let n := |chil(s)| and use Lemma to find
S1,...,5n € chil(s) such that chil(s) = {s1,...,sp} and
V<u:>Vi€£,,,jEf#:i<j for all v, u € [1: n).
We let m := | chil(t)| and chil(t) = {t1,...,tm}, define
Ryy = Llg,xs,, Xww =Xl ys,» Yo=Y s forallv,pe[l:n], x€[l:m]

and obtain
R11 e Rln
Rlpi = :
RTL'I’L
as before and
X1 ... X Yiiu. ... Y,
X ixs — : ) Y ixs — : :
Xml an le Ymn
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We have to solve

X1 ... Xin Ri1 ... Ry Y ... Yiu
I .| =XR=Yy=| ¢
X1 - X Ry Y1 oo Yo

We handle this task again by recursion: we introduce submatrices

Ryy ... Roy
Ry, = (ng e Rln) , Ry = e ,

Ry

X11 X192 ... Xin
X = : ; Kow 1= : - : )

Xmi Xmo .. Xmn

Y Yio ... Y,

Yi1 := : ; Yis = : :
Yo Yoo Yo
and find
o <R11 ?) X = (Xa X, Y= (Y Vi)

Now we can write our equation in the form

uglagcm §ﬂ=XR=Y=0h>@L

which is equivalent to
X*lRll == Y:(<17 X**R** = Txx — X*lRl*-

Once again we have reduced the original problem to problems for submatrices and can
proceed as before in order to obtain the algorithm given in Figure [5.15

Lemma 5.32 (Complexity) Let (t,s) € Tzxgy. The number of operations required by
the function lsolve_hmatriz to solve L|;, ;X i ; =Y |;; s bounded by

Wiso(t, [1 : K]) if (t,s) € LT, 7,
Wiso(t, s) := { Wisu(t,3) if (t.s) € L7, 7,
S vecnir) Wiso(t',8") + 32 4 eenitry, Wmm(r',t',s')  otherwise.
s’ €chil(s) s'€chil(s), r’'>t'
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procedure rsolve hmatrix(R, ¢, s, var X);
if chil(t,s) = 0 then begin
if (¢, s) admissible then
lowersolvetrans_hmatrix(R, s, Bxp)
else
lowersolvetrans_hmatrix(R, s, N ;)
end else
for k=1tondo
for ¢’ € chil(t) do begin
rsolve hmatrix(R, t', sk, X);
for i € [k +1:n| do addmul hmatrix(¢, s, s;, —1, X, R, X)
end

Figure 5.15: Solve X |;, ;R|sxs = Yjy s

The number of operations required by the function rsolve_hmatriz to solve X|;, Rsxs =
Yl;y s is bounded by

Wrsv(sv [1 : k]) if (t, S) S E;XJ,
Weolt, s) = { Wrsa(,1) if (t,5) € L7, 7+
Y seenil(t), Wrso(t's8') + 32 o recnil(s), Wmm(t',8',7)  otherwise.
t'echil(t) t'echil(t), r'>s’
We have
Wlso(ta 5) < Wmm(tv t, 3)7 WTSO(ta 3) < Wmm(ta S, 3)-

Proof. We prove the estimate for 1solve hmatrix by induction on |7 |-

If [T(s,5)| = 1, we have chil(t, s) = (), i.e., b= (t,5) is a leaf. If it is an admissible leaf,
the function lsolve hmatrix calls lowersolve hmatrix for the matrix Ax, and due
to Lemma and Theorem we obtain

Wiso(t,s) < Wisy(t, [1 1 k]) < Wiy (8,8, [1 1 K]) < 2/%QBIXz(t,t) < Wim(t, t, s).

If b is an inadmissible leaf, the function 1solve_hmatrix calls lowersolve hmatrix for
the matrix Nx; and we have

VVlso(ta 5) S IA/ISV(t7 ‘§) é Wmv(tat7 '§)‘

Since 77«7 is an admissible block tree, either ¢ or s have to be leaves. If s is a leaf, we
have |$| < k and can use Theorem to get

I/Vlso(ta 5) < Wmv(ta t, '§) < QQQBZXI(t’ t) < Wmm(t7 t, 5)'
Otherwise, i.e., if ¢ is a leaf, we have |f| < k and

Wiy (8,1, 8) = 2k|3|(JE] + |£]) < 4k?|8] < 2k (Bzxz(t,s) + Brxz(t, s)) < Wim(t, t, s).
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5 Arithmetic operations

Let now n € N be given such that Wi (¢, s) is a bound for the computational work of
1solve hmatrix for all (t,5) € Tzxg with [T g < n. Let (t,s) € Trxg with [T 4| =
n + 1. This implies chil(t, s) # 0. Since [T | < n holds for all (#',s') € chil(t, s), the
induction assumption guarantees that the number of operations for 1solve hmatrix is
bounded by

Z Z I/Vlso(tlm "‘Z Z Z Wmm tzvtlm ) ‘/Vlso(t’s)v

k=1 s'Echil(s) k=1i=k+1 s'Echil(s)

and we find

I/Vlso t 3 Z Z VVlso tk; +Z Z Z Wmm tutlm )

k=1 s’chil(s) k=11i=k+1 s’€chil(s)
n n n
<Y Wamlte s+ > > Wam(tistr, )
k=1 s’EChil(s) k=11i=k+1 s’echil(s)

SYTY N Wl

k=1 i=k s’€chil(s)

< Z Z Wmm(tiatkvsl)
i,k=1 s'€echil(s)

= > D) Wam(t ) < Wam(t, t, 5).

t/,r’ €chil(t) s’ Echil(s)

The result for rsolve hmatrix can be obtained by similar arguments, taking into
account that lsolvetrans hmatrix works with the right upper triangular part of
R|;,;, therefore the complexity for the leaf cases is bounded by Wi (t, M) instead of
Wigy (t, M). [ |

Finding the LR factorization

Now that we know how to solve linear systems involving triangular matrices, we have
to find a way to find a decomposition of a given H-matrix into triangular factors. We
focus on the LR factorization

LR =G,

bearing in mind that other triangular factorizations, e.g., the Cholesky factorization,
can be constructed by a similar approach. As before, we consider a subproblem

Ll iRlivi = Glixi (5.19)

for t € Tz, where G|;,; is given and we are looking for L|;, ; and R|;, ;.

Let t € Tz. If chil(¢) = @ holds, we can compute the LR factorization by the well-known
algorithm given in Figure where we again enumerate the indices t = {iy,...,i,}
with n = |{| and let g, = gi, i,
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procedure Irdecomp_amatrix(var G);
for £k =1 to n do begin
for i € [k +1:n|do gir < gir/gkk;
for i,j € [k +1:n] do gij < gij — Gikgk;j
end

Figure 5.16: Computing the LR factorization LR = G of a matrix in standard array
representation. The upper triangular part of G is overwritten by R, the
strictly lower triangular part by L. All diagonal elements of L are equal to
one and are not stored.

Let now chil(t) # 0. We let n := | chil(¢)| and use Lemma again to find ¢1,...,t, €
chil(t) such that chil(t) = {t1,...,t,} and

1/<u:>Vi€f,,,jEfH:i<j for all v, u € [1: n].

As in the previous sections, we split G, L and R into block matrices by defining

Gop = Gli, i, Lyp =Ll i, Rup == Rl; i, for all v, € [1: n]
and obtain
G Gin
G’fxt )

Gnl . Gnn

L1y Ryt ... Ry

Liji=1 1+ - . Rl = o
Loyt ... Lpn Ry

We aim to construct the LR factorization recursively by splitting the matrices into the
first row and column and a smaller remainder. We introduce

G21 G22 e GQn
G*l = s Gl* = (GIQ s Gln) 5 G** = - )
Gnl Gn2 . Gnn
Lo Lo
Ly = 3 Liw := : ’
L1 Ly ... Ly,
Ry . Rap
Ris:=(Ri2 ... Run), Ry = :
RTLTL
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5 Arithmetic operations

procedure lrdecomp_hmatrix(t, var G);
if chil(t) = 0 then
lrdecomp amatrix(Ng, 1))
else
for £k =1 to n do begin
lrdecomp_hmatrix(tx, G);
for j € [k +1:n] do 1solve hmatrix(G, ty, t;, G);
for i € [k +1:n] do rsolve hmatrix(G, t;, g, G);
for i,j € [k +1:n] do addmul hmatrix(t;, tx, t;, —1, G, G, G)
end

Figure 5.17: Computing the approximate LR factorization LR = G of an H-matrix. The
upper triangular part of G is overwritten by R, the strictly lower triangular
part by L. All diagonal elements of L are equal to one and do not have to
be stored.

and write the equation (5.19)) in the compact form

Ly R R _ (Gu Guis
L*l L** R** G*l G** .

It is equivalent with the four equations

Li1R11 = G, (5.20a)
Li R, = G, (5.20b)
LR = G, (5.20¢)
LeRew = Guw — L Rus. (5.20d)

The first equation can be solved by applying our algorithm recursively and
yields Lq; and Rj;. The second equation can be handled by the function
lsolve hmatrix introduced in Figure and yields Rj.. The third equation
can be treated by the function rsolve hmatrix given in Figure and yields L.

For the last equation , we can use the multiplication function addmul_hmatrix
given in Figure[5.8|to obtain the right-hand side and then apply our procedure recursively
to submatrices of the form

Gug - Gun

so we can keep track of the submatrices using an index k € [1 : n] and arrive at the
algorithm given in Figure |5.1
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5.9 Triangular factorizations

Theorem 5.33 (Complexity) Let t € Tz. The number of operations required by the
function lrdecomp_hmatriz to find the approximate LR factorization of G|;,; is bounded

by

2|£3/3 if chil(t) = 0,
Wl (t) L Zt’echﬂ(t) er(t,) + Zt’,s’échil(t)(Wlso(tlv 3/) + Wrso(sl, t/)) otherwise
T A S/>t/
+ zt’ s’ Echll(t Wmm(3/7 tla 7’/).
>t/
We have

Wi(t) < Wim(t, t,t).

Proof. By induction on |T|.
If |7; = 1], we have chil(t) = 0 and the function calls 1rdecomp_amatrix to compute
the factorization of the matrix Ng ;). This takes not more than

21812 /3 < 2|)* = Wium(t, t, 1)

operations.

Let now n € N be such that our claims hold for all ¢ € Tz with |T¢| < n. Let t € Tz
with |7;| = n + 1. Then we have chil(¢) # () and the function calls itself recursively for
all ' € chil(t). For each t' € chil(t), we have |Ty| < n and can apply the induction
assumption to find that the recursive call to lrdecomp_hmatrix requires not more than
W1, (t') operations. Combining this estimate with the estimates provided by Lemma
and Theorem yields that the total number of operations is bounded by

ZVVlr tk +Z Z Wlso tk7 +Wrso(t27tk: +Z Z Wmm twtka ) I/Vlr()

k=11i=k+1 k=114,j=k+1

The induction assumption also yields Wy, (¢') < Wim(¥',t',¢'), and with Lemma and
Theorem [5.18 we find

I/Vlr Zvvlr tk +Z Z vvlso tr, t; +Wrso(tutk +Z Z Wmm tlatkat])

k=1i=k+1 k=14,j=k+1
<2Wmm by s L) +Z Z mm (tks s £) + Winm (£, t, )
k=11i=k+1
‘|‘Z Z Wmm(tiatkvtj)
k=11,j=k+1

n
< Z Wmm(tivtjvtk) < Wmm(tvtvt)'
Z'7‘j7’€:1
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6 72-matrices

The efficiency of H-matrix techniques can be significantly improved if we modify the
low-rank properties used to obtain approximations: instead of handling each admissible
block on its own, we are looking for factorizations of entire collections of blocks.

This approach gives rise to H2-matrices, a variant of H-matrices that requires only
O(nk) units of storage instead of the O(nklogn) units of storage associated with stan-
dard H-matrices. Due to this improved asymptotic behaviour, H2-matrices are particu-
larly attractive for very large matrices.

