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1 Introduction

Non-local operators appear naturally in a wide range of applications, e.g., in the inves-
tigation of gravitational, electromagnetic or acoustic fields. Handling non-local interac-
tions poses an interesting algorithmic challenge: we consider classical gravitational fields
as an example. In a first step, we consider two stars located at positions x, x̂ ∈ R3 with
masses m, m̂ ∈ R>0. The gravitational force exerted by the star at position x on the
star at position x̂ is given by

f̂ = γm̂m
x− x̂
‖x− x̂‖32

where γ ∈ R>0 is the universal gravitational constant. If we consider only two interacting
stars, we can evaluate this expression directly and efficiently and use it as the basis of
simulations.

The situation changes significantly if we consider a larger number of stars: Let n ∈ N,
and let x1, . . . , xn ∈ R3 be positions and m1, . . . ,mn ∈ R>0 masses of n different stars.
By the superposition principle, the gravitational forces exerted on a star at position x̂
result from adding the individual forces, i.e., we have

f̂ = γm̂

n∑
j=1

mj
xj − x̂
‖xj − x̂‖32

.

Now the evaluation of the force requires Θ(n) operations. Since even a small galaxy
contains around 109 and the Milky Way is estimated to contain between 2 × 1011 and
4×1011 stars, evaluating f̂ takes a long time. If we wanted to simulate the motion of all
stars in the Milky Way, we would have to evaluate the forces exerted on each star by all
other stars, leading to at least 2× 1022 operations. This is an amount of computational
work that even modern parallel computers cannot handle: a single core of a processor
might be able to compute 109 forces per second, so it would take at least 2×1013 seconds,
i.e., approximately 633 761 years. Even if we could parallelize the evaluation perfectly
and had 633 761 processor cores at our disposal, one evaluation of the forces would still
take a year, and standard time-stepping methods require a large number of evaluations
to obtain a reasonably accurate simulation.

We can work around this problem by employing an approximation: let s ⊆ R3 be a
convex subdomain, and let

ŝ := {j ∈ I : xj ∈ s}, I := [1 : n]

denote the indices of all stars located in s.
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1 Introduction

Figure 1.1: Replacing a cluster of stars by a “virtual star” that exerts approximately the
same gravitational force

If the diameter of s is small compared to the distance from s to x̂, we have

xj − x̂
‖xj − x̂‖32

≈ xs − x̂
‖xs − x̂‖32

for all j ∈ ŝ,

where xs denotes the (suitably defined) center of s. Using this approximation, we obtain

∑
j∈ŝ

mj
xj − x̂
‖xj − x̂‖32

≈
∑
j∈ŝ

mj
xs − x̂
‖xs − x̂‖32

=

∑
j∈ŝ

mj


︸ ︷︷ ︸

=:ms

xs − x̂
‖xs − x̂‖32

= ms
xs − x̂
‖xs − x̂‖32

.

If we have xs and ms at our disposal, evaluating this expression requires only O(1)
operations. Essentially we approximate all stars in the region s by a single “virtual”
star at position xs of mass ms. Considering that s may contain millions or even billions
of stars, replacing them by a single one significantly reduces the computational work.

In most cases, a single subdomain s cannot contain all stars and at the same time
be sufficiently far from x̂. This problem can be solved by using a nested hierarchy of
subdomains: given a subdomain s containing a number of stars, we check whether it is
sufficiently far from x̂. If it is, we use our approximation. Otherwise, we split s into sub-
domains and check these subdomains recursively. We can arrange the splitting algorithm
in a way that guarantees that the diameters of the subdomains decay exponentially, and
prove that O(log n) subdomains are sufficient to approximate the force acting at x̂.

This approach can be generalized and made more efficient, e.g., we can improve the
accuracy by using multiple virtual stars per subdomain s, we can reduce the computa-
tional work by constructing virtual stars for s from virtual stars of subdomains s′ instead
of the original stars. The best methods employ hierarchies of source subdomains s and
target subdomains t that are both represented by virtual stars: in a first step, the stars
in the source subdomains are replaced by virtual stars. In a second step, the interactions
between virtual source stars in s and virtual target stars in t are computed. In a final
step, the forces acting on the virtual target stars in t are translated back to forces acting
on real target stars. This technique can reach almost linear complexity and is known as
a fast multipole method [22] or as a symmetric panel clustering method [30]. Its algebraic
counterpart is the H2-matrix representation [27, 8].
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A particularly interesting application is the approximation of matrices resulting from
the discretization of integral equations or partial differential equations: instead of using
k virtual stars to approximate a gravitational field, we use k coefficients to approximate
the effect of a submatrix. Considered from an algebraic point of view, this is equivalent to
approximating a submatrix by a matrix of rank k, and this kind of approximation can be
constructed efficiently for matrices appearing in a large number of practical applications.

Splitting a matrix hierarchically into submatrices that can be approximated by low
rank leads to the concept of hierarchical matrices (or short H-matrices) [23, 26, 25,
21, 24]. These matrices are of particular interest, since they can be used to replace
fully populated matrices in a wide range of applications using specialized algorithms
for handling matrix products, inverses, or factorizations. This approach leads to very
efficient and robust preconditioners for integral equations and elliptic partial differential
equations, it can be used to evaluate matrix functions or to solve certain kinds of matrix
equations.

Taking the concept of low-rank approximations a step further leads to H2-matrices
[27, 8, 6] that handle multiple low-rank blocks simultaneously in order to reduce storage
requirements and computational work even further.

Acknowledgements

I would like to thank Daniel Hans, Christina Börst, Jens Liebenau, Jonathan Schilling,
Jan-Niclas Thiel, Bennet Carstensen, Jonas Lorenzen, Nils Krütgen, and Nico Wichmann
for helpful corrections.
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2 One-dimensional model problem

We start with a one-dimensional model problem that shares many important properties
with “real” applications, but is sufficiently simple to allow us to analyze both accuracy
and complexity without the need for elaborate new tools

2.1 Integral equation and discretization

We consider the integral equation∫ 1

0
g(x, y)u(y) dy = f(x) for all x ∈ [0, 1], (2.1)

where the kernel function g is given by

g(x, y) :=

{
− log |x− y| if x 6= y,

0 otherwise
for all x, y ∈ [0, 1] (2.2)

and the right-hand side f and the solution u are in a suitable function spaces. Here
log(z) denotes the natural logarithm of z ∈ R>0, i.e., we have log(ez) = z.

In order to compute an approximation of the solution u, we consider a variational
formulation: we choose a subspace V of L2[0, 1] for both the solution u and the right-
hand side f and multiply (2.1) by test functions v ∈ V to obtain the following problem:

Find u ∈ V such that∫ 1

0
v(x)

∫ 1

0
g(x, y)u(y) dy dx =

∫ 1

0
v(x)f(x) dx for all v ∈ V.

We will not investigate the appropriate choice of the space V here, although it is of
course important for the existence and uniqueness of solutions.

We are only interested in the Galerkin discretization of the variational formulation:
we let n ∈ N and introduce piecewise constant basis functions

ϕi(x) :=

{
1 if x ∈ [(i− 1)/n, i/n]

0 otherwise
for all i ∈ [1 : n], x ∈ [0, 1].

Following the standard Galerkin approach, the space V is replaced by

Vn := span{ϕi : i ∈ [1 : n]}

to obtain the following finite-dimensional variational problem:
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2 One-dimensional model problem

Find un ∈ Vn such that∫ 1

0
vn(x)

∫ 1

0
g(x, y)un(y) dy dx =

∫ 1

0
vn(x)f(x) dx for all vn ∈ Vn.

In order to compute un, we express it in terms of the coefficient vector z ∈ Rn corre-
sponding to our basis, i.e., we have

un =
n∑
j=1

zjϕj .

Testing with basis vectors yields
n∑
j=1

zj

∫ 1

0
ϕi(x)

∫ 1

0
g(x, y)ϕj(y) dy dx =

∫ 1

0
ϕi(x)f(x) dx for all i ∈ [1 : n],

and this describes an n-dimensional linear system of equations.
Introducing the matrix G ∈ Rn×n and the vector b ∈ Rn by

gij :=

∫ 1

0
ϕi(x)

∫ 1

0
g(x, y)ϕj(y) dy dx for all i, j ∈ [1 : n], (2.3a)

bi :=

∫ 1

0
ϕi(x)f(x) dx for all i ∈ [1 : n], (2.3b)

we can write this linear system in the compact form

Gz = b. (2.4)

Since G is an n-dimensional square matrix, we have to store n2 coefficients. In order
to make un a reasonably accurate approximation of u, we typically have to choose n
relatively large, so that storing n2 coefficients is unattractive.