6.1 Motivation

We consider the one-dimensional model problem introduced in Chapter|2land are looking
for an improved approximation of the matrix G € RZ*Z given by

j/n
gz;—/ y /( g(z,y) dy dx for all 4,5 € 7.
(i—-1)/n

We use the cluster tree 77 introduced in Chapter a cluster ¢t € 7Tz is an interval
t = [at, by] such that

[(i—1)/n,i/n] Ct for all i € .

; corresponding to clusters ¢, s € Tz, we con-
sider degenerate approximations of the kernel function g. We denote the Chebyshev
points in the reference interval [—1, 1] by

. 2v+41
&, = cos <W2m—|—2> for all v € [0 : m)|

and the transformed Chebyshev points in the intervals t = [a, b;] and s = [as, bs] by

b bs — ay » bs be — as »
t—;at+ ! até’y, Esp 1= —12‘@5+ 82%5# for all v, € [0 : m].

gt,y =

The corresponding Lagrange polynomials are given by

x_ft)\ Yy — ésn
L forall v, € [0:m], z,y € R.
tV ftv gt)\ ,,u H €s,u fsn . [ ]

A#V H#u
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6 H2-matrices

We have constructed H-matrix approximations of G|;, ; by applying interpolation to the
variable x, i.e., by using

Gt,s(x,y) thy 9, y) forallz €t, y € s.

Since there is no reason to give x preferential treatment, we could also have used inter-
polation in the variable y, i.e.,

gtsl’y Zgw‘gs,M su ) forallxet,yES,

and this would also give rise to a low-rank approximation.
The key to H2-matrices is to apply interpolation to both variables simultaneously, i.e.,
to use

gtsxy Zzetu ftuvgsu) ( ) fOI‘&H.Z'Et,yES.

v=0 p=0

This corresponds to two-dimensional tensor interpolation, and Theorem states that
the resulting error is only slighly larger than for the simple interpolation.
Discretizing this approximation leads to

j/n
/ / Gt.s(z,y) dy dz
(i—-1)/n -1)/n
i/n j/n

- ZZ/ gtl/( )dw g(gtu,gs,u) / ﬁsw(y) dy

(G=1)/n

= Z th7iysb7wws,m = (VtSbW:)w for all 7 € Lt, j € §,
v=0 p=0

where we introduce V; € RP*M W, € R¥*M and S, € RM*M with M := [0 : m] and

i/n j/n
Vtiv += /( gt,u(x) dz, Ws,ju = /( gs,,u(y) dy,

i—1)/n ji—1)/n
Shp = 9(&wr Es ) for all i € ¢, jES v,u e M.

We observe that V; depends only on the row cluster ¢, but not on the column cluster
s, while Wy depends only on the column cluster s, but not on ¢. The entire interaction
between both clusters is expressed by the coupling matriz Sp, and this matrix is typically
small, since it has only k := m + 1 rows and columns.

It is of particular importance that the size of the matrices S, does not depend on the
level of the block: for H-matrices, admissible blocks are more expensive the closer they
are to the root, while for H2-matrices the storage requirements are constant. Since the
number of blocks grows exponentially with the depth of the cluster tree, this property
allows us to obtain linear complexity with regard to the number of indices.
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6.1 Motivation

Remark 6.1 (Block storage) If we have n = 2% and choose the depth p € [0 : ¢ of the
cluster tree such that k < 297P < 2k, Lemma yields that storing Sy for all admissible
blocks requires

p p
D KA =6k2) (271 = 1) = 6k7(2” — 1 — p) < 6k27 P2V = 6k2¢ = 6kn
=0 /=1

units of storage. We already know that storing Ny for all inadmissible blocks requires
(2‘1_”)2(]7)]9\ +|Lp| + [Rp|) < 2k297P(2P 4 2P — 1+ 2P — 1) < 6k297P2P = 6kn

units of storage. This gives us a total of 12kn wunits of storage for all coupling and
nearfield matrices: the storage requirements grow linearly with n.

In comparison, the H-matriz approzimation constructed in Chapter [q requires more
than 6k(p — 2)n units of storage and therefore is more expensive for p > 4.

Unfortunately, the storage requirements for the matrices V; and W, do not grow
linearly with n: storing V; for a cluster ¢ on level ¢ requires 27~ ‘k units of storage, and
since there are 2¢ clusters on this level, we obtain a total of

p p p
SN 27 k=) "2k =) 2%k = nk(p+ 1).
=0 teTz =0 =0
level(t)=¢

In order to obtain linear growth of the storage requirements, we have to handle the
families (V;)ier; and (Ws)ser; of matrices more efficiently.

The coefficients of V; are closely connected to the Lagrange polynomials ¢; ,,, and since
our interpolation operators have the projection property , we find

m

by = Z fty,,(ftlyl,/)ftlyl,/ for all t' € Tz, (6.1)

v'=0

i.e., we can represent any Lagrange polynomial of a given cluster in the Lagrange basis
corresponding to any other cluster.

We can apply this approach to the children of ¢: if chil(¢) # ), Definition yields
that for any i € ¢ there is exactly one child ¢’ € chil(¢) such that i € #'. Applying
to this child cluster gives us

Vi = /( ft,u(l‘) dx = Z ft,u(ét',u’) /( y Ly (z)dr = Z ft,u(ft’,u')vt',iu’,
v'=0 i-1)/n v'=0

i—1)/n
i.e., we can avoid storing vy ;, and store only the k? transfer coefficients Ly, (& 1) instead.

Since this works for all i € ¢, the entire matrix V; can be expressed implicitly via the
transfer coefficients.
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6 H2-matrices

This observation suggests the following approach: the matrices V; are only stored
explicitly for leaf clusters and expressed implicitly via transfer matrices Ey € RM*M in
the form

y = VuEy for all t € Tz, t' € chil(t), (6.2)
where we recall the notation (5.1) and the transfer coefficients are given by
ev v =Ly (&) for all t € Tz, t' € chil(t), v,/ € M.

In the case of the one-dimensional model problem, we have denoted the children of a
non-leaf cluster ¢ by ¢; and t2 and can write (6.2)) in the short form

Vi <Vt1Et1> for all + € T7 with chil(t) # 0.
‘/tht2

Remark 6.2 (Cluster storage) Following this approach, storing the matrices Vi only
for the leaf clusters on level p takes

Z 20 P — 2P PL — nk

teTz
level(t)=p

units of storage, while storing the transfer matrices Ey for all cluster takes

> K= Z YooK = Z 2% = (2PT! — 1)k? < 2P0 PE = 201 — ok

teTz (=0 teTr
level(t)=¢

units of storage, where we have again assumed k < 297P.
We conclude that transfer matrices allow us to represent the entire family (Vi)ier;
using less than 3nk coefficients. The same holds for (Ws)ser; -

Since (Vi)ter; and (Ws)seT; are identical, we only have to store (V;)e7,. The coupling
matrices Sy require not more than 6nk units of storage, the nearfield matrices N, require
also not more than 6nk units, and the cluster matrices V; require not more than 3nk
units, so the total storage requirements are bounded by 15nk. We have reached our goal:
the bound grows only linearly with n.

The reduction of the storage requirements comes at a price: given an admissible block
b= (t,s), we cannot directly evaluate G|;, ; = V;SpW}, since V; and W, are only at our
disposal for leaf clusters, but not for any other clusters. Fortunately, we can modify the
corresponding algorithms in a way that not only solves this problem but even reduces
the number of operations, i.e., we not only save storage, but also time.
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6.2 H%-matrices

6.2 7{%-matrices

As in the case of H-matrices, we can generalize the results obtained for the one-
dimensional model problem.

Let 77 and Tz be cluster trees for index sets Z and 7, and let 7747 be an admissible
block tree for 77 and 7.

Definition 6.3 (Cluster basis) Let k € Nog. A family V = (Vi)ier; of matrices is
called a cluster basis of rank k if

o for allt € Tz we have V; € Kka, and
e for allt € Tz and all t' € chil(t) there is a matriz By € KF** satisfying

Vilp = Ve Ep. (6.3)
In this case, we call the matrices V; basis matrices and the matrices Ey; transfer matrices.

Definition 6.4 (Nested representation) Let V = (Vi)ie7; be a cluster basis of rank
k, and let (Et)ie7; be a family of transfer matrices satisfying .
Then we call (Vi)ier,, (Et)teT;) a nested representation of the cluster basis V.

In a nested representation, the matrices V; are only given explicitly for leaf clusters
t € L7 and otherwise implicitly by .

We can see that determines the transfer matrix Ey only uniquely if Vi is injective.

For the root cluster ¢ = root(77), the transfer matrix E; is never used and only
included in the nested representation for the sake of brevity.

Definition 6.5 (#*-matrix) Let V = (V;)ie7; and W = (Wy)seT, be cluster bases of

rank k. A matriz G € KI*7 is called an H?-matrix for V., W, and the block tree Trx7

if for each admissible block b = (t,s) € E;XJ there is a matriz Sy € KF** such that
Glixs = VIS, W (6.4)

s

In this case, V is called the row cluster basis, W is called the column cluster basis, and
the matrices Sy are called coupling matrices.

Definition 6.6 (#2-matrix representation) Let G € KX*7 be an H2-matriz for the
row cluster basis V, the column cluster basis W, and the block tree Tz« 7.

Let (Vi)ters, (Bt)tetz) and (Ws)sec,» (Fs)seT,) be nested representations of the clus-
ter bases V and W.

Let (Sb)b€£}XJ be a family of coupling matrices satisfying and let

Ny =G

forallb=(t,s) € L7, ;-

ix3

Then we call ((Vt)teﬁp (Et)teTp (Ws)36557 (Fs)s€7'57 (Sb)beﬁ‘{xj’ (Nb)begng) an H*-
matrix representation of G.
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6 H2-matrices

Lemma 6.7 (Storage, cluster basis) Let V = (Vi)ie7; be a cluster basis of rank k.
A nested representation of V' requires not more than

E|Z| 4+ k?|Tz| units of storage.

Proof. The nested representation stores the basis matrices V; € K for all leaf clusters
t € L7, and this requires

Z klt| = k Z It = k‘ U f‘ = k|Z| units of storage,

telr telr teLT

since we have proven in Corollary that the index sets of the leaves are a disjoint
partition of Z. The nested representation also stores the transfer matrices Ey € KF*k
for all t € Tz and ¢’ € chil(t), and this requires

Z Z E* < Z k* = k?|T7| units of storage,

te€Tz t'echil(t) veTr

since every cluster has at most one parent. ]

Lemma 6.8 (Storage, block matrices) Let G € KX*7 be an H2-matriz for a row
basis V' and a column basis W of rank k. Let the block tree Tzxg be Cyy-sparse and

strictly admissible (cf. Definition .
The nearfield matrices (Nb)beﬁg , and the coupling matrices (Sp)

matriz representation of G require not more than

2
belt, , or an H=*-

Cspmin{r7|Z|,rz|T|} + Cspk* min{|Tz|, |T7|} units of storage.

Proof. We first consider the storage for the nearfield matrices. Let b = (t,s) € L7, ;.
The matrix N, requires |f| || units of storage. Since Tz« is strictly admissible, we have
te L7 and s € L7 and obtain

It < rg, 15| < rg.

The storage for all nearfield matrices is therefore bounded by

D R N (v N S 1
t)

b=(t,s)€LL, 7 b=(t,s)€LT, 7 teLz scrow(
< Cyrg Y 1= Corg| | 1] = Curs 12,
teLy telr

where we use Corollary [3.19] for the last two equations, and, following the same argu-

ments, also by
Do il D 13 < Cyral Tl
b=(t,s)€LT, 7 b=(t,s)€LT, 7
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6.2 H%-matrices

Now we investigate the storage requirements of the coupling matrices. Let b = (¢,s) €
E%X 7+ The matrix S, requires k? units of storage, and the storage for all coupling
matrices is bounded by

Z k2 < Z Z k2 < k2 Z |1“OW(t)| < Cspk2|73:|7

b:(t,s)eﬁ;xj teTr s€row(t) teTr

Yo <> Y <D |eol(s)] < Copk? [Tl

b:(t,s)eﬁ%xj s€T 7 tecol(s) s€ETT

Combining these estimates yields the required upper bound. [
Theorem 6.9 (H?-matrix representation) Let G € KZ*7 be an H?-matriz for a

row basis V and a column basis W of rank k. Let the block tree Tzx s be Cgp-sparse and
strictly admissible. An H?-matriz representation of G requires not more than

max{k,rz, 77 H(|Z] + |T|) +

C 2
Sp2+ (| Tz + |T7]) units of storage.

C’Sp—}-2k2
2

Proof. Due to Lemma 6.7}, the nested representations of V' and W require not more than
E(Z) + |T]) + k*(|Tz| + |T7]) units of storage

while Lemma, guarantees that the nearfield and coupling matrices require not more
than

Csp min{ry|Z|,rz|7|} + Cpk? min{|Tzl, | 77}
Cs Cs
< S g1 4 12l + SR+ 175)
Cs Cs :
< TPmaX{TI,T‘j}(‘I| +|J)) + TPkQ(\’TI] + |77|) units of storage.

Adding both estimates yields the required upper bound. [

Remark 6.10 (Complexity estimate) If we assume that |chil(t)] # 1 holds for all
t € Tz, i.e., that every cluster has either no children or at least two, a simple induction
yields

|Tz] < 2|Lz] — 1 < 2|L7].

Since the index set of every leaf cluster has to contain at least one indexr, we have

|L7| < |Z| and find that the estimate of Theorem [6.9 can be bounded by

Cop+2

Z L max{k, vz, vy HIZ + 7)) + (Cop + 2K(T] + |71),
i.e., the storage complexity of the H2-matriz representation is in 0(12:2(711 +nys)), where
k := max{k,rz,r7} denotes the mazximal rank of leaves and nz := |Z| and ny := |TJ|.
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6 H2-matrices

If we can guarantee |t| > k for all leaf cluster t € L by stopping the construction of
the cluster tree not too late, we find

Wled =Y k< Y= Ui =
telr telr teLr

via Corollary[3.19 and conclude |Lz| < |Z|/k and therefore |Tz| < 2|Z|/k. This gives us
the tmproved estimate

3
§(C’sp + 2) max{k,rz,r7 }(|Z| + |T|),

e., the storage complexity is in O(k(nz +ny)).

Requiring that the block tree is strictly admissible is sometimes inconvenient, since it
requires us to handle special cases if not all leaf clusters are on the same level and we
have to divide blocks in only rows or columns, but not both.

If the clusters are not too irregular, we can use a weaker assumption and still obtain
linear complexity.

Lemma 6.11 (Nearfield matrices) Let Tzx 7 be admissible and Cgp-sparse, and let
Cp be a constant such that

It < Cppl3| for allb=(t,s) € L, ; with s € L7, (6.5a)
18] < Cpalt| for allb = (t,s) € L], ; witht € L7. (6.5b)
The nearfield matrices (Nb)becg S require not more than
CspCrp(rz|Z| + 7 7|T]) units of storage.

Proof. Let b= (t,s) € EEXJ. Since Tz« 7 is admissible, we have t € L7 or s € L 7.

If ¢ € L7 holds, we find |{| < r7 and can use (6.5b)) to get 5| < O lt| < Cuprz.
If s € L7 holds, we find |3| < r; and can use (6.5a) to get |{| < Cypl5| < Cuprs.
The total number of coefficients is bounded by

) 1 K N [ S W 11 ]

b=(t,s)€LT, 7 b=(t,s)€LL, 7 b=(t,s)€LL, 7
telr seL gy
<y B+ DY D I
teLz s€row(t) s€L g tecol(s)
<2 2 liGwrz+ 3 > 13ICurg
teLz s€row(t) s€L 7 tecol(s)
S CsanbTI Z |t| + CSanbTJ Z ’§
teLr SE,CJ
< CsanbrI|I| + Cspcnbrj|j|,
where we have again used Corollary in the last step. [
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6.3 Matrix-vector multiplication

6.3 Matrix-vector multiplication

A nested representation of a cluster basis V' = (V})ie7; allows us to significantly reduce
the corresponding storage requirements, but it also means that we can not longer work
with the matrices V; directly if ¢ is not a leaf.

Given an admissible leaf b = (t,s) € E;X 7 evaluating the corresponding submatrix

G’fxﬁ = WSZ)W;

requires algorithms for evaluating W} z|; for a given vector x € KZ and for evaluting
Vi for a given vector ¢, € KX,

Forward transformation. Let W = (W;)sc7;, be a cluster basis of rank &, and let and
let (Fs)se, be a family of corresponding transfer matrices. Let = € KY. Our task is to
compute the vectors

Tg = Wizl for all s € T7. (6.6)

This is a departure from the procedure applied for H-matrices, where each block can
essentially be treated independently from all orthers. For H2-matrices, the efficiency
can be improved significantly by preparing suitable vectors, and in more sophisticated
algorithms also matrices, in advance and share them among multiple blocks.

Let s € T7. If s is a leaf, we can compute directly. If s is not a leaf, we let
n := | chil(s)| and denote the children of s by chil(s) = {s1,...,s,}. Due to (3.12b),

(3.12c) we have § = 8;U...U3,, and (6.3)) yields
Ws, Fs,
Ws =
W, Fs,

Using this equation, we can rewrite as

X 81
R, *,o. * * * * .
b= Wiz = (FIW: ... FrW:)
s,
n
* * * * kA
= E FSZWSZ$|§Z = E FS/WS/CC|§/ = E FS/‘TS/.
=1 s'€chil(s) s’ echil(s)

This means that if we ensure that the vectors #y corresponding to the children s’ €
chil(s) are computed first, the vector s can be computed very efficiently using only
transfer matrices.

Since we need to treat the children before their parent, a recursive algorithm is the
obvious choice. It is given in Figure [6.1} and we call it the forward transformation for
the cluster basis W.
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6 H2-matrices

procedure forward clusterbasis(W, s, z, var I);
if chil(s) = 0 then
Ts — Wiz
else begin
Zs + 0;
for s’ € chil(s) do begin
forward clusterbasis(W, ¢, x, #);
Tg — s+ Fidg
end
end

R

Figure 6.1: Forward transformation, Z, <- Wrz|; for all r € T

Coupling phase. Once the vectors &5 = W z|; are available for all clusters s € Tz, we
can consider the multiplication by Sj for admissible blocks b = (t,s) € E;X 7+ Instead
of treating all blocks individually, we can take advantage of

Yoo VSWals=V, > Sy, for all t € Tz
s€Ts s€Tr
b=(t,5)ELF, - b=(t,5)ELF, -

to first compute auxiliary vectors

goi= > Sl for all t € Tz (6.7)

s€Tr
b=(t,s)eLT,

and then perform the updates
yli <yl + Vide for all t € Tz. (6.8)

The first task is straightforward: we initialize the vectors ¢ < 0 for all ¢ € 77 and
then simply pass through all admissible blocks of the H?-matrix representation and
accumulate their contributions. This is called the coupling phase of the H2-matrix-
vector multiplication.

Since this phase requires us to traverse the entire blocktree, we can also handle the
nearfield blocks directly via

=yl + Nz

ylz <yl + Gl szls 3 for allb:(t,s)eﬁij.

If we traverse the block tree recursively, passing through non-leaf blocks and treating
leaf blocks appropriately, we arrive at the algorithm given in Figure [6.2

The coupling phase is typically the most time-consuming part of the matrix-vector
multiplication, since on the one hand the number of blocks typically far exceeds the
number of clusters and on the other hand reading the coupling and nearfield matrices
from storage taxes the memory interface of processors.
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6.3 Matrix-vector multiplication

procedure fastaddeval h2matrix(a, G, b= (t,s), z, &, var y, 9);
: +
if lj € E;XJ thefl
Ut < Ut + aSpds;
else if b € L7, ; then
yli < yl; + aNpz[s;
else for b’ € chil(b) do
fastaddeval h2matrix(«, G, V', z, Z, y, 9)

Figure 6.2: Coupling phase, §; < 9+ + Sy for all admissible leaves b = (t,s) € E;X 7
and yl; < yl; + aNyt|; for all inadmissible leaves b = (t,s) € L7 ;.

Backward transformation. This leaves us only with the task of performing the updates

for all t € 77. Let t € T7z. If t is a leaf, we can handle directly. If ¢ is not
a leaf, we again let n := | chil(¢)| and denote the children of ¢ by chil(t) = {t1,...,tn}.

(6.3) yields

‘/tlEtl
vi=|
Vi, Et,
and we obtain
y|f1 + ‘/%1Et1yt y‘fl + ‘/tlgtl
yly <yl + Vit = : = : 7 (6.9)
ylg, + Vi, B, Gt y!gn + Vi, 9,
where we let
Yp = Epy for all ¢ € chil(t).

If we work on t before its children, we can take advantage of

Ylg < ylp + Vede + Ve = ylp + V(e + G) for all ¢' € chil(t)
to simply add gy to the vectors gy corresponding to the sons. As long as we have no
further need for the vectors gy, we can simply update them.

The resulting algorithm is given in Figure [6.3] and we call it the backward transfor-
mation for the cluster basis V.

Both the forward and the backward transformation algorithms take advantage of the
fact that we have to perform operations for all clusters: in the forward transformation,
we can re-use the intermediate results Zy computed for the children s’ € chil(s), while
in the backward transformation we can shift work from the parent ¢ to its children
t" € chil(t). Even if we wanted to compute only Z4 for one cluster, we still would have
to compute 4 for all its descendants.
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6 H2-matrices

procedure backward_clusterbasis(V, t, var g, y);
if chil(t) = 0 then
Yyl <yl + Vidi;
else
for ¢’ € chil(t) do begin
Ur < Yv + Evyr;
backward clusterbasis(V, t', 4, y);
end
end

Figure 6.3: Backward transformation, y|; < y

#+ Vg, for all r € T;. The coefficients
(Ur)teT; are overwritten by intermediate results.

procedure addeval h2matrix(«, G, b= (t,s), x, var y);
forward clusterbasis(W, s, x, Z);
y < 0;
fastaddeval h2matrix(«, G, b, z, &, y, §);
backward clusterbasis(V, ¢, g, y)

Figure 6.4: H?-matrix-vector multiplication, y|; < y|; + oG/, ;7|s

Using the forward and the backward transformation, we can construct an efficient
algorithm for performing the matrix-vector multiplication y < y + oGz with an H2-
matrix G in H?-matrix representation. The forward transformation yields the auxiliary
vectors s, the coupling phase prepares the vectors 7, and the backward transformation
adds them to the final result. The algorithm is summarized in Figure [6.4

Remark 6.12 (Adjoint) To perform the adjoint matriz-vector multiplication x < x +
aG*y, we can apply the forward transformation to the row basis V', switch to the adjoint
matrices S, and Ny in the coupling phase, and apply the backward transformation to the
colum basis W.

Remark 6.13 (Recursion) Using recursive algorithms for the forward and backward
transformation and the coupling phase is convenient, particularly if we expect to apply
the algorithms also to submatrices of an H?-matriz, e.g., in the course of arithmetic
operations like the matrix multiplication or inversion.

If we want to parallelize the algorithms, different approaches may be more appropriate,
e.g., the forward and backward transformation could be performed level by level, such that
all clusters on the same level can be treated in parallel.

For the coupling phase, it may be a good idea to use a description of the sets row(t)
and col(s), e.g., as a list of blocks, in order to avoid write conflicts caused by different
blocks trying to update the same vector.
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6.4 Low-rank structure of H2-matrices

6.4 Low-rank structure of 2-matrices

We have seen that a matrix can be approximated by an H-matrix if all submatrices
corresponding to admissible blocks can be approximated by low-rank matrices. We will
now characterize H?-matrices in terms of ranks of suitable submatrices.