Since g(x, y) > 0 holds for almost all x, y ∈ [0, 1], all coefficients are non-zero, so
standard data structures like sparse matrices or band matrices cannot be applied.

Remark 2.1 (Toeplitz matrix) G is a Toeplitz matrix, i.e., we have

j − i = `− k =⇒ aij = ak` for all i, j, k, ` ∈ [1 : n].

Toeplitz matrices can be embedded in circulant matrices, and circulant matrices can be
diagonalized using the discrete Fourier transformation.

This means that we can use the fast Fourier transformation algorithm [10] to evalu-
ate matrix-vector products in O(n log n) operations. Unfortunately, this approach relies
heavily on the regular structure of our discretization and is typically not an option for
more general problems.

Remark 2.2 (Wavelets) Another approach is to use wavelet basis functions [13, 9]
instead of piecewise constant functions.

This reduces the absolute value of most matrix elements significantly and thereby al-
lows us to approximate the entire matrix G by a sparse matrix that can be handled very
efficiently. This approach can be extended to more general geometries and integral opera-
tors [12, 14, 11], but the corresponding algorithm is more complicated than the technique
we will focus on here.
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2.2 Degenerate approximation

2.2 Degenerate approximation

We are looking for a data-sparse approximation of the matrix G, i.e., a representation
that requires us to store only a relatively small number of coefficients. In the case of the
integral equation (2.1), we can take advantage of the fact that the kernel function g is
analytic as long as we stay away from the singularity at x = y: if we have two intervals
t = [a, b] and s = [c, d] with t ∩ s = ∅, the restriction g|t×s of g to the axis-parallel box
t× s = [a, b]× [c, d] is an analytic function and can be approximated by polynomials.

For the sake of simplicity, we consider a straightforward Taylor expansion of the func-
tion x 7→ g(x, y) for a fixed y ∈ s. For an order m ∈ N, the Taylor polynomial centered
at xt ∈ t is given by

g̃t,s(x, y) :=
m−1∑
ν=0

(x− xt)ν

ν!

∂νg

∂xν
(xt, y) for all x ∈ t, y ∈ s. (2.5)

This is an example of a degenerate approximation, i.e., it is a sum of tensor products

g̃ts(x, y) =
m−1∑
ν=0

ats,ν(x)bts,ν(y) for all x ∈ t, y ∈ s (2.6)

with

ats,ν(x) :=
(x− xt)ν

ν!
, bts,ν(y) :=

∂νg

∂xν
(xt, y) for all ν ∈ [0 : m], x ∈ t, y ∈ s.

Degenerate approximations are useful because they immediately lead to data-sparse
approximations: if we assume g̃ts ≈ g|t×s, we find

gij =

∫ 1

0
ϕi(x)

∫ 1

0
g(x, y)ϕj(y) dy dx =

∫ i/n

(i−1)/n

∫ j/n

(j−1)/n
g(x, y) dy dx

≈
∫ i/n

(i−1)/n

∫ j/n

(j−1)/n
g̃ts(x, y) dy dx =

m−1∑
ν=0

∫ i/n

(i−1)/n
ats,ν(x) dx

∫ j/n

(j−1)/n
bts,ν(y) dy

for all i, j ∈ [1 : n] with

suppϕi = [(i− 1)/n, i/n] ⊆ t, suppϕj = [(j − 1)/n, j/n] ⊆ s. (2.7)

We collect the indices of all row basis functions satisfying the first condition in a set

t̂ := {i ∈ [1 : n] : suppϕi ⊆ t},

and the indices of all column basis functions satisfying the second condition in

ŝ := {j ∈ [1 : n] : suppϕj ⊆ s},

therefore we should be able to replace g by g̃ts in the integral (2.3a) for all row indices
i ∈ t̂ and all column indices j ∈ ŝ.
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2 One-dimensional model problem

We obtain the approximation

gij ≈
m−1∑
ν=0

ats,iνbts,jν for all i ∈ t̂, j ∈ ŝ

with the matrices matrices Ats ∈ Rt̂×M , Bts ∈ Rŝ×M , M := [0 : m− 1] given by

ats,iν :=

∫ 1

0
ϕi(x)ats,ν(x) dx =

∫ i/n

(i−1)/n
ats,ν(x) dx for all i ∈ t̂, ν ∈M,

bts,jν :=

∫ 1

0
ϕj(y)bts,ν(y) dy =

∫ j/n

(j−1)/n
bts,ν(y) dy for all j ∈ ŝ, ν ∈M.

It is usually more convenient to write this approximation in the short form

G|t̂×ŝ ≈ AtsB
∗
ts, (2.8)

where B∗ts denotes the adjoint (in this case the transposed) matrix of Bts. If we store the
factors Ats and Bts instead of G|t̂×ŝ, we only require m(|t̂| + |ŝ|) coefficients instead of

|t̂× ŝ| = |t̂| |ŝ|. If m is small, the factorized approximation can therefore be significantly
more efficient than the original submatrix.

The range of the approximation AtsB
∗
ts is contained in the range of Ats and therefore

at most m-dimensional, therefore the approximation has at most a rank of m. Factorized
low-rank approximations of this kind are a very versatile tool for dealing with non-local
operators and play a crucial role in this book.

2.3 Error analysis

Since we are using an approximation of the kernel function g, we have to investigate the
corresponding approximation error.

Reminder 2.3 (Taylor expansion) Let z0, z ∈ [a, b], and let f ∈ Cm[a, b]. We have

f(z) =
m−1∑
ν=0

(z − z0)ν

ν!

∂νf

∂zν
(z0) +

∫ 1

0

(1− τ)m−1

(m− 1)!

∂mf

∂zm
(z0 + τ(z − z0)) dτ (z − z0)m.

Proof. Induction. The base case m = 1 is the fundamental theorem of calculus. The
induction step is partial integration.

In the case of our approximation of the kernel function g, the statement of Re-
minder 2.3 takes the form

g(x, y)− g̃ts(x, y) =

∫ 1

0

(1− τ)m−1

(m− 1)!

∂mg

∂xm
(xt + τ(x− xt), y) dτ (x− xt)m.

In order to obtain a useful error estimate, we require the derivatives of g. These are
easily obtained, at least for our model problem.
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2.3 Error analysis

xta bc d

xta b c d

Figure 2.1: Distances and diameters of intervals

Lemma 2.4 Let x, y ∈ R with x 6= y. We have

∂mg

∂xm
(x, y) = (−1)m (m− 1)! (x− y)−m,

∂mg

∂ym
(x, y) = (m− 1)! (x− y)−m for all m ∈ N.

Proof. Straightforward induction.

Since the kernel function g has singularities for x = y, the same holds for its derivatives,
therefore the chances of bounding the error if the target interval t and the source interval
s intersect are looking quite bleak. If we assume that t and s are disjoint, on the other
hand, we can not only obtain error bounds, but these bounds even converge exponentially
to zero as the order m increases.

Theorem 2.5 (Error estimate) Let xt = (b + a)/2 denote the midpoint of t = [a, b],
let diam(t) = b− a denote its diameter and dist(t, s) = max{c− b, a− d, 0} the distance
between t and s.

If dist(t, s) > 0, we have

|g(x, y)− g̃ts(x, y)| ≤ log(1 + η)

(
η

η + 1

)m−1
for all x ∈ t, y ∈ s

with the admissibility parameter

η :=
diam(t)

2 dist(t, s)
. (2.9)

Proof. Let dist(t, s) > 0, and let x ∈ t, y ∈ s. The triangle inequality and the equations
for the derivatives provided by Lemma 2.4 yield

|g(x, y)− g̃ts(x, y)| ≤
∫ 1

0

(1− τ)m−1

(m− 1)!

∣∣∣∣∂mg∂xm
(xt + τ(x− xt), y)

∣∣∣∣ dτ |x− xt|m
=

∫ 1

0

(1− τ)m−1

(m− 1)!