Since we are only interested in admissible blocks, we restrict the sets row(t) and col(s)
introduced in Definition [3.31] to

row" (t):={s €Ty : (t,s) € LT, ;} for all t € Tz,
colt(s):={teTr : (t,s) € LT, ;} for all s € T7.
We consider a row cluster ¢ € 77 and define the number of admissible blocks connected

to it by n := |row™ (¢)| and the corresponding column clusters by row™ () = {s1,...,s,}.
Due to (6.4), we have G|z, ;. = ViSi,s, Wy, for all i € [1: n] and therefore

Gt = (G‘fxél e G|f><§n) = Vt (St,SIW;l e St,SnW;n) .

We have found a factorized representation of Gy, so its rank cannot exceed k. Since the
cluster bases are nested, we can extend this argument to larger matrices G; including
blocks connected to the predecessors of ¢, as well.

Lemma 6.14 (Extended transfer matrices) Let V = (V})ic7; be a cluster basis of
rank k, and let (Et)ic7, be a corresponding family of transfer matrices.
We define the extended transfer matrices inductively by

1 if r=t,
E,.; = orallte Tz, reT;.
! {EM/Et/ ifr € Ty, t' € chil(t) i * !
We have
Vilg = Vi Ery forallt €Tz, r €T;.

Proof. By induction on level(r) — level(t).
Let t € Tz and r € T; with level(r) — level(t) = 0. Then we have r = ¢, and our
definition yields
‘/t|f =Vi=V, = V;"Er,r = ‘/tEr,t-

Let now n € Ny be given such that our claim holds for all ¢ € 77 and r € T; with
level(r) — level(t) = n.

Let t € Tz and r € T; with level(r) —level(t) = n+1. Due to level(t) < level(r), we can
find ¢’ € chil(t) such that r € Ty. Due to level(r) — level(t') = level(r) — (level(t) + 1) =
n+1—1=mn, we can apply the induction assumption to find

Vils = Vi By,
and (6.3) with 7 C ¢ yields
Vile = Vilg)le = (Ve Ev)ls = Vi s By = Vi Epp By = V. Epy.
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6 H2-matrices

Lemma 6.15 (Low-rank structure) Let G € K% be an H2-matriz with row cluster
basis V' and column cluster basis W of rank k. The sets

= U U sco for all t € Tz, (6.10a)
tTEpred(t) s€Ty
(tT,S)EL%LXJ
Fs = U U tCcrT forall s € Ty (6.10b)

sTEpred(s) teTz
(t,sT)GLJIrXJ

are called the farfield indices for t and s.

For every j € Fi, there are exactly one tT € pred(t) and exactly one s € Tz with
(tt,s) € £;XJ such that j € §.

For every i € Fs, there are exactly one st € pred(s) and exactly one t € Tr with
(t,sT) € E;XJ such that i € .

For all t € Tz, we can find a matriz By € K7k such that

G|i><]-'t = ViB;,
and for all s € Tz, we can find a matriz A, € KFs*F such that
G|_Fs><§ == ASWS*'

Proof. Let t € Tz. We first prove that for each j € F;, there are exactly one t+ € pred(t)
and exactly one s € 77 with (tT,s) € /J}XJ such that j € 3.

Let j € F, and let t11,t12 € pred(t), si,s2 € Ty with (t11,51) € E}XJ and
(tT’Q, 52) S ‘C%_xj such that j € §; and j € 8.

Let i € t. Then we have i € 11 and i € tAT72 and therefore (i,7) € tATJ X §1 and
(1,7) € ng x §9. Due to Corollary this already implies both tt 1 = t12 and s1 = s2.

Let j € F¢, and let tT € pred(t) and s € row(tT) be the unique clusters defined above.
By Definition [6.5] we have

G‘f7><§ = VtTSbW:?

and Lemma [6.14] yields

Glixs = (Gl «s)

ixs = VirliSsW5 = ViEy 1 Sy Wy
We conclude that

Bilaxk, == WSy By, for all tT € pred(t), s € row(tT)
with b = (tT,s) € L%_Xj

defines the matrix B, € K7**X¢ uniquely, and we have

G‘Exé = WEt,tTSbW: = VB,

; for all t1 € pred(t), s € row(tT)
with b= (t1,s) € L, ;.

The corresponding results for column clusters can be obtained by similar arguments. m
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6.4 Low-rank structure of H2-matrices

Lemma 6.16 (Partial inverse) Let V € KZ*7. Then there is a matriz R € K>
such that VRV =V.

Proof. Let k := dim(range(V)), and let {v1,...,v;} be a basis of range(V). We can
extend it to a basis {v1,...,v,} of KZ, where n := dim(K%) = |Z|.
For each i € [1 : k], we can find a vector z; € K7 such that Vz; = v;.

Since {v1,...,v,} is a basis of K%, we can define R € KY*% by
;e <k
Ruj:={"" "= ] for all ¢ € [1: n]
0 otherwise

and obtain
VRv; =Vz; =v; for all i € [1: k].

Let now y € KY. Since {v1,...,v;} is a basis of range(V), we can find a1, ..., o € K
such that
Vy=aiv1 +... + agug.

This implies
VRVy=a1VRvi + ...+ arVRur, = aqvi + ... + agpvp, = Vy,

and we have proven VRV = V. [

Corollary 6.17 (Characterization via bases) Let G € KXX7 | let Trx s be a block
tree, and let V and W be cluster bases of rank k.

G is an H?-matriz with row basis V and column basis W if and only if for all t € Tz
and s € T there are matrices Ay € K*** and By € K7*** such that

Glr,xs = AW, Glixr, = ViB;. (6.11)

Proof. If G is an H?-matrix, we can apply Lemma to obtain A, and B; satisfying
the equations (6.11
Assume now that for all ¢ € 77 and s € T there are A, € K7s*¥ and B; € KFtxF
such that holds. In order to prove that G is an H2-matrix, we have to construct
coupling matrices S, € K*** for all admissible leaves b = (¢, s) € L7, 7
Let b = (t,s) € L’%XJ. By definition, we have § C F; and ¢ C F,, and yields
AS’fws* = (ASW:)

= Glixs = (ViBy)ljxs = ViB

’f><§ ‘fxé 2
Lemma, yields a matrix R € K**? such that ViRV, = V;, and we obtain
Glixs = ViBils = ViRV, Bi|s = ViRGlj, s = ViRAS ;W = ViS¢,

where we let Sy := RA|;, .- We have proven 1 , 50 G has to be an H2-matrix. [
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6 H2-matrices

Theorem 6.18 (Characterization via ranks) Let G € KZ*7 | let Tz 7 be a block
tree, and let Fy and Fy for allt € Tz and s € Tz be defined as in Lemma [6.15
G is an H2-matriz with row and column cluster bases of rank k if and only if

rank(Gl;, ) <k, rank(G|r,x3) < k forallt €Tz, s€Ty.

Proof. If G is an H?-matrix, our claim is a direct consequence of Corollary
We assume

rank(Gly, 7,) < k for all t € Tz

and are looking for a row cluster basis satisfying the second equation in .
We will prove by induction on |7¢| that for every t € Tz there are V; € Kk and
B, € K7#*F such that
G|£><]—'t = VtBt*
and that if chil(t) # 0 holds there are transfer matrices Ey € K¥*F for all ¢ € chil(t)
such that

Vilp = Ve Ey for all t' € chil(t).

Let t € Tz with [T;] = 1, i.e., chil(t) = §. Due to rank(G|;, ) < k, we can apply
Corollary [4.9] yields matrices V; € K™* and B, € K**** with

G|{Xft = WB:

Let now n € N be given such that for every ¢ € Tz with |7;| < n matrices V; € Kk and
By € K7F with Gl;, 7, = ViB} exist.

Let t € Tz with |T;| = n + 1. This implies chil(¢) # . We let m := |chil(¢)| and
chil(t) = {t1,...,tm}.

Since every t' € chil(t) satisfies | Ty| < n, we can use the induction assumption to find
Vy € K<k and By € K7v*k guch that G‘i’x]—‘t/ = VuBj,.

Using Lemma we find matrices Ry € K**? with Vi Ry Vi = Vi for all ¢ € chil(t).
Our definition implies F; C Fy for all ¢’ € chil(t), and we find

G’flx}} (WIB;)’le]‘—t W1Rt1Vt1Bt1|*}}
Glixr, = : = : = :

G’{mXFt (WmB:m)“mX]:t ‘/%mRtm‘/thtmﬁ]:t
Wl Rtl V;leh |§-‘t

Vim Ri,.) \ViwBt. |7,
th Rt1

Vim Ry,

_a,
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6.4 Low-rank structure of H2-matrices

Due to rank(G|;, ) < k, we also have rank(Gy) < k and can again apply Corollary
to find matrices ‘A/t e Kmk)xk and B, € K7t*k with ét = ‘A/tB;f
Combining with the previous equation we obtain
Vi Vi
Glixr, = - Gy = - V.B;,
Vi Vi

and splitting ‘A/t into k x k submatrices yields

Ey
V=] :
E,,,
We define
‘/tlEtl .
Vi = ; e Kix* (6.12)
Vi Et,,
and conclude
Vi
Clor=| V.B{ = ViB.
Vi

This is the required factorization, and (6.12)) ensures that V; is defined via transfer
matrices, i.e., that we have a nested basis.
The same arguments can be applied to construct a column basis. [
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7 H’>-matrix compression

While the approximation of a given matrix by an H-matrix can be computed by consider-
ing the singular value decompositions of all admissible blocks, finding an approximation
by an H2-matrix poses a greater challenge: cluster bases introduce dependencies between
blocks, and the nested structure introduces dependencies between levels.

It turns out that these dependencies are both a blessing and a curse: they can be
used to construct an algorithm of quadratic complexity where H-matrices require cubic
complexity, but the algorithm is a little more complicated than simple singular value
decompositions.

7.1 Orthogonal projections

We have seen in Theorem that a matrix G € KZ*7 is an H2-matrix if and only if
the submatrices G/;,, 7 and G | 7. x5 are of low rank for all ¢t € Tz and s € Tz, where F;
and Fs denote the farfields of ¢t and s, respectively.

In order to obtain an approzimation of an arbitrary given matrix by an H2-matrix,
we have to find low-rank approximations of these submatrices. These approximations
can be conveniently constructed by projections into the ranges of the basis matrices V;
and Wy, and the best possible projections are the orthogonal projections.

Definition 7.1 (Orthogonal projection) Let P € KX*Z. [f P2 = P = P* holds, we
call P an orthogonal projection.

Lemma 7.2 (Orthogonal projection) Let P € KZ*T be an orthogonal projection.
We have

|z —y|? = ||z — Pz|? + ||y — Pzl for all z € KX, y € range(P). (7.1)

In particular, we have

|z — Pz|? < ||z — y||? for all z € KX, y € range(P), (7.2a)
|z — Pz|?* = ||z||* — ||Pz|? for all z € KZ, (7.2b)
z||” < ||z or all x € .2¢
1Polf? < o) for all & € K, (7.20)

i.e., Px is the best approzimation of a vector x € K in the range of P, and applying
the projection does not increase the norm.
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7 H?-matrix compression

Proof. Let x € K? and y € range(P). We can find z € K? with y = Pz by definition
and obtain Py = P22 = Pz =y. We have

xr—y=x—Pr+Pr—y=x—Px+ P(zx—y)
and find

|z —yl* = (z —y,z —y) = (¢ = Px+ Pz —y),x — Pr+ P(z —y))
= (x — Pz,z — Px) + (x — Pz, P(x — y))
+(P(x—y),x = Pr)+ (Pl —y), P(x —y))
= ||z — Pz||* + (P*(x — Pz),z — y)
+(x =y, P*(x — Px)) + || P(z —y)|
= ||z — Pz||* + (Px — Pz, P(z — y))
+ (x —y, Px — P%2) + |Pz — y|?
= |z — Pz|® + | Pz — y|*

We obtain ([7.2a]) from (|7.1]) by
lz — Pz||* < || — Pa|® + |ly — Pz|* = ||« -y,

applying (7.1) to y = 0 yields ||z — Pxz||? + || Pz||? = ||=||?, which is equivalent to ([7.2b])
and also gives us ||Pz|]? < ||z||?, i.e., (7.2d). [

Considering the approximation of a submatrix G|, ; by an H2-matrix block V;SyW7,
it would be advantageous if we could construct an orthogonal projection P such that
range(P) = range(V;).