(m− 1)!|x− xt|m

|xt + τ(x− xt)− y|m
dτ
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2 One-dimensional model problem

≤
∫ 1

0
(1− τ)m−1

(
|x− xt|

(|xt − y| − τ |x− xt|)

)m
dτ. (2.10)

Due to dist(t, s) > 0, we have either c > b or a > d. In the first case (top in Figure 2.1),
we have x, xt ≤ b < c ≤ y. In the second case (bottom in Figure 2.1), we have y ≤ d <
a ≤ x, xt. This implies xt − y < 0 if c > b and xt − y > 0 if a > d, so we find

|xt − y| =

{
y − xt = y − b+ b− xt ≥ c− b+ b−a

2 if c > b,

xt − y = xt − a+ a− y ≥ b−a
2 + a− d if a > d,

and conclude |xt − y| ≥ diam(t)/2 + dist(t, s). Due to |x− xt| ≤ diam(t)/2, we obtain

|x− xt|
|xt − y| − τ |x− xt|

≤ diam(t)/2

dist(t, s) + (1− τ) diam(t)/2
.

If diam(t) = 0 holds, the proof is complete.
Assuming now diam(t) > 0, we can introduce

ζ := 1/η =
2 dist(t, s)

diam(t)
,

and write our estimate as

|x− xt|
|xt − y| − τ |x− xt|

≤ 1

2 dist(t, s)/diam(t) + 1− τ
=

1

ζ + 1− τ
.

The error estimate (2.10) takes the form

|g(x, y)− g̃ts(x, y)| ≤
∫ 1

0

(1− τ)m−1

(ζ + 1− τ)m
dτ =

∫ 1

0

σm−1

(ζ + σ)m
dσ.

Due to

σ

ζ + σ
≤ 1

ζ + 1
for all σ ∈ [0, 1],

we arrive at

|g(x, y)− g̃ts(x, y)| ≤
(

1

ζ + 1

)m−1 ∫ 1

0

1

ζ + σ
dσ =

(
1

ζ + 1

)m−1
(log(ζ + 1)− log(ζ))

=

(
1/ζ

1 + 1/ζ

)m−1
log(1 + 1/ζ) =

(
η

1 + η

)m−1
log(1 + η).

This is the estimate we need.

If dist(t, s) > 0, we have

η =
diam(t)

2 dist(t, s)
<∞

and the Taylor expansion g̃ts(x, y) converges exponentially at a rate of

η

η + 1
< 1

to g(x, y) for all x ∈ t and y ∈ s.
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2.4 Hierarchical partition

Figure 2.2: Simple cluster tree constructed by recursive bisection of the interval [0, 1]

2.4 Hierarchical partition

We can expect convergence only if we apply the approximation g̃ts to subdomains t× s
satisfying dist(t, s) > 0. In order to guarantee a certain rate of convergence, we have to
ensure that the parameter η introduced in (2.9) is bounded.

Our approach is to “reverse” the roles of subdomain and admissibility parameter:
instead of choosing the paramter to fit the subdomains, we choose the subdomain to fit
the parameter.

We fix η ∈ R>0 and check whether a given subdomain t× s satisfies the admissibility
condition

diam(t) ≤ 2η dist(t, s). (2.11)

If it does, we can approximate the kernel function and obtain a factorized low-rank
approximation. Otherwise, we split the subdomain, unless it is so small that we can
afford storing the corresponding matrix directly.

In this example we use the choice η = 1/2, i.e., we consider a subdomain t×s admissible
if diam(t) ≤ dist(t, s) holds. By Theorem 2.5, this leads to the error bound

|g(x, y)− g̃ts(x, y)| ≤ 3 log(3/2) 3−m for all x ∈ t, y ∈ s, m ∈ N.

In general, the parameter η allows us to balance the rate of convergence against the
number of subdomains, i.e., accuracy against computational work and storage.

For inadmissible subdomains, we use a simple splitting strategy based on bisection:
assume that t = [a, b] and s = [c, d] are inadmissible, i.e., that the condition (2.11) does
not hold. We let

a1 := a, b1 = a2 :=
b+ a

2
, b2 := b,

c1 := c, d1 = c2 :=
d+ c

2
, d2 := d

and define

t1 := [a1, b1], t2 := [a2, b2], s1 := [c1, d1], s2 := [c2, d2],

i.e., we split t into two equal halves t1, t2, and s into two equal halves s1, s2.

15



2 One-dimensional model problem

Figure 2.3: Hierarchical subdivision of the domain [0, 1]× [0, 1]

Now we check whether the Cartesian products t1× s1, t1× s2, t2× s1, and t2× s2 are
admissible and proceed by recursion if they are not.

Our construction leads to a subdivision of [0, 1] into subintervals of the form

t`,α := [(α− 1)2−`, α2−`] for all ` ∈ N0, α ∈ [1 : 2`].

Each interval t`,α is split into

t`+1,2α−1 = [(α− 1)2−`, (α− 1/2)2−`] and t`+1,2α = [(α− 1/2)2−`, α2−`].

We call these subintervals the sons of t`,α and arrive at a tree structure, cf. Figure 2.2,
describing the subdivision of [0, 1] = t0,1. The Cartesian product [0, 1] × [0, 1] is split
into Cartesian products t× s of pairs of elements of this tree.

Since we only split the domain, there are always subdomains t × s that include the
diagonal {(x, y) ∈ [0, 1] × [0, 1] : x = y} and therefore do not satisfy the admissibility
condition (2.11). In order to handle these subdomains, we stop splitting at a given
maximal depth p ∈ N0 of the recursion and store the remaining matrix entries directly.
The resulting decomposition of [0, 1]×[0, 1] into admissible and inadmissible subdomains
can be seen in Figure 2.3.

The next step is to construct the approximation of the matrix G, i.e., to integrate the
products of basis functions and approximated kernel functions. In order to keep this task
as simple as possible, we assume that n = 2q holds with q ∈ N0, q ≥ p. This property
guarantees that the support [(i − 1)/n, i/n] of a basis function ϕi is either completely

16



2.5 Complexity

contained in one of our subintervals t or that the intersection is a null set, so that the
integral vanishes.

Under these conditions, we have

t̂`,α = [(α− 1)2q−` + 1 : α2q−`],

t`,α =
⋃
{suppϕi : i ∈ t̂`,α} for all ` ∈ [0 : p], α ∈ [1 : 2`].

Storing the submatrices G|t̂×ŝ for inadmissible domains t × s on level ` = p requires

|t̂| |ŝ| = 4q−p coefficients, since |t̂| = |ŝ| = 2q−p. As long as q is not significantly larger
than p, this amount of storage is acceptable.

For admissible domains t × s on level `, we use the approximation (2.8) and store
|t̂|m = 2q−`m coefficients for the matrix Ats and |ŝ|m = 2q−`m coefficients for the
matrix Bts.

Remark 2.6 (Rank) If we replace g by g̃ts, we obtain an approximation G̃ ∈ Rn×n of
the matrix G. Solving G̃x̃ = b instead of Gx = b leads to an error of

‖x− x̃‖
‖x‖

≤ κ(G)

1− κ(G)‖G−G̃‖‖G‖

‖G− G̃‖
‖G‖

.

In typical situations, we expect the condition number κ(G) to grow like nc for a constant
c > 0, while the discretization error converges like n−d for a constant d > 0.

In order to ensure that our approximation of the matrix adds only an additional error

on the same order as the discretization error, we need the relative matrix error ‖G−G̃‖‖G‖
to converge like n−c−d. Due to our admissibility condition and Theorem 2.5, an order
of m ∼ log(n) is sufficient to guarantee this property.

2.5 Complexity

Let us now consider the storage requirements of our approximation of the matrix G.
If t × s is admissible, we store the matrices Ats and Bts, and we have already seen
that this requires m(|t̂| + |ŝ|) coefficients. If t × s is not admissible, we store G|t̂×ŝ in
the standard way, and this requires 4q−p coefficients. In order to obtain an estimate
for the approximation of the entire matrix, we have to know how many admissible and
inadmissible domains appear in our decomposition of the domain [0, 1]× [0, 1].

In our model situation, the construction of the domains is very regular and all domains
t× s fall into one of the following for categories: we call t× s

• diagonal if t = s,

• right-neighbouring if max t = min s,

• left-neighbouring if min t = max s, and

• admissible otherwise.

17



2 One-dimensional model problem
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Figure 2.4: Diagonal, right-neighbouring, and left-neighbouring inadmissible domains
with corresponding splitting patterns

By our construction, cf. Figure 2.4, a diagonal subdomain t×s is split into two diagonal
subdomains t1 × s1 and t2 × s2, one right-neighbouring subdomain t1 × s2 and one
left-neighbouring subdomain t2 × s1.

A right-neighbouring subdomain t × s is split into a right-neighbouring subdomain
t2 × s1 and three admissible subdomains t2 × s2, t1 × s1 and t1 × s2.

A left-neighbouring subdomain t×s is split into a left-neighbouring subdomain t1×s2
and three admissible subdomains t1 × s1, t2 × s1 and t2 × s2.

Admissible subdomains are not split.
We can collect the subdomains of one of the four types on each level: for all ` ∈ [0 : p],

we define

D` :=

{
{[0, 1]× [0, 1]} if ` = 0,

{t1 × s1, t2 × s2 : t× s ∈ D`−1} otherwise,

R` :=


∅ if ` = 0,

{t1 × s2 : t× s ∈ D`−1}
∪{t2 × s1 : t× s ∈ R`−1} otherwise,

L` :=


∅ if ` = 0,

{t2 × s1 : t× s ∈ D`−1}
∪{t1 × s2 : t× s ∈ L`−1} otherwise,

A` :=


∅ if ` = 0,

{t2 × s2, t1 × s1, t1 × s2 : t× s ∈ R`−1}
∪{t1 × s1, t2 × s1, t2 × s2 : t× s ∈ L`−1} otherwise.

These definitions lead to a recurrence relation for the cardinalities of the sets.

Lemma 2.7 (Cardinalities) We have

|D`| = 2`, |R`| = 2` − 1, |L`| = 2` − 1,

|A`| =

{
0 if ` = 0,

6(2`−1 − 1) otherwise
for all ` ∈ [0 : p].

18



2.5 Complexity

Proof. By induction.
For ` = 0, the equations follow directly from our definitions.
Assume now that the equations hold for ` ∈ [0 : p− 1]. By definition, we have

|D`+1| = 2|D`| = 2 · 2` = 2`+1,

|L`+1| = |D`|+ |L`| = 2` + 2` − 1 = 2`+1 − 1,

|R`+1| = |D`|+ |R`| = 2` + 2` − 1 = 2`+1 − 1,

|A`+1| = 3|L`|+ 3|R`| = 6(2` − 1).

This completes the induction.

Theorem 2.8 (Storage requirements) Let n = 2q, and let p denote the depth of the
cluster tree. The approximation of the matrix G requires

6m(p− 2)n+ (3n+ 12m− 2q−p+1)2q−p coefficients.

Proof. The number of coefficients required for the admissible subdomains is

p∑
`=0

∑
t×s∈A`

(|t̂|+ |ŝ|)m =

p∑
`=1

6(2`−1 − 1)(2q−` + 2q−`)m =

p∑
`=1

12(2`−1 − 1)2q−`m

=

p∑
`=1

12(2q−1 − 2q−`)m = 12m

p∑
`=1

2q−1 − 12m

p∑
`=1

2q−`

= 6mp2q − 12m2q−p
p∑
`=1

2p−` = 6mpn− 12m2q−p(2p − 1)

= 6mpn− 12m2q + 12m2q−p = 6mpn− 12mn+ 12m2q−p

= 6m(p− 2)n+ 12m2q−p.

The inadmissible subdomains require∑
t×s∈Dp∪Lp∪Rp

|t̂| |ŝ| = (|Dp|+ |Lp|+ |Rp|)4q−p

= (2p + 2p + 2p − 2)4q−p = (3 · 2p − 2)4q−p

= 3 · 2q2q−p − 2q−p+12q−p = (3n− 2q−p+1)2q−p

coefficients. Adding both results yields the required equation.

Although exact, the result of Theorem 2.8 is not particularly instructive.
We can obtain a more convenient upper bound if we assume that the order m is not too

high compared to the number of basis functions n and that we subdivide clusters only as
long as they contain more than 2m indices. The second assumption can be guaranteed
by stopping the splitting process at the right time. The first assumption is manageable
since Remark 2.6 leads us to expect m ∼ log(n), i.e., for even moderately-sized matrix
dimensions n, the order m should be far smaller than n.
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2 One-dimensional model problem

Corollary 2.9 (Storage requirements) Let 4m ≤ n and m < 2q−p ≤ 2m.
Then our approximation requires less than 6mpn coefficients.

Proof. The estimate provided by Theorem 2.8 gives rise to the upper bound

6m(p− 2)n+ (3n+ 12m− 2q−p+1)2q−p < 6m(p− 2)n+ (3n+ 12m− 2m)2m

= 6m(p− 2)n+ 6mn+ 20m2

< 6m(p− 2)n+ 6mn+ 24m2

≤ 6m(p− 2)n+ 6mn+ 6mn = 6mpn

for the number of coefficients.

Remark 2.10 (Setup) In order to construct the matrices Ats and Bts of our approxi-
mation, we can take advantage of the fact that the recurrence equations

ats,ν(x) =

{
1 if ν = 0,
x−xt
ν ats,ν−1(x) otherwise,

for all x ∈ t, ν ∈ [0 : m],

bts,ν(y) =


− log |xt − y| if ν = 0,

− 1
xt−y if ν = 1,

− ν−1
xt−y bts,ν−1(y) otherwise

for all y ∈ s, ν ∈ [0 : m]

allow us to evaluate ats,ν and bts,ν very efficiently. Since ats,ν+1 is an antiderivative of
ats,ν and bts,ν−1 is an antiderivative of −bts,ν , all integrals appearing in Ats and Bts, and
therefore all coefficients, can be computed in O(m(|t̂| + |ŝ|)) operations. In particular,
we need only O(1) operations per coefficient.

For the inadmissible domains, we can compute the coefficients gij by using a second
antiderivative of g.

In total we require O(1) operations for each coefficient, and Corollary 2.9 yields that
we only require O(mpn) operations to set up the entire matrix approximation.

Remark 2.11 (Matrix-vector multiplication) Once we have constructed the ap-
proximation of G, multiplying it by a vector x ∈ Rn and adding the result to y ∈ Rn is
straightforward: for each subdomain t× s, we multiply x|ŝ by AtsB

∗
ts and add the result

to y|t̂. If we first compute the auxiliary vector z = B∗tsx|ŝ and then Atsz, we only require
2m(|t̂|+ |ŝ|) operations.

In order to obtain a bound for the total complexity, we note that for each stored
coefficient exactly one multiplication and one addition are carried out. Corollary 2.9
immediately yields that less than

12mpn operations

are required for the complete matrix-vector multiplication: our approximation not only
saves storage, but also time.
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2.6 Approximation by interpolation

2.6 Approximation by interpolation

For more general kernel functions g, it may be challenging to find useable equations
for the derivatives required by the Taylor expansion and to come up with an efficient
algorithm for computing the integrals determining the coefficients of Ats and Bts.

In these situations, interpolation offers an elegant and practical alternative: we choose
a degree m ∈ N0 and denote the set of polynomials of degree m by

Πm :=

{
x 7→

m∑
i=0

aix
i : a0, . . . , am ∈ R

}
.

Given a function f ∈ C[a, b] and distinct interpolation points ξ0, . . . , ξm ∈ [a, b], we look
for a polynomial p ∈ Πm satisfying the equations

p(ξi) = f(ξi) for all i ∈ [0 : m]. (2.12)

Under suitable conditions, p is a good approximation of f , and interpolation can be used
to obtain a degenerate approximation of the kernel function g.

Lemma 2.12 (Lagrange polynomials) The Lagrange polynomials for the distinct
interpolation points ξ0, . . . , ξm ∈ [a, b] are given by

`ν(x) :=
m∏
µ=0
µ6=ν

x− ξµ
ξν − ξµ

for all x ∈ C, ν ∈ [0 : m]. (2.13)

All of these polynomials are elements of Πm and satisfy

`ν(ξµ) =

{
1 if ν = µ,

0 otherwise
for all ν, µ ∈ [0 : m]. (2.14)

Proof. As products of m linear factors, the Lagrange polynomials are in Πm.
Let ν, µ ∈ [0 : m]. If ν = µ, all factors in (2.13) are equal to one, and so is the product.
If ν 6= µ, one of the factors is equal to zero and the product vanishes.