Fortunately, isometric matrices (cf. Definition immediately give rise to ortho-
gonal projections.

Lemma 7.3 (Factorized projection) Let V € KZ*7 be an isometric matriz.
Then P :=VV* € KI*T is an orthogonal projection with range(P) = range(V).

Proof. We have

P2=VV*VV*=V(V*V)V*=VV* =P,
P*=(VV*)* =V*V*=VV* =P,

so P is indeed an orthogonal projection.
We have range(P) C range(V) by definition. Let x € range(V). Then there is a
# € KY with 2 = V4 and we obtain

Pr=VVz2=VV'Ve=V(V*'V)t =V =z,

i.e., x € range(P). ]
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7.1 Orthogonal projections

Lemma 7.4 (Blockwise projection) Let V € KZ*KX and W € KI*£ be isometric
matrices.
Let G € KI*J and S := V*GW € KM, We have

|G = VSW*|3 < |G- VV*G|3+ |G — GWW*|3. (7.3a)
Since we also have
|G —VV*G|2 < |G — VSW¥|q, |G — GWW*||s < ||G = VSW?¥||2, (7.3b)
the bound cannot overestimate the error by a factor of more than /2.
Proof. Let z € KI. We let P := VV* and find
(G = VSW*)z||3 = |(G = VV*GWW*)z|3 = |Gz — PGWW*z||3.
We can apply to z := Gz and y := PGW W™z and obtain

(G — VSW*)z||3 = |Gz — PGz||3 + | PGWW?*z — PGz||3
= |Gz — VV*Gz||3 + |P(GWW*z — G=2)|3. (7.4)

Using ([7.2¢|) to bound the second term yields

(G = VSW)2|2 < |Gz — VV*Gz|2 + |GWW* 2 — Gz||2
= (G = VV*G)z|5 + (G — GWW*)z|3.

Since this holds for all z € K7, we conclude
IG = VSW*[|3 < |G~ VV'GI3 + (|G — GWW*|3. (7.5)
The equation implies
(G =VSW)zl2 = |Gz = VVGzlls = [(G = VVTG)z|l2,

and taking the supremum yields the first estimate of ([7.3D)).
We use (4.10c)) and apply this result to G*, W and V instead of G, V and W in order
to obtain

|G — GWW?*|y = ||G* = WW*G*|2 < ||GF = WW*G*VV*|s = ||G — VSW¥|.
This is the second estimate of ((7.3b]). ]

Definition 7.5 (Isometric cluster basis) Let V = (Vi)ie7; be a cluster basis. If all
basis matrices are isometric, i.e., if we have

Vivi=1 for allt € Tz,

we call V' an isometric cluster basis.
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7 H?-matrix compression

If we have isometric cluster bases V = (V;)ie7; and W = (Wj)se7,, we can use
Lemma [7.4] to compute quasi-optimal coupling matrices

Sp = Vi Gl s Ws for all b= (t,s) € E}‘XJ.

Due to , we can split the approximation error into contributions by the row and
column basis projections.

We can even construct the row and column bases independently: if we first find an
isometric row basis V' = (V;)te7; such that

HG’£><§ - V;Vt*G’fo%

9<e€ for all b = (t,s) € L7, ;

and then an isometric column basis W = (W;)se7, such that

1G5 s = WeWSGIE cll2 < € for all b= (t,s) € [,%Xj,
Lemma [7.4] yields
1Gliys — ViSeWi |2 < v/2e for all b= (t,s) € L’%FXJ.

7.2 Adaptive cluster bases

Given a matrix G € KZ*J and a block tree 777, the construction of an optimal H-
matrix approximation is fairly straightforward: we compute the singular value decom-
position of G|;,, for all admissible leaves b = (t,s) € LT, 7 and obtain the best possible
low-rank approximation by removing the smallest singular values (cf. Lemma and
Theorem .

Constructing a quasi-optimal #2-matrix approximation of a matrix G is more of a
challenge: we cannot handle individual blocks, but have to find cluster bases that are
appropriate for multiple blocks spread across multiple levels of the block tree. Orthogonal
projections allow us to find a relatively simple and very flexible algorithm that directly
constructs a suitable isometric cluster basis in nested representation [§], [6, Chapter 6].

We consider only the row basis V' = (V})tc7;, since Lemma|7.4] allows us to obtain the
column basis W = (W;)se7, by applying the procedure to the adjoint matrix G* with a
corresponding “adjoint” block tree.

Theorem [6.18|suggests that we should look for low-rank approximations of the matrices

Gt = Gly 7, for all t € T7.

Due to Lemma [7.3] we can expect good approximation and stability properties from an
isometric cluster basis, so these low-rank approximations should be of the form

G =~ V%V?Gt for all t € Tz,

where V' = (V})tc7; is an isometric cluster basis.
We can construct the matrices V; by a recursive algorithm.
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7.2 Adaptive cluster bases

Case 1: t is a leaf. In this case, we compute the singular value decomposition

o1
Gy = QX P, with Q € K*P, P € K7**? isometric, ¥ =
Op
We denote the columns of @ by ¢1,...,q, € KE, i.e., we have
Q= (ql qp).
Given a rank k; € [0 : p], we let
‘/t = (QI e th) S Ktht
and observe
o1
‘/t‘/t*Q:(ql e Gl 0 ... O), W‘/;*Gt:Q Ok, P*
0
Lemma [4.25| provides us with the error equation
% Ok if k < D,
G = ViVy Gilla =4 B0 " (7.6)
0 otherwise

and Theorem [4.29] states that there is no better approximation of Gj.

Case 2: ¢ is not a leaf. In this case, we let n := | chil(¢)| and chil(t) = {t1,...,t,}. We

first compute isometric basis matrices V;,,...,V;, for all children by recursion. We let

mg = Z ktl.

t'echil(t)

Since we are looking for a cluster basis, there have to be transfer matrices Ey,, ..., Ey,
such that

W1 Etl

Vi = :
Vi) \Et,

In order to keep the notation simple, we introduce
th . Etl
U; == e Ktxme, Vii=| @ | e Kmexhe (7.7)
Vi

n
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7 H?-matrix compression

and write the equation as

Vi = UV
Since the matrices V4, ..., V;, are isometric, we have
Vi Vi ViiVi,
Ut*Ut: = :I’
Vi, Vtn Vi Ve

i.e., Uy is also isometric. Since we are looking for an isometric basis matrix V4, we require
I =V;Vi = (UV)"(UVy) = VU UV = ViV,

i.e., we have to find an isometric matrix ‘7}
Slnce U 1s isometric, U Uy is an orthogonal projection. Let z € K7, The equatlons

, applied to P := U;U}, z := Gz, and y := UtV},Vt U/, together with bf) yield
I(Ge = ViV Go)z 3 = |Gz = UViV U 113
= ||Gyz — UyUF Giz||3 + DU Gz — UV, VU Gyz||3
=[G — UU; Gi)z |13 + || U (Uy G — ViV Uy Gi) 23
= (Gt = UU; Go)z3 + || (U Gy — ViV Uy Go)z3-
Introducing the matrix
Gy = UGy e K™Y

we obtain
1(Ge = ViVy Go)2ll5 = [[(Gr — UiUf Go)2l5 + [[(Gr — ViV G235 (7.8)
The first term on the right-hand side takes the form

(G’fl xFe V;fl VEG’fl ><}},)Z
(Gt — UtUt*Gt)Z == ’

(G|fn><}'t — Vi, %ZG’&X]—})Z

i.e, it represents the error introduced in the children of ¢. Since we do not intend to
change the basis matrices corresponding to the children, we consider this term fixed.

The second term on the rlght hand side describes the approximation error introduced
by the orthogonal projection V,J/;5 , and this expression closely resembles the error term
for the leaf clusters. We can treat it by the same approach, i.e., by computing the
singular value decomposition

_ o8P

and using tlle first k; columns of @ to construct 17} The basis matrix is now given
by V; = U;V;, and due to , the transfer matrices Ei,, ..., F;, can be obtained by
splitting 172 into submatrices.
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7.2 Adaptive cluster bases

Efficient computation of @t. Our algorithm requires the matrices
R ‘/;1( Gt|2?1><.7:t ‘/tjGt’ilet
Gt = Ut*Gt = c. . E = E
‘/t:, Gt |£n X.Ft ‘/t;: Gt

fn ><]:t

for all non-leaf clusters t. Computing these matrices directly is unattractive, even if we
use the forward transformation to evaluate the products.
We can avoid the direct computation by introducing auxiliary matrices: if we let

X, = VG € KRx /e for all t € 77,
we have
th ‘ktl X Fi
G=| :+ | (7.9)
th|k?tn><]:t
i.e., we can obtain @t by copying those columns of X;,,...,X;, that are elements of
Fe S Fyy ooy Fey,

Of course, we require an efficient approach to construct these matrices. If ¢t € 77 is a
leaf, we can simply apply the definition to obtain X;.
Otherwise, we have
X, = VG = VUG, = VG,

i.e., we can compute Xy using only the transfer matrices and @t- The resulting algorithm
is given in Figure [7.1]

Lemma 7.6 (Complexity) The function buildrowbasis_amatriz, called witht € Tz,
requires not more than

Covk|T| 1] if chil(t) = 0, ,
Wip(t) := . , , operations,
2 vechir) Cook|T |k + Wi (t')  otherwise
where Cyp := max{1, Cs,}Cspqg + 2 and
k= max{rz, ks : t € Tz}, Cyp, := max{|chil(¢)| : t € Tz}

denote the maximal rank and the maximal number of children. We have
Wis(t) < Copk|Z||T| + Crpk?®|Tz] | T| for all t € Tr.

Proof. We use induction over |7;| to prove the complexity bound.
Let ¢ € Tz with |T;] = 1. Then we have chil(¢) = 0. The function first computes the
SVD of Gy, this requires not more than

Csyat?| 7] < Csvd]27|j| l{|  operations
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7 H?-matrix compression

procedure buildrowbasis_amatrix(¢, G, var V, X);
if chil(t) = () then begin
Compute SVD of Gy;
Choose rank ky;
Use first k; left singular vectors to form Vi;
Xt < V%*Gt
end
else begin
for ¢ € chil(t) do
buildrowbasis amatrix(t, G, V, X);
Form ét according to ;
Compute SVD of @t;
Choose rank k¢;
Use first k; left singular vectors to form XA/t;
Xt < ‘Z*@t;
Obtain transfer matrices by splitting Vi according to ([7.7))
end
end

Figure 7.1: Adaptive row basis for a matrix GG in array representation.

due to Assumption Preparing X; requires not more than
2k |f| | F;| < 2k|T||f|  operations,
and we arrive at the upper bound
Covak| T | |t + 2k|T | [£] < Wi (8).

Now we assume that n € N is given such that the number of operations can be bounded
by Whiy(t) for all ¢ € Tz with |T¢| < n.

Let t € 77 with |T;| = n+ 1. For every child ¢’ € chil(¢), we have |T¢| < n and can
apply the induction assumption. Once the bases for all children have been computed,
we can form ét by copying the appropriate columns from Xy, ¢’ € chil(¢).