Using Lagrange polynomials, the interpolating polynomial of (2.12) takes the form

p =
m∑
ν=0

f(ξν)`ν . (2.15)

Applying this equation to x 7→ g(x, y) with a fixed y ∈ [c, d] yields

g̃ts(x, y) :=
m∑
ν=0

`ν(x)g(ξν , y),

and this is again a degenerate approximation of g, but it requires us only to be able to
evaluate g, not its derivatives.
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2 One-dimensional model problem

Remark 2.13 (Setup) Using interpolation to approximate g leads to the matrices

Ats ∈ Rt̂×M and Bts ∈ Rŝ×M , M = [0 : m], with entries

ats,iν =

∫ 1

0
ϕi(x)`ν(x) dx, (2.16)

bts,jν =

∫ 1

0
ϕj(y)g(ξν , y) dy for all i ∈ t̂, j ∈ ŝ, ν ∈M. (2.17)

The first integral can be computed by using a quadrature rule that is exact for polynomials
of degree m.

For the second integral, we can use the antiderivative in simple situations like the
model problem or also rely on quadrature, since the function y 7→ g(ξν , y) is smooth: the
admissibility condition guarantees that ξν ∈ t is sufficiently far from y ∈ s.

In order to construct an approximation of the entire matrix G by interpolation, we
require interpolation points for all intervals t appearing in our decomposition of the
domain [0, 1]× [0, 1].

It is a good idea to start with interpolation points in a fixed reference interval and
transform them to all the other intervals, since this approach allows us to obtain uniform
error estimates for all subdomains.

We choose the reference interval [−1, 1] and interpolation points ξ0, . . . ξm ∈ [−1, 1].
Inspired by (2.15), we define an operator that maps a function f to its interpolating
polynomial.

Definition 2.14 (Interpolation operator) The linear operator

I : C[−1, 1]→ Πm, f 7→
m∑
ν=0

f(ξν)`ν ,

is called the interpolation operator for the interpolation points ξ0, . . . , ξm.

In order to obtain interpolation operators for a general interval [a, b], we use the
bijective linear mapping

Φ[a,b] : C→ C, x̂ 7→ b+ a

2
+
b− a

2
x̂,

that maps [−1, 1] to [a, b] and can be used to turn a function f ∈ C[a, b] into a function
f̂ := f ◦ Φ[a,b] ∈ C[−1, 1]. Interpolating this function and using Φ−1[a,b] to map the result

back to [a, b] yields the transformed interpolation operator

It : C[a, b]→ Πm, f 7→ I[f ◦ Φ[a,b]] ◦ Φ−1[a,b].

For our purposes, it would be very useful to be able to represent the transformed in-
terpolation operator It in the same form as I using suitable interpolation points and
Lagrange polynomials.
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2.6 Approximation by interpolation

Reminder 2.15 (Identity theorem) Let p ∈ Πm. If p(ξν) = 0 holds for m+1 distinct
points ξ0, . . . , ξm ∈ R, we have p = 0.

Proof. We consider the linear mapping

Ψ: Πm → Rm+1, p 7→

p(ξ0)
...

p(ξm)

 .

Due to Lemma 2.12, Ψ is surjective, i.e., its rank is m + 1. Our definition implies
dim Πm ≤ m+ 1, and the rank-nullity theorem yields that Ψ is injective.

Lemma 2.16 (Transformed interpolation) We define the transformed interpolation
points and corresponding Lagrange polynomials

ξt,ν := Φ[a,b](ξν), `t,ν(x) :=
∏
µ=0
µ6=ν

x− ξt,µ
ξt,ν − ξt,µ

for all ν ∈ [0 : m], x ∈ C.

We have `t,ν = `ν ◦ Φ−1[a,b] for all ν ∈ [0 : m] and therefore

It[f ] =
m∑
ν=0

f(ξt,ν)`t,ν for all f ∈ C[a, b].

Proof. Let ν ∈ [0 : m]. Since Φ[a,b] is bijective, it suffices to prove `t,ν ◦ Φ[a,b] = `ν .
We have

`t,ν ◦ Φ[a,b](ξµ) = `t,ν(ξt,µ) =

{
1 if ν = µ,

0 otherwise
for all µ ∈ [0 : m].

This means that `t,ν ◦ Φ[a,b] and `ν ∈ Πm take identical values in the distinct points
ξ0, . . . , ξm. Since both are polynomials of degree m, the identity theorem (cf. Re-
minder 2.15) yields `t,ν ◦ Φ[a,b] = `ν .

Now we can proceed as in the case of the Taylor expansion: we apply interpolation to
the function x 7→ g(x, y) for a fixed y ∈ s to find

g(x, y) ≈ g̃ts(x, y) :=
m∑
ν=0

`t,ν(x)g(ξt,ν , y) for all x ∈ t, y ∈ s. (2.18)

Reminder 2.17 (Chebyshev interpolation) Using the Chebyshev points

ξν := cos

(
π

2ν + 1

2m+ 2

)
for all ν ∈ [0 : m], (2.19)

for interpolation is particularly attractive, since they lead both to a numerically stable
algorithm and good error estimates.
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2 One-dimensional model problem

2.7 Interpolation error analysis

Let us now consider the analysis of the interpolation error.

Reminder 2.18 (Interpolation error) Let ξ0, . . . , ξm ∈ [−1, 1] be distinct interpola-
tion points and the node polynomial

ω(x) :=
m∏
ν=0

x− ξν for all x ∈ R. (2.20)

Let f ∈ Cm+1[−1, 1]. For every x ∈ [−1, 1], there is an η ∈ [−1, 1] with

f(x)− I[f ](x) = ω(x)
f (m+1)(η)

(m+ 1)!
. (2.21)

Proof. [31] If x ∈ {ξ0, . . . , ξm}, the equation holds trivially for all η ∈ [−1, 1]. Otherwise,
we have ω(x) 6= 0 and can find R ∈ R with 0 = f(x)− I[f ](x)−Rω(x).

This means that the function g(y) := f(y) − I[f ](y) − Rω(y) vanishes in the m + 2
distinct points ξ0, . . . , ξm, x, and the mean value theorem of differential calculus yields
that there is an η ∈ [−1, 1] such that g(m+1)(η) = 0. Due to I[f ] ∈ Πm and ω(m+1) =
(m+ 1)!, this implies the equation.

Using the maximum norm

‖f‖∞,[a,b] := max{|f(x)| : x ∈ [a, b]} for all f ∈ C[a, b],

we can write (2.21) in the compact form

‖f − I[p]‖∞,[−1,1] ≤ ‖ω‖∞,[−1,1]
‖f (m+1)‖∞,[−1,1]

(m+ 1)!
.

In order to investigate the transformed interpolation operator, we consider a function
f ∈ Cm+1[a, b] and introduce again f̂ := f ◦ Φ[a,b] ∈ Cm+1[−1, 1] to find

‖f − It[f ]‖∞,[a,b] = ‖f ◦ Φ[a,b] − It[f ] ◦ Φ[a,b]‖∞,[−1,1]

= ‖f̂ − I[f̂ ]‖∞,[−1,1] ≤ ‖ω‖∞,[−1,1]
‖f̂ (m+1)‖∞,[−1,1]

(m+ 1)!
.

The chain rule yields

f̂ (m+1) =

(
b− a

2

)m+1

f (m+1) ◦ Φ[a,b]

and we conclude

‖f − It[f ]‖∞,[a,b] ≤ ‖ω‖∞,[−1,1]
(
b− a

2

)m+1 ‖f (m+1)‖∞,[a,b]
(m+ 1)!

. (2.22)
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2.7 Interpolation error analysis

To apply this result to the kernel function, we fix y ∈ s and apply the estimate to
f(x) := g(x, y) to find

|g(x, y)− g̃ts(x, y)| ≤ ‖ω‖∞,[−1,1]
(
b− a

2

)m+1 ‖f (m+1)‖∞,[a,b]
(m+ 1)!

for all x ∈ t.

According to Lemma 2.4, we have

|f (m+1)(x)| =
∣∣∣∣∂m+1g

∂xm+1
(x, y)

∣∣∣∣ ≤ m!

dist(t, s)m+1
for all x ∈ t,

so the interpolation error satisfies

‖g − g̃ts‖∞,t×s ≤
‖ω‖∞,[−1,1]
m+ 1

(
diam(t)

2 dist(t, s)

)m+1

.

If the admissibility condition (2.11) holds, this estimate takes the form

‖g − g̃ts‖∞,t×s ≤
‖ω‖∞,[−1,1]
m+ 1

ηm+1.

Let us now consider Chebyshev interpolation (cf. Reminder 2.17). Using Chebyshev
points implies ω(x) = 2−m cos((m + 1) arccos(x)) for all x ∈ [−1, 1], and in particular
‖ω‖∞,[−1,1] = 2−m. Our error estimates take the form

‖f − It[f ]‖∞,[a,b] ≤ 2

(
b− a

4

)m+1 ‖f (m+1)‖∞,[a,b]
(m+ 1)!

for all f ∈ Cm+1[a, b], (2.23a)

‖g − g̃ts‖∞,t×s ≤
2

m+ 1

(η
2

)m+1
. (2.23b)

Compared to Taylor expansion (cf. Theorem 2.5), we can see that the Chebyshev inter-
polation error converges at a better rate if we have η < 1, e.g., at a rate of 1/4 instead
of 1/3 for η = 1/2.

Even for large values of η, we can prove that Chebyshev interpolation leads to almost
the same rate of convergence as Taylor expansion: Chebyshev interpolation is stable,
i.e., we have

‖I[f ]‖∞,[−1,1] ≤ Λm‖f‖∞,[−1,1] for all f ∈ C[−1, 1], (2.24)

where the stability constant (or Lebesgue number) satisfies

Λm ≤
2

π
log(m+ 1) + 1 ≤ m+ 1 for all m ∈ N0 (2.25)

(cf. [29]). The stability estimate (2.24) gives rise to a best-approximation result for
Lagrange interpolation.
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2 One-dimensional model problem

Lemma 2.19 (Best approximation) We have

‖f − I[f ]‖∞,[−1,1] ≤ (1 + Λm)‖f − p‖∞,[−1,1] for all f ∈ C[−1, 1], p ∈ Πm,

‖f − It[f ]‖∞,[a,b] ≤ (1 + Λm)‖f − p‖∞,[a,b] for all f ∈ C[a, b], p ∈ Πm.

Proof. Let f ∈ C[−1, 1] and p ∈ Πm. Due to the identity theorem for polynomials (cf.
Reminder 2.15), the interpolation operator is a projection into Πm, so we have

I[p] = p. (2.26)

Combining the triangle inequality and the stability estimate (2.24) yields

‖f − I[f ]‖∞,[−1,1] = ‖f − p+ I[p]− I[f ]‖∞,[−1,1] = ‖f − p+ I[p− f ]‖∞,[−1,1]
≤ ‖f − p‖∞,[−1,1] + ‖I[p− f ]‖∞,[−1,1]
≤ ‖f − p‖∞,[−1,1] + Λm‖p− f‖∞,[−1,1].

This is the first estimate.
Let now f ∈ C[a, b] and p ∈ Πm. We define f̂ := f ◦ Φ[a,b] and p̂ := p ◦ Φ[a,b] ∈ Πm

and apply the first estimate to obtain

‖f − It[f ]‖∞,[a,b] = ‖f ◦ Φ[a,b] − It[f ] ◦ Φ[a,b]‖∞,[−1,1] = ‖f̂ − I[f̂ ]‖∞,[−1,1]
≤ (1 + Λm)‖f̂ − p̂‖∞,[−1,1] = (1 + Λm)‖f − p‖∞,[a,b].

This is the second estimate.

Theorem 2.20 (Interpolation error) If the admissibility condition (2.11) holds, the
interpolation error can be bounded by

‖g − g̃ts‖∞,t×s ≤ (1 + Λm) log(1 + η)

(
η

η + 1

)m
.

Proof. Let y ∈ s and

f : t→ R, x 7→ g(x, y).

Let p ∈ Πm denote the Taylor polynomial of order m. Due to Theorem 2.5, we have

‖f − p‖∞,[a,b] ≤ log(1 + η)

(
η

η + 1

)m
.

Now we can apply Lemma 2.19 to conclude

|g(x, y)− g̃ts(x, y)| = |f(x)− It[f ](x)| ≤ (1 + Λm)‖f − p‖∞,[a,b]

≤ (1 + Λm) log(1 + η)

(
η

η + 1

)m
for all x ∈ t,

and since y has been chosen arbitrarily, this is already the required result.

Due to (2.25), the stability constant Λm grows only very slowly as m increases, so the
interpolation error converges almost as quickly as the Taylor approximation error.
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2.7 Interpolation error analysis

Remark 2.21 (Chebyshev approximation) We denote the Chebyshev polynomials
by

Cm(x) := cos(m arccos(x)) for all m ∈ N0, x ∈ [−1, 1].

Since {C0, . . . , Cm} are a basis of Πm, any polynomial p ∈ Πm can be expressed as the
Chebyshev expansion

p(x) =
m∑
ν=0

aνCν(x) for all x ∈ [−1, 1], (2.27)

where a0, . . . , am ∈ R. This expansion is attractive, since the recurrence relation

Cm(x) =


1 if m = 0,

x if m = 1,

2xCm−1(x)− Cm−2(x) otherwise

for all m ∈ N0, x ∈ [−1, 1] (2.28)

allows us to evaluate (2.27) efficiently in O(m) operations using the Clenshaw-Curtis
algorithm.

Remark 2.22 (Fourier expansion) Given a function f ∈ C[−1, 1], we can obtain
suitable coefficients of a Chebyshev approximation (2.27) via a Fourier expansion.

Substituting x = cos(y) yields∫ 1

−1

f(x)√
1− x2

dx =

∫ π

0
f(cos(y)) dy,

and cos(x) cos(y) = 1
2(cos(x+ y) + cos(x− y)) yields

∫ 1

−1

Cν(x)Cµ(y)√
1− x2

dx =


π if ν = µ = 0,

π/2 if ν = µ > 0,

0 otherwise

for all ν, µ ∈ N0.

This orthogonality relation leads to

a0 =
1

π

∫ 1

−1

f(x)√
1− x2

dx, (2.29a)

aν =
2

π

∫ 1

−1

f(x)Cν(x)√
1− x2

dx for all ν ∈ [1 : m]. (2.29b)

Remark 2.23 (Chebyshev interpolation) With the Chebyshev points defined in
(2.19), we have the discrete orthogonality relation

m∑
κ=0

Cν(ξκ)Cµ(ξκ) =


m if ν = µ = 0,

m/2 if ν = µ > 0,

0 otherwise

for all ν, µ ∈ [0 : m],

and we can replace the integrals in (2.29) by sums requiring only f(ξκ) for κ ∈ [0 : m].
In this case, (2.27) coincides with Chebyshev interpolation.
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2 One-dimensional model problem

2.8 Improved interpolation error estimates
∗

We can find significantly better estimates for the interpolation error by following the
approach described in [15, Chapter 7, Section 8]: we replace the Taylor expansion by
the Chebyshev expansion (2.27).

We focus on the approximation of function f ∈ C[−1, 1], since we can switch to
arbitrary intervals using the mapping Φ[a,b]. If the function f can be approximated
reasonably well by polynomials of increasing degree, it can be represented by a power
series, and therefore also extended to a holomorphic, i.e., complex differentiable, function
in a neighbourhood of [−1, 1].

In this section, we therefore focus on the approximation of functions that are holo-
morphic in a neighbourhood of the reference interval [−1, 1].

To this end, we will represent [−1, 1] as the range of the cosine, and by extension as
the real part of points on the complex unit circle: Using Euler’s formula, we find

cos(t) = <(eιt) =
eιt + eιt

2
=
eιt + e−ιt

2
=
eιt + 1/eιt

2
for all t ∈ R,

where ι ∈ C denotes the imaginary unit.

Definition 2.24 (Joukowsky transformation) The mapping

g : C \ {0} → C, z 7→ z + 1/z

2
,

is called the Joukowsky transformation.

Complex numbers on the unit circle S1 := {z ∈ C : |z| = 1} are mapped to their real
parts by the Joukowsky transformation, but g is holomorphic, while z 7→ <(z) is not.

Our plan is to obtain an approximation of f by considering the Laurent series of a
holomorphic extension of the function

f̂ : S1 → C, z 7→ f(g(z)).

In order to define this extension, we have to take a closer look at the Joukowsky trans-
formation.