Since ét has )", cchil(t) ki rows, Assumptionyields that the SVD requires not more
than

C’svdmt2|]-}| < CSVdCsnl;:\j | Z ky  operations.
t/echil(t)

Computing X; takes not more than

k| Fi| < 2k|T| Z kv operations,
t/€chil(t)
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7.2 Adaptive cluster bases

and this leads to the upper bound
ConConaklT| D ke +26T1 Y kv 4 Y Win(t) < Win(t).
t/€chil(t) t/echil(t) t’echil(t)

In order to obtain the bound for the total complexity, we start with a straightforward
induction to get

Win(t) < ConklT| D> 1+ Conkl T D> > ke forall t € Tz.  (7.10)
teTz teTz t' echil(t)
chil(t)=0
With Corollary we obtain
S ogil=> 1= Ui =.
teTr teLr teLr
chil(t)=0

and since each cluster can have at most one parent we also have

Z Z kt/:Z Z kt’ézkt’SME"

teTz t' echil(t) teTr teTz t'eTr
t'€chil(t)
Combining these estimates with (7.10]) yields the required upper bound. ]

Remark 7.7 (Column basis) Given the block tree Trx 7 for a matriz G € KI*7 | we
can define the block tree T7, ; via

b= (t,s) € Trxg <= b :=(s,t) € T 7 forallte Tz, se€Tg.

If we apply buildrowbasis_amatriz to G* using the “adjoint” block tree T7, ; for the
row cluster tree Tz and the column cluster tree Tz, we obtain a row cluster basis for G*

that due to s a suitable column cluster basis for G.

Remark 7.8 (Destructive compression) Since the rank of Gy is always bounded by
|t|, we can overwrite the parts of G containing Gy by X; once the matriz Vi is at our
disposal.

Following this approach, we only need a small amount of auziliary storage for the
matrices @t that can be discarded as soon as YA/t and X have been computed.

After buildrowbasis_amatriz is complete, we have the matrices V;*G|;, , at our dis-
posal for all b = (t,s) € L’;Xj. If we apply the same procedure to the construction
of the column basis, we can replace the submatriz G|;, ;, which is no longer available,

by Vi*G|;y s in the construction of G,. This approach can reduce the complezity of this

S
second step significantly, since CA;S now only has not more than C’sp];?(PI + 1) columns
instead of |Z|.
After the column basts is complete, we have the matrices V;*G|;, ;W at our disposal,
i.e., the ideal coupling matrices for the H?-matriz.

181



7 H?-matrix compression

7.3 Compression error

In our compression algorithm, every generation of descendants of a cluster introduces
further approximation errors, and we have to investigate techniques for keeping these
errors under control.

Since different clusters with different index sets can contribute to the same error, we
introduce the matrices x; € KZ** for all clusters t € 77 via

1 ifi=j )
= ’ forallieZ, jet
Xty { 0 otherwise J

that pad a vector x € K! with zeros to obtain a vector iz € KZ.
Let t € Tz with n := |chil(¢)| > 0 and chil(¢) = {¢1,...,t,}. Since the index sets of
the children ¢’ € chil(t) form a disjoint partition of #, we can write the equation

Vilp = Ve Ey for all ¢’ € chil(t)

equivalently in the form

xtVi = Z Xv Vi Ey.
t’ €chil(t)

We have

Gy —V,\Vi*G, = Gy — U UGy + U UGy — VIV Gy

Gt’fl xFr th V;Gt‘fl x Fi R

= : + UU; Gy — UV, VUG
Gilt,xr = Vi Vi Gili, x5,

Gt1|f1><]-'t - W1WTGt1|ﬁth N o

= : + U(Gy — ViV GY).
th‘fnx]—} - thV;tZth’fnx}'t

Using the “padding matrices” x;, this equation can be written in the form

Xt(Gt - VtVt*Gt) = XtUt(ét - ‘Z‘Z*@)

+ Z Xt’(Gt’_Vt’WTGt'”f’Xft' (7.11)
t/€chil(t)

The first term on the right of this equation is under our control: U, is isometric, i.e.,
it will not influence the norm, and the approximation error of @t can be controlled via
choosing an appropriate rank following the singular value decomposition. The remaining
terms have a similar form as the original error on the left, only for the children ¢’ instead
of t. This property suggests that we apply recursively to the children until we
arrive at leaves, where we can control the error explicitly.
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7.3 Compression error

Lemma 7.9 (Error sum) We define

Gy — ViViG f chil(t) =
pi= L Tt e 1() 0, for allt € Tz. (7.12)
UGy — ViV*Gy)  otherwise,
We have
xt(Gy — ViV Gy) = Z Xt De+ gy 7, for allt € Tr.

t*eTy

Proof. By induction over |T|.

Let t € Tz with |T;] = 1. This implies chil(t) = @) and the equation follows directly
from the definition of D;.

Let now n € N be given such that the equation holds for all ¢t € Tz with |T¢| < n.

Let t € Tz with |T{| = n+ 1. Then we have chil(¢) # () and can apply to obtain

xt(Gr — ViVi"Gt) = xa Dy + Z Xe (Gtlpr, = VeVi Gl 7,)

t/echil(t)

=xiDet Y xv(Golpur, — VeViGrlir,)
t’echil(t)

=xiDi+ Y xu(Gy = VeViGu)luy 5,
€chil(t)

due to F; C Fy for all t/ € chil(t).
Since |Ty| < n holds for all ¢’ € chil(t), we can use the induction assumption to get

xt(Gy — ViVi"Gy) = x¢ Dy + Z xv (Gy — Vt'V;Gt’Ni'x]-‘t

t/ echil(t)
= xtD¢ + Z Xt/( Z Xt D f*x}'t) |i’><]:t
pechil(t)  tETy

i* X Ft

=x¢D¢ + Z Z Xt Dy

t/echil(t) t* €Ty

— Z Xt Dy

t* €Ty

i* X F¢*

This completes the induction step. [

Lemma [7.9] allows us to split the total error Gy — V;V;*G} for the approximation of
G into the contributions @t* — ‘A/t* X/}t’i @t* and Gy — Vi=ViGy- of its decendants, all of
which we can control explicitly via the singular value decomposition.

We could now obtain an estimate for the error by simply applying the triangle inequal-
ity, but this would not provide a sharp estimate. A closer look reveals that the ranges
of the matrices ys Dy are, in fact, orthogonal, so we can use Pythagoras’ identity to
obtain an error equation instead of an error estimate.
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7 H?-matrix compression

Lemma 7.10 (Error orthogonality) Lett € Tz and t1,te € T; with t; # to. For the
matrices defined in , we have

<Xt1Dt1‘T|]'—t17XtQthy‘ft2> =0 for all z,y € K.
Proof. Let z,y € K7. If {; N iy = (), we have x}, xz, = 0 and therefore

<Xt1Dt1x’]:t17Xt2Dt2y‘]:t2> = <Dt1x‘]:tl ) X:IXtQDto‘]:t2> =0.

Otherwise, we assume level(ts) > level(t;) without loss of generality and apply
Lemma to obtain to € desc(t1). Due to t; # to, we can find ¢’ € chil(¢;) such
that to € Ty. We have Dy z|r, € range(U;) by construction and therefore also

(Dt |7, )|y € range(Vy), i.e., we can find 2 € KF¢ with
(Dy @7, )|y = Vez.
Since tg € Ty, we can use Lemma [6.14] to obtain
(D |7, )i, = (Ve2)ly, = Vi Bry 2
and use to C #; to arrive at

(Xt Dty 2|7, s Xt Dty 7, ) = (Xip Xta Dty @l 7, Doyl 7,,)
= ((Du@|7,)liy» D2yl 7ey)
= (Vi, Bty vz, Dyl 7))
If chil(t2) = 0, we have
<Xt1Dt1x\]—‘t1,thDt2y|J-‘t2) = <Vt2Et2,t'Z7Dt2y\]-‘t2>
= (Vi By 02, (Gr, — Vi, Vi, Gyl 7,,)
= (Bt 12, Vig (Gr, — Vi, Vi, Gyl 7)) = 0
due to Vit Vi, = I. Otherwise, i.e., if chil(t2) # 0 holds, we find
= (Vi,Er, 12, Dyl 7))
= <Ut2‘/}tht2,t/Z7 U, (G, — ‘ZQYZ’;@Q)?JIEQ
= <Et2,tlzv ‘Z;U;;Uh(atz - ‘ZQ‘Z’;@@)Z/\%)
= <Et27t’za ‘/}{;(@tg - %Qﬁ;@tg)y|ft2> =0

<thDt1$|]:t1 ) Xt2Dt2y’ft2>

due to U, Uy, = I and ‘7{;‘22 =1. |

Lemma [7.9] allows us to represent the approximation error by a sum of the contribu-
tions introduced in all clusters, and Lemma [7.10] states that all of the contributions are
orthogonal with respect to each other, so that we can use the Pythagoras identity to
obtain an expression for the total error that involves only quantities that we can control
explicitly.
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7.3 Compression error

Theorem 7.11 (Error decomposition) We define the approximation G e KIxJ by

~ {Gm ifb=(t,s) € L7, .

Glixs = or allb=(t,s) € L1x7.
e ViViGlis  otherwise f (t,s) € Lzxg

Using the matrices defined in , we have

(G- é)z = Z xtDez| 7, for all z e KV,
teTz
@218 = 3 1D B for all = € X7,
teTr
IG = Gll5 < Y IDdl5.
teTr

Proof. Let z € K. Corollary yields
(G=Gz= Y xl@=pszls = Y xulGe = ViV Gi)lpes?

b=(t,s)€Lzx g b:(t,s)EC%X‘y

and we can use Lemma [7.9] to get

xt(Gr — ViV Gy) for all t € T7.

Z Xt Dy

t*eT;

|t><s * x

Combining both equations and recalling the definition of F; of Lemma gives us

(G- é)z = Z Z Xt D | ey 57 Z Z Z X+ Dy

b=(t,s)eLE, ,t"ETt teTz scrowt(t) t*€T;

Z Z Z Xtr Dl 52]5 = ZXt*Dt*Z’]-'t*-

t*€7Tz te€pred(t*) s€row™ (¢) t*e€Tr

t*><s |

This is the first equation. Lemma guarantees that all of its terms are pairwise
orthogonal, and this allows us to obtain a version of the Pythagoras identity for the
error decomposition.

H(G - é)zHg =((G - é) (G- G < Z th‘Dtlz‘]:tl Z thDt2Z|]'—t2>

t1€T7 to€Tz

= Z Z <Xt1Dtlz‘]'—t17Xt2Dt2z‘]:t2>

t1€TT to€TT

= Z<XtDt2|ft,XtDtZ’ft> = Z Ix:Dez| 71> = Z |Dez| 7,117
teTr teTr teTr

This is the second equation. It gives rise to the bound for the spectral norm if we take
the maximum on both sides. ]

Theorem provides us with an equation and an estimate for the total error of the
approximation. Frequently, we are interested in blockwise estimates, e.g., if we want to
perform arithmetic operations based on block decompositions as in Chapter
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7 H?-matrix compression

Corollary 7.12 (Block error) Let b= (t,s) € £;XJ. We have

ixs)2I> = Y | De-

t*eTy

(G lixs = VEVE

el for all z € K5

Proof. Let z € K®. Due to b = (t,s) € E'IFXJ, we have § C F;. We let z := y,z € KJ
and use Lemma [7.9] and Lemma [Z.10 to obtain

It

2
s — VY7 Glio) 22 = 1(Ge = ViV Gl = || Y xe Dl .
t* €Ty

= Z Z<Xt1Dt1x‘]:t17Xt2Dt2‘r|]'—t2>

t1€Tt t2€T:

= > e Dealz.lP = Y 1D lpxs2
t*eTy t*€Tt
In the final step, we have used z; = 0 for all j € J \ § and x; = z; for all j € 5. [

Controlling the error matrices Dy is straightforward: for leaves t € L7, we have
[Dell2 = [1Ge = ViV Gill2,

and this is precisely the approximation error that we can control by using the left singular
vectors of Gy to define V;. For the non-leaf clusters ¢t € 77 \ Lz, we have

1Dtz = [|U«(Gy — ViViEGy)|l2 = ||Gr — ViV Gell2

since Uy is isometric, and again this is the approximation error that we can control by
using the left singular vectors of G, to obtain the transfer matrices V.