Lemma 2.25 (Joukowsky transformation) We have

x < y ⇐⇒ g(x) < g(y) for all x, y ∈ R≥1. (2.30)

Let % ∈ R>1. The Joukowsky transformation maps the circle {z ∈ C : |z| = %}
bijectively to the Bernstein ellipse

E% := {w ∈ C : |w − 1|+ |w + 1| = 2α} (2.31)

with semi-major axis α = g(%) and foci 1 and −1 (cf. Figure 2.5).
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2.8 Improved interpolation error estimates

% = 3/2

% = 2

% = 5/2

Figure 2.5: Bernstein ellipses for % ∈ {3/2, 2, 5/2}.

Proof. Let x, y ∈ R≥1. If we assume x < y, we have xy > 1 and therefore 1
xy < 1. This

implies (
1− 1

xy

)
x <

(
1− 1

xy

)
y ⇐⇒ x− 1

y
< y − 1

x

⇐⇒ x+
1

x
< y +

1

y
⇐⇒ g(x) < g(y).

Assume now g(x) < g(y). This implies x 6= y and therefore again xy > 1 and 1
xy < 1, so

we can proceed as before to conclude x < y.
Let now % ∈ R>1. Let z ∈ C \ {0} and w := g(z). We have

|w − 1|+ |w + 1| = |g(z)− 1|+ |g(z) + 1| = |z + 1/z − 2|
2

+
|z + 1/z + 2|

2

=
|z2 + 1− 2z|

2|z|
+
|z2 + 1 + 2z|

2|z|
=
|z − 1|2 + |z + 1|2

2|z|

=
(z − 1)(z − 1) + (z + 1)(z + 1)

2|z|

=
(z − 1)(z̄ − 1) + (z + 1)(z̄ + 1)

2|z|

=
|z|2 − z − z̄ + 1 + |z|2 + z + z̄ + 1

2|z|

=
2|z|2 + 2

2|z|
= |z|+ 1/|z|.
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2 One-dimensional model problem

If we have |z| = %, this equation immediately implies

|w + 1|+ |w − 1| = %+ 1/% = 2g(%) = 2α,

i.e., w ∈ E%.
On the other hand, assume w ∈ E%. To find z ∈ C \ {0} with g(z) = w, we consider

w = g(z) =
z + 1/z

2
⇐⇒ 2wz = z2 + 1 ⇐⇒ z2 − 2wz + 1 = 0. (2.32)

This quadratic equation has two solutions z1, z2 ∈ C with z1z2 = 1, i.e., |z1| |z2| = 1.
Without loss of generality, we can therefore ensure |z1| ≥ 1 ≥ |z2|. Choosing z := z1
guarantees both w = g(z) and |z| ≥ 1.

Our previous calculation yields

2g(|z|) = |z|+ 1/|z| = |w + 1|+ |w − 1| = 2α = 2g(%),

and due to % ≥ 1 and |z| ≥ 1, g(|z|) = g(%) already implies |z| = % via (2.30).
Now we only have to prove that g is injective from {z ∈ C : |z| = %} to E%. We have

already seen that we can find z ∈ C with |z| = % and g(z) = w for every w ∈ E%. If there
is another z̃ ∈ C\{0} with g(z̃) = w, it also has to be a solution of the quadratic equation
(2.32). This equation has only two solutions z1 and z2, so either we have z̃ = z1 = z or
z̃ = z2. In the latter case, 1 = |z1| |z2| implies |z̃| = |z2| = 1/|z1| = 1/% < 1 and therefore
|z̃| 6= % in particular, i.e., z is the only solution of g(z) = w with |z| = %.

In order to have f̂ = f ◦ g holomorphic in a neighbourhood of the unit circle, f has
to be holomorphic in a neighbourhood of the reference interval [−1, 1].

Lemma 2.26 (Annulus) Let % ∈ R≥1. The Joukowsky transformation g maps the
annulus

A% := {z ∈ C : 1/% ≤ |z| ≤ %}.

onto the Bernstein disc

D% := {w ∈ C : |w − 1|+ |w + 1| ≤ 2α} ⊇ [−1, 1]

with α := g(%), i.e., g is surjective from A% to D%, cf. Figure 2.6.

Proof. Let z ∈ A% and w := g(z). If |z| = 1, we have g(z) ∈ [−1, 1] ⊆ D%.
If |z| > 1, we let %̂ := |z| ≤ %, and Lemma 2.25 yields

|w − 1|+ |w + 1| = 2g(%̂) ≤ 2g(%),

i.e., w ∈ D%.
If |z| < 1 we have w = g(z) = g(1/z) and can repeat the previous argument for 1/z

instead of z due to |1/z| = 1/|z| ≤ %.
Let now w ∈ D%. Let α̂ := 1

2(|w− 1|+ |w+ 1|) ≥ 1
2(2− |w+ 1|+ |w+ 1|) = 1. We also

have α̂ ≤ α by definition and can use (2.30) to find %̂ ∈ [1, %] with g(%̂) = α̂. Lemma 2.25
yields w ∈ E%̂ ⊆ D%.

30



2.8 Improved interpolation error estimates

z

1/z

g(z)

Figure 2.6: Joukowsky transformation from A% to D% with % = 2

Let % ∈ R>1, and let f be holomorphic in the Bernstein disc D%. Then by Lemma 2.26,
the function

f̂ := f ◦ g
is holomorphic on the annulus A%.

This means that f̂ can be represented in a Laurent series, i.e., we have

f̂(z) =
∞∑

n=−∞
anz

n for all z ∈ A% (2.33)

with the coefficients

an :=
1

2πι

∫
|z|=r

f̂(z)

zn+1
dz for all n ∈ Z, (2.34)

for any r ∈ (−1/%, %). We will now prove that the Laurent series (2.33) corresponds to
the Chebyshev expansion (2.27).

Lemma 2.27 (Symmetry) For all n ∈ N, we have an = a−n.

Proof. Let r ∈ (−1/%, %). We use the mappings

γ1 : R→ C, t 7→ reιt,

γ2 : R→ C, 1 7→ 1

r
eιt =

1

γ1(−t)

restricted to [0, 2π] as parametrizations for the curve integrals over the circles with radii
r and 1/r centered at zero. We have

γ′2(t) =
γ′1(−t)
γ1(−t)2

, γ′1(t) = γ1(t)
2γ′2(−t) =

γ′2(−t)
γ2(−t)2

for all t ∈ [0, 2π].
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2 One-dimensional model problem

Using this equation, g(1/z) = g(z), and γ2(t− 2π) = γ2(t), we find

a−n =
1

2πι

∫
|z|=r

f̂(z)

z−n+1
dz =

1

2πι

∫
|z|=r

f̂(1/z)

(1/z)n−1
dz

=
1

2πι

∫ 2π

0

f̂(1/γ1(t))

(1/γ1(t))n−1
γ′1(t) dt =

1

2πι

∫ 2π

0

f̂(γ2(−t))
γ2(−t)n−1

γ′2(−t)
γ2(−t)2

dt

=
1

2πι

∫ 2π

0

f̂(γ2(−t))
γ2(−t)n+1

γ′2(−t) dt = − 1

2πι

∫ −2π
0

f̂(γ2(t))

γ2(t)n+1
γ′2(t) dt

=
1

2πι

∫ 0

−2π

f̂(γ2(t))

γ2(t)n+1
γ′2(t) dt =

1

2πι

∫ 2π

0

f̂(γ2(t))

γ2(t)n+1
γ′2(t) dt

=
1

2πι

∫
|z|=1/r

f̂(z)

zn+1
dz = an.

This is the required identity.

Using Lemma 2.27, the Laurent series (2.33) takes the form

f̂(z) = a0 +
∞∑
n=1

anz
n + a−nz

−n = a0 + 2
∞∑
n=1

an
zn + z−n

2
for all z ∈ A%. (2.35)

To obtain the Chebyshev expansion (2.27), we have to prove that the functions zn+z−n

2
correspond to the Chebyshev polynomials (2.28).

Lemma 2.28 (Chebyshev polynomials) We have

Cn ◦ g(z) =
zn + z−n

2
for all n ∈ N0, z ∈ C \ {0}. (2.36)

Proof. By induction using the recurrence relation (2.28).