Remark 7.13 (Weighted estimates) The compression error can be controlled in far
more detail by introducing weight factors to the matrices Gy: if we have wy s € Rsq for

allt € Tz and s € row(tT) for tT € pred(t), we can define Gy, € KIxFt by
Giwlivs = w;slG\gxg for allt € Tz, tT € pred(t), s € row(tT)

and replace Gy by Gy, in the SVD and accordingly Dy by Dy,. If we now choose the
ranks k; to ensure

| Dt wll2 <€ for allt € Tz,
Corollary [7.13 yields the estimate
Gz — ViV Glislls < D wie € for allb = (t,s) € LT, 7,
teTy

i.e., we can ensure different error bounds for different blocks [5].
One possibility are block-relative error estimates: if we choose the weights w; s =

|2 g'evel®)— level(t™) fort € Tz, t+ € pred(t) and s € row(t"), our approach yields

* 2 €
1Glixs = ViV Gligsllz < 1o

where Cyy, is a bound for the number of sons and Cgg® < 1.

G zcall3 Jor allb=(t,s) € L, ;.
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7.4 Compression of ‘H-matrices

7.4 Compression of 7-matrices

The algorithm buildrowbasis amatrix requires at least |Z| |7 | operations. This is not
surprising, since it is looking for an approximation of a general matrix G € KZ*7 and
therefore has to examine each of its coefficients at least once.

If the matrix G is already given in compressed form, e.g., as an H- or H?-matrix, we
can take advantage of the additional structure to significantly reduce the computational
work required for the compression.

Let us assume that G is an H-matrix, i.e., that we have

Glis = ApBy, for all b = (t,s) € L7, ;.
In order to take advantage of this factorization, we introduce
By :={b=(t1,s) € E}XJ : tT € pred(t)} for all t € T7

ftzug

(tT ,S) EBt

and have

due to ((6.10).
Given a cluster t € Tz, we let m := |By| and By = {b1 = (t7.1,51),-- -, bm = (tT.m>5m) }
and write Gy in the form

Gt:(G|ix§1 G|£X§m).

Since our construction requires only the singular values and the left singular vectors, we
can replace G by an isometric factorization without losing the relevant information.
To this end, we compute QR factorizations

By = QuRy,  Qp € K¥*F isometric, R, € K~o<F for all b= (t,s) € L}XJ,

where the index sets £, are chosen as subsets of § with |£;| < k. Due to Corollary
this choice implies that the sets Ly, C 51,...,Ls,, C 3, are pairwise disjoint.
The factorizations of the matrices By give rise to a factorization of Gy:

Gi=(Glixs, - Glixs,) = (Anlpan B, Q5 - Avulil, @5,
@5,
= (Ab1|£ka?§1 T Abm’kaRZm)
@,
Since Q(¢,s,)s - - - Q(t,s,,) are isometric, the second factor does not influence the singular

values or left singular vectors, so we can discard it and conclude that we can replace G
by the condensed matrix

Ci= (Ap iRy, oAbl Ry ) € KD Fo=|JLcJ.
beB;
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7 H?-matrix compression

In a similar fashion, we replace X; = V;*G} by
X; =V Gy

and for clusters ¢ with chil(t) # (), we let n := [chil(¢)| and chil(t) = {t1,...,t,} and
replace G by its condensed counterpart

c
Xt1|kt1 xFf
o
Gi = :
c
th|ktn><]:tc

This approach reduces the computational work significantly: there are at most pz + 1
predecessors of a cluster ¢t € Tz, and each of these predecessors can be associated with
at most Cyp, blocks. The thin QR factorizations guarantee that in the condensed matrix,
every one of these blocks is represented by at most k& columns.

Lemma 7.14 (Condensed farfield) We assume that Tzxg is Csp-sparse. Then we
have

|F7| < Cgpk | pred(t)| < Cspk(pz + 1) forallt € T1
Proof. Let t € T7z. We have

Bi={b=(tr,s) € Lf, ; : trepred®)} C | row(tr),

t+epred(t)
Bl < Y |row(tr)| < Csp | pred(t)] < Cplpz + 1)
t+epred(t)
Due to
1Ly < K for all b € E}'XJ,
we obtain

|]:t0| < Z |£b| <k |Bt| < Cspk‘pl“ed(t) < Cspk(pf + 1)'
beB:

Lemma 7.15 (Complexity) Preparing the weight matrices Ry for all b = (t,s) €
E;XJ requires not more than

C’qTC’spk:2 (pzx7 + D|J|  operations.

If we replace Gy, @ and X; in the algorithm buildrowbasis_amatriz by their condensed
counterparts Gf, Gf and Xf, the resulting algorithm requires not more than

C’spCbbl%2(pI +D|Z]+ CspCbbl%g(pz + 1)|Tz|  operations.
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7.4 Compression of ‘H-matrices

Proof. Let b = (t,s) € E;XJ. Due to Assumption the QR factorization of Bj can
be computed in not more than

quk2 |5|  operations,
and performing this task for all admissible leaves requires not more than

Coyrk? Z 15| < CspCork*(pzx7 +1)|J|  operations

b:(t,s)GﬂJIrX 7

due to Lemma [3.341
In order to obtain the estimate for the construction of the row basis, we simply replace
Fi by Ff in the proof of Lemma and use Lemma to find a bound for |Ff|. =

Once we have constructed suitable isometric cluster bases V = (Vi)ie7, and W =
(Ws)seT,, we can compute the coupling matrices for admissible leaves efficiently by
taking advantage of the low-rank factorization: we have

Sy = Vi Gl W5 = VI Ay By W, = (Vi* Ap) (W7 Bp)* for all b = (t,s) € L;Xj,

and VA4, € KE>* and WrB, € K*>*¥ can be evaluated by applying the forward
transformation to the columns of A, and B, and this takes not more than

2k2 |t + 23| T;| + 2k?|5| + 2k3|T;|  operations.
Multiplying both products requires only 2 k;kk, < 2k® operations per block.

Remark 7.16 (Typical complexity) If we have |t| > k and |5| > k for all leaves
t € L1 and s € Ly and if no cluster has exactly one child, we have already seen in
Remark that we have k|Tz| < 2|Z| and k|T7| < 2|J| and find that our algorithm
requires O(k*(pz + 1)(|Z] + |J|)) operations. The original H-matriz requires O(k(pz +
D(|Z| + |T|)) units of storage, so the algorithm has almost optimal complezity.

Remark 7.17 (Error control) Since this algorithm computes exactly the same cluster
bases (up to rounding errors) as the previous one, the same error estimates apply.

Remark 7.18 (Second phase) Usually we have to compute both a row and a column
basis. If we start with the row basis, we compute QR factorizations of the matrices By
and the condensed matrices ApRy.

The column basis can be computed by reversing the roles of Ay and By, i.e., the QR
factorizations of Ay have to be computed and the triangular factors multiplied with By.

There is, however, a potentially attractive alternative: if we already have an isometric
row basis at our disposal, we can also condense the admissible blocks by replacing Ay by
ViVi* Ay and ByAy, by By Ay ViV, Since Vi* is isometric, we can discard it as before to
obtain a condensed matriz Gf. This approach has the advantage that the matrices CA}f
end up containing the coupling matrices for the compressed H?-matriz.
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7 H?-matrix compression

7.5 Compression of #2-matrices

It is frequently desirable to construct an H2-matrix approximation of a matrix that is
already, explicitly or implicitly, given in H2?-matrix form, e.g., to reduce an unnecessarily
high rank or to recompress the intermediate result of an arithmetic operation.

We assume that G is an H2-matrix with a row cluster basis V14 and a column clus-
ter basis Wgq, both of rank k. The transfer matrices for both bases are denoted by
(Eold,t)te7y and (Foq,s) seT,» and the coupling matrices by (Sold,b)be ct,

In order to handle the recompression efficiently, we can take advantage of Corol-
lary for each t € Tz, we know that a matrix B; € K7*** exists satisfying

Gt = Glix 7, = Vot By
As in the case of the H-matrix compression, we can use a QR factorization
By = Q1 Z,
where Z; € KE*F for an index set £; C F; with |L:| < k to find a representation
Gy = Vo1 Z; Q5

that allows us to discard the isometric matrix )y and only compute the SVD of the
condensed matrix Vgq.2Z;. Since this matrix cannot have more than £ columns, the
resulting recompression algorithm is very efficient.

Definition 7.19 (Total weights) A family (Z;)eT, of matrices Zy € KE*F with index
sets Ly C Fy satisfying |L| < k is called a family of total weights for the row cluster
basis Vg and the matriz G € KX if for every t € Tz there is an isometric matriz
Q; € KF*Lt such that

G = Vo Z; Q5 - (7.13)

Total weight matrices allow us to significantly reduce the computational work required
for the H?-matrix compression, but constructing them directly via the definition
is unattractive: computing Z; directly would require ~ k?|J;| operations and lead to
quadratic complexity if applied to all clusters.

In order to overcome this obstacle, we follow the same approach as for the forward
and backward transformation and consider the task of computing isometric matrices
Q: € KFt*£t and weight matrices Z; € K£+** with |£;| < k such that

Gy = ‘/()1d7tZ£kQI forallt € 77

for all clusters, not just for individual clusters. As in the transformation algorithms,

this allows us to make use of the hierarchical structure to speed up the computation.
Let ¢t € Tz, and let n := | row™ (¢)| denote the number of admissible blocks b = (¢, s) €

LY, 7+ We enumerate the corresponding column clusters as row™ (t) = {s1,..., s}
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7.5 Compression of H?-matrices

We assume that t is not the root, i.e., there is a parent cluster t© € 77 such that

t € chil(¢T). This implies
pred(t) = {t} Upred(tT),
and therefore .
]:t - .Ft“r U U §]
j=1
Using a suitable recursive algorithm, we can assume that the matrices Z;+ and Q;+ and
the index set £+ C Fy+ with
G+ = Vold,ﬁ Zt*+ QZ+

have already been computed, and therefore we can use (6.3)) to obtain

Gy = (Gt+’£x]:t+ Voud,tSold,t,ss Wora s, -+ %1d,tsold7t,an;1d7sn>
= Vot 10254 Q5 VoldSoldt,si Wilas, -+ VoldtSold tsn Weid.s,, )
= (Vo1 Bola 1 25 Q- Vold,tSold,tus Wonas, -+ VoldtSold,t,s0 Wold.s,,)
= Vot (BodtZ5Qfy Solatsi Wilas, -+ Solditsn Wold.s,,) -

The first submatrix already involves an isometric factor that can be eliminated during
a condensation step, but the remaining submatrices do not. QR factorizations of the
column cluster basis can help us transform these matrices into a more suitable form.

Definition 7.20 (Basis weights) A family (Rw,s)se7, of matrices Ry, € KEw,s <k
with index sets Ly.s C § satisfying |Lw,s| < k is called a family of basis weights for the
column cluster basis W4 if for every s € Tz there is an isometric matriz Qw,s € K> £w.s
such that

Wold,s = QW,SRW,S~ (714)

Assuming that we can construct these basis weight matrices efficiently, we can use
them to write G; in the form

Gy = Vo (Boa 25+ Qv Sold s Wias, -+ Solditsn Widas,)
= Vold,t (Eold,tZt*-&— Q:+ Sold,t,31 R*W,le;V,sl ce Sold,t,snR*W7ana/’sn)
*
Qt+
*
QW,51
= Vold,t (Eold,tZ;— Sold,t,sl R%751 cee Sold,t,snRik/V’sn)
Q*
W,sn
Introducing the matrices
*
Zi+ Egay Qu+
Ry, S Q
»S1%old,t,s W,s1
Y, = S ekFR = ' e KF 7t
RW,SnSgld,t,sn QW,sn
(7.15)
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7 H?-matrix compression

procedure totalweights(s, Voiq, Soid, Rw, var Z, L);
Ff 0
if ¢t is not the root then
Ff 4 Lo+
for s € row™(t) do
Ff = FfU Lws;
Y; + 0 € KFixk,
if ¢ is not the root then
Yt|£t+ A Zt+E£,k1d,t§
for s € row™ (t) do
Yilcw.. < Rw,sSqa.1.s5
Compute a QR factorization Y; = @tZt;
for ¢’ € chil(t) do
totalweights(t, Vo, Sod, Rw, Z, L)
end

Figure 7.2: Column basis weights for W4

with the index set
Ffi= L+ ULws, U...ULws, €J,

we can write this identity in the short form
Gt = Vo, Y, Pr.

We compute a QR factorization of Y; to obtain an isometric matrix @t € RFixLe g
matrix Z; € K£%F with an index set £; C Fi C J satistying |£;] < k and

Y, = QiZ:.
With the isometric matrix Qs := Pt@t e K7Lt we arrive at
Gt = Vol Y{ Py = Vol Zi Qi P = Va1 Z{ Qf

and have found the required factorization.

So far, we have assumed that t is not the root. If it is, we simply skip the terms
connected to ¢ in the procedure, i.e., for the root, only blocks in row™ (¢) are considered.
The resulting procedure is summarized in Figure

It is, of course, still incomplete, since we still have to address the task of computing
the basis weights (Rw,s)se7;, required to set up the matrices Y;. We can again use a
recursive algorithm: if s € 77 is a leaf, we have Wyq s at our disposal and can compute
the QR factorization

Wold,s = QW,SRW,S
directly, finding Ry s € KEw.s¥k with an index set Lw,s C 5.
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7.5 Compression of H?-matrices

procedure basisweights(s, Wy, var Ry, Ly );
if chil(t) = 0 then
Compute a QR factorization Wyq,s = Qw,sRw,s with Ry € KELw,s <k
else begin
Ems < @;
for s’ € chil(s) do begin
basisweights(s’, Woa, Rw, Lw);
EW,S — £W,s U EW,s’
end;
W, « 0 € KEw.sxk,
for s’ € chil(s) do
Ws’£W7S/ «— RW,S’Fold,s’
Compute a QR factorization WS = @SRWS with Ry € KEw,s xk
end
end

Figure 7.3: Column basis weights for W4

Otherwise, i.e., if s has children, we can use recursion to first compute the matrices
Ryys for all children s” € chil(s). We let n := | chil(s)| and chil(s) = {s1,...,s,}. Using
(6.3]) again, we find

Wold,leold,sl QW,sl RW,31 Fold,sl
Wold,s = =

Wold,snFold,sn QW,S»,L RW,sn Fold,sn

QVV,51 RVV,sl Fold,sl

QVV,sn RW,sn Fold,sn
We construct

RW,leold,sl N
W = : € KEwsxk Lyws:=Lws U...ULws, C3

RI/V,snFold,sn

and finding a QR factorization
W, = QW,SRW,S

with an isometric matrix Qw,s € KEwsXLw.s and a matrix Ry, € KEws*E with an
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7 H?-matrix compression

index set Ly, C EWﬁ with |Lyws| < k yields
QW,S1 QW,81
Ws = Ws = QW,S RW,Sa
QW,sn QW,sn

:5QW,S

where Qs is the product of two isometric matrices and therefore isometric, too. This
procedure is summarized in Figure
Now we can get back to the task of constructing an improved cluster basis. Let t € T7.
If chil(t) = 0 holds, we have Vgiq+ at our disposal and can compute the singular value
decomposition of
G§ = Vot Z; -

Due to , ie., Gt = G{Qj, the left singular vectors and singular values of this
matrix are the same as of the matrix Gy, and we can proceed as in the algorithm
buildrowbasis_amatrix to choose a rank k; and construct V; € Kt**. Instead of com-
puting @t, we prepare the matrix

Ry := V" Vouay € KM*¥

describing the change from the original to the new cluster basis.
If chil(t) # (), we use recursion to prepare the cluster bases and the matrices Ry for
all children t' € chil(t). Let n := | chil(¢)| and chil(¢) = {¢1,...,t,}. We have

Vi Vo, Eola by Ry, Eoa i,
~ * * )k . * )k . * )k
Gy = Ut Vold,tZt Qt = : Zt Qt = : Zt Qt-
Vi Vol t, Eold,t,, Ri, Eoa

We let

~

Ry Egat,
Vold,t := U Voiar = :

: (7.16)
R, Eoiat,

and conclude that we have to compute the singular value decomposition of
Gi = Vo Z{

and use the singular values to choose the rank k; and the left singular vectors to define
V; and thereby the transfer matrices of the new cluster basis. The basis change matrix
can be computed efficiently via

Ry = Vi Voae = ViU Vaiae = Vi'Vola e

Since ét = éfQ;j‘ holds, the result is the same as in the original algorithm. The algorithm
is summarized in Figure [7.4]
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7.5 Compression of H?-matrices

procedure buildrowbasis h2matrix(t, Voq, Z, var V, R);
if chil(t) = () then begin
Compute SVD of Gf := V,1q4 4}
Choose rank ky;
Use first k; left singular vectors to form Vi;
Ry < Vi*Vaia
end
else begin
for ¢ € chil(¢) do
buildrowbasis h2matrix(t', Vo4, Z, V, R);
Form ‘701d,t according to ;
Compute SVD of G\,f = Va4t
Choose rank k¢;
Use first k; left singular vectors to form XA/t;
Ry < Vi*Vola i
Obtain transfer matrices by splitting Vi according to ([7.7))
end
end

Figure 7.4: Adaptive row basis for an H?-matrix

Since the entire error analysis for the original algorithm buildrowbasis_amatrix re-
mains valid for the new algorithm buildrowbasis_h2matrix, we only have to investigate
the latter’s complexity. This involves three steps: the construction of the basis weights,
the construction of the total weights, and finally the construction of the new cluster
basis.

Lemma 7.21 (Basis weights) We define

Wosls) = {cq,,kQ H if chil(s) =0,

llseTy.
(Cor+2) Xy ccnil(s) k3 + Wyy(s')  otherwise Jorall s €Ty

Calling the function basisweights for a cluster s € Ty requires not more than Wiy,(s)
operations.
Computing all basis weights takes not more than

Cuk? |T| + (Cyr + 2)k> | T7| operations.

Proof. By induction over |T|.
Let s € T7 with |T5| = 1. Then we have chil(s) = () and can use Assumption to
see that we need not more than

Cor|5| k* = Wiy (s) operations.
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7 H?-matrix compression
Let now n € N be such that the estimate holds for all s € 77 with |7;| < n.
Let s € Tz with |T5| = n 4 1. Then we have chil(¢) # 0 and find
Ly < k| chil(s)].
Constructing Ws requires not more than

Z 2| Ly | k? < 2Kk | chil(s)| operations,
s’ echil(s)

and the QR factorization not more than
qu|EAW’S| k? < Cypk? | chil(s)| operations,

again due to Assumption Adding both estimates completes the induction.
For the upper bound, a simple induction yields the bound

Ca Y BB+ (Cqut2) D Y K <Culd|F+(Cqu+2) > K

seL g s€T7\L 7 s'€Echil(s) s'eTy
< Cqu| T K + (Cqr + 2)| T | K,

where we have used Corollary for the first sum. [

Lemma 7.22 (Total weights) We define

Win(t) := (Cr+ 2)(Cop + D+ Y Wi(t) for all t € T7.
t’ echil(t)

Calling the function totalweights for a cluster t € Tz requires not more than Wy,(t)
operations.
Computing all total weights takes not more than

(Cyr +2)(Csp + 1)K | Tz| operations.
Proof. Let t € Tz. We have

|Fr| <k +k|row™ (t)] < (Csp + 1)k.
Constructing the matrix Y; takes not more than

23 + Z 2k3 < 2(Csp + 1)k operations,

serow™ (t)
and finding its QR factorization not more than
quk2 |F7| < C’quQ(C’sp + 1)k = Cye(Cop + 1)k3 operations.

Adding both estimates yields the first result. The second follows directly via a simple
induction. ]
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7.5 Compression of H?-matrices

Lemma 7.23 (Improved cluster basis) We define

(Cspa + 4)K? [{| if chil(t) = 0,

or allt € T7.
(Csva +6) X pechin(y k3 +Wya(t)  otherwise 4 g

Wo(t) = {

Calling the function buildrowbasis_h2matriz for a cluster t € Tr requires not more
than W(t) operations.
Constructing the entire adaptive row basis takes not more than

(Cypa + 6)(K* |Z| + k> |Tz|) operations.

Proof. By induction over |T|.
Let ¢ € Tz with |7;] = 1. Then we have chil(t) = . Computing G¢ requires not more
than
2k? |t| operations,

the singular value decomposition requires not more than
Civak? |#| operations
due to Assumption and preparing R; takes not more than
2k? |t| operations.

Adding the three estimates yields Wy (t).
Let now n € N be chosen such that the estimate holds for all ¢ € Tz with |T¢| < n.
Let t € Tz with |T¢| = n+ 1. Then we have chil(¢) # (). Constructing XAfol(Lt requires
not more than
Z 2k operations.
# €chil(t)

Since this matrix hat not more than

> k=k|chil(t)|

#echil(t)
rows, we can compute @% in not more than
2k3 | chil(t)| operations
and Assumption [5.7] yields that not more than
Cisvak? | chil(t)| operations

are required for the singular value decomposition. The matrix R; can finally be computed
in not more than
2ksk* | chil(t)| < 2k | chil(t)| operations,

and adding the four estimates yields Wiy, (), completing the induction.
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7 H?-matrix compression

For the upper bound, a simple induction yields

(Csvd + 4) Z K’ |£| + (Csvd + 6) Z Z K
telr teTz\ Lz t/ echil(t)
< (Cova + DK [Z] + (Cova + 6) > K
teTr
S (Csvd + 4)k2 ‘I’ + (Csvd + 6)k3 ’7-I|7

where we have used Corollary for the first sum. [

We can see that O(k?|J| + k3|T7|) operations are sufficient to compute the basis
weights and that O(k?|Z| + k3| Tz|) operations are sufficient for the total weights and the
improved row basis.

Remark 7.24 (Typical complexity) If we have |t| > k and |3| > k for all leaves
t € L1 and s € L7 and if no cluster has exactly one child, we have already seen in
Remark [6.10 that we have k|Tz| < 2|Z| and k|T7| < 2|J| and find that our algorithms
require O(k? | J|) and O(k? |I|) operations, respectively, i.e., we obtain linear complexity.

Remark 7.25 (Weighted estimates) Since the new algorithm works with the total
weights Zy instead of the original matrices Gy, we cannot choose arbitrarily general
weighting strategies as in Remark[7.13

Fortunately, there is still enough flexibility to ensure blockwise error estimates: if we
let ws = [|Glis s llag" OV for ¢ € Tz, t+ € pred(t), and s € row™ (tT), we can
see that we only have to modify the definition of Yy in by including simple weights:

Zi+ Ezld,t/ q

RS54,/ |Glixs, 12
Yiw = .

)

RW,snSZZd,t,sn/||G|£x§n 2

Of course, now we have to compute the norms of the admissible submatriz blocks. If we
prepare basis weights Ry for the row cluster basis as well as Ryy for the column cluster
basis, we have

HG|5><§

2 = Vot Sotat,sWiasll2 = |RviSoides Ry sl for allb = (t,s) € LT, ,,

and the matriz on the right has not more than k rows and columns, therefore its spectral
norm can be computed efficiently. Since we need only a lower bound, we can even use a
power iteration to estimate this norm.
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