Let z ∈ C \ {0} and w := g(z). For the base cases, we have

C0(w) = 1 =
2

2
=
z0 + z−0

2
,

C1(w) = w =
z + 1/z

2
=
z1 + z−1

2
.

Now let m ∈ N be given such that (2.36) holds for all n ∈ [0 : m]. We have

Cm+1(w) = 2wCm(w)− Cm−1(w) = 2
z + 1/z

2

zm + z−m

2
− zm−1 + z1−m

2

=
zm+1 + zm−1 + z1−m + z−m−1

2
− zm−1 + z1−m

2
=
zm+1 + z−(m+1)

2
.

This already completes the induction.
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2.8 Improved interpolation error estimates

Using Lemma 2.28, the expansion (2.35) takes the form

f(g(z)) = a0 + 2
∞∑
n=1

anCn(g(z)) for all z ∈ A%,

and since the Joukowsky transformation g maps the annulus A% surjectively onto the
Bernstein disc D%, we conclude

f(w) = a0 + 2
∞∑
n=1

anCn(w) for all w ∈ D%. (2.37)

This is called the Chebyshev expansion of the function f . In order to obtain a Chebyshev
approximation, we “just” have to cut off the series after the first m terms.

Theorem 2.29 (Chebyshev approximation) Let m ∈ N, let %̂ ∈ [1, %). The polyno-
mial

p := a0 + 2
m∑
n=1

anCn ∈ Πm (2.38)

satisfies

‖f − p‖∞,D%̂ ≤
2

%/%̂− 1

(
%̂

%

)m
‖f‖∞,D% .

Proof. Let w ∈ D%̂. Due to Lemma 2.26, we can find z ∈ A%̂ with g(z) = w.
Let n ∈ N0. Due to Lemma 2.28, we have

|Cn(w)| = |z
n + z−n|

2
≤ |z|

n + (1/|z|)n

2
≤ %̂n + %̂n

2
= %̂n.

For all r ∈ (1/%, %), the Laurent coefficient (2.34) can be bounded by

|an| ≤
1

2π
2πr
‖f̂‖∞,A%
rn+1

=
‖f‖∞,D%

rn
,

and we can go to the limit r → % to obtain

|an| ≤
‖f‖∞,D%
%n

.

With these estimates at our disposal, we can directly prove the error estimate:

|f(w)− p(w)| = 2

∣∣∣∣∣
∞∑
n=1

anCn(w)−
m∑
n=1

anCn(w)

∣∣∣∣∣ = 2

∣∣∣∣∣
∞∑

n=m+1

anCn(w)

∣∣∣∣∣
≤ 2

∞∑
n=m+1

|an| |Cn(w)| ≤ 2‖f‖∞,D%
∞∑

n=m+1

%̂n

%n

= 2‖f‖∞,D%
(
%̂

%

)m+1 ∞∑
n=0

(
%̂

%

)n
= 2‖f‖∞,D%

(
%̂

%

)m+1 1

1− %̂/%
.

This is already the required result.
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2 One-dimensional model problem

Corollary 2.30 (Approximation on the interval) Let m ∈ N. The polynomial
(2.38) satisfies

‖f − p‖∞,[−1,1] ≤
2

%− 1

(
1

%

)m
‖f‖∞,D% .

Proof. We apply Theorem 2.29 to %̂ = 1 and [−1, 1] = D1.

This means that the rate of convergence is determined by the largest Bernstein disc
in the domain of f .

If f is holomorphic up to a singularity at a point w0 6∈ [−1, 1], we can find %0 ∈ R≥1
such that w0 ∈ E%0 . For every % ∈ (1, %0), the rate of convergence of the Chebyshev
expansion (2.37) will be at least 1/%, i.e., asymptotically, we will have a rate of 1/%0.

Example 2.31 (Analytic function) We consider the function

f : [−1, 1]→ R, x 7→ 1

1 + x2
.

We cannot approximate it on the entire interval [−1, 1] by a Taylor expansion around
the midpoint, since such an expansion would have to converge on the entire unit disc in
the complex plane, and this disc would include the singularities at ι and −ι.

For the Chebyshev expansion, the disc is replaced by a Bernstein ellipse. The Bernstein
ellipse E%0 touching the singularities i and −i is the one with

2
√

2 = |i− 1|+ |i+ 1| = 2α0 = %0 + 1/%0,

0 = %20 − 2
√

2%0 + 1 = (%0 −
√

2)2 − 1,

i.e., %0 =
√

2 + 1, and 1/%0 =
√

2− 1 ≈ 0.41 is indeed the rate of convergence observed
in numerical experiments.

Example 2.32 (Logarithmic kernel) In order to investigate the one-dimensional
model problem, we apply Φ[a,b] to f(x) := g(x, y) with y ∈ s and get

f̂(x̂) = − log |Φ[a,b](x̂)− y| = − log

∣∣∣∣b+ a

2
− y +

b− a
2

x̂

∣∣∣∣ .
We introduce

w0 :=
2

b− a

(
y − b+ a

2

)
∈ R

and obtain

f̂(x̂) = − log

(
b− a

2
|w0 − x̂|

)
,

i.e., the singularity is located at w0. Let x0 ∈ t denote the point closest to y, i.e., x0 = a
if y < a and x0 = b if y > b. We have

|w0| =
2

diam(t)

∣∣∣∣y − b+ a

2

∣∣∣∣ =
2

diam(t)

∣∣∣∣y − x0 + x0 −
b+ a

2

∣∣∣∣
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2.8 Improved interpolation error estimates

≥ 2(dist(t, s) + diam(t)/2)

diam(t)
=

2 dist(t, s)

diam(t)
+ 1.

Assuming that the admissibility condition (2.11) holds, we find

|w0| ≥
2 dist(t, s)

diam(t)
+ 1 ≥ 1

η
+ 1 =

η + 1

η
.

The Bernstein ellipse touching this point is the one with

2
η + 1

η
=

1

η
+ 2 +

1

η
= |w0 − 1|+ |w0 + 1| = 2α0 = %0 + 1/%0,

0 = %20 − 2
η + 1

η
%0 + 1 =

(
%0 −

η + 1

η

)2

− (η + 1)2

η2
+ 1,

so we have

%0 =
η + 1 +

√
(η + 1)2 + η2

η
> 2

η + 1

η
,

i.e., the rate of convergence is in fact more than twice that of the Taylor expansion. For
η = 1, we obtain %0 = 2 +

√
5 and 1/%0 ≈ 0.24, while η = 1/2 yields %0 = 3 +

√
10 and

1/%0 ≈ 0.16.
According to Theorem 2.5, our choice η = 1/2 yields only a rate of 1/3 ≈ 0.33 if we

use the Taylor expansion.
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3 Multi-dimensional problems

The previous chapter has introduced the basic ideas of hierarchical matrix methods: the
matrix G is subdivided into submatrices G|t̂×ŝ, and these submatrices are approximated
by low-rank factorizations G|t̂×ŝ ≈ AtsB∗ts.

Now our goal is to extend these concepts to significantly more general applications,
i.e., more general domains and more general approximation schemes.

3.1 Gravitational potentials

Our model problem for this chapter is the evaluation of the classical gravitational po-
tential resulting from suns distributed in d-dimensional space.

We describe the suns by a family (mj)j∈J of masses and a family (yj)j∈J of coordinates
satisfying

mj ∈ R>0, yj ∈ Rd for all j ∈ J ,

where J is a suitable finite index set.
We want to evaluate the gravitational potential in a family (xi)i∈I of points satisfying

xi ∈ Rd \ {yj : j ∈ J } for all i ∈ I.

The gravitational potential is given by

φi :=
∑
j∈J

γ

‖xi − yj‖2
mj for all i ∈ I,

where γ ∈ R>0 denotes the gravitational constant. This computation can be interpreted
as a matrix-vector multiplication: we define G ∈ RI×J by

gij :=
γ

‖xi − yj‖2
for all i ∈ I, j ∈ J (3.1)

and find
φ = Gm.

Similar to our one-dimensional model problem, we have gij > 0 for all i ∈ I and j ∈ J .
With the function

g : Rd × Rd → R, (x, y) 7→

{
γ

‖x−y‖2 if x 6= y,

0 otherwise,
(3.2)

we have

gij = g(xi, yj) for all i ∈ I, j ∈ J ,

so once again we have to deal with a kernel function that has a singularity for x = y.
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3 Multi-dimensional problems

3.2 Approximation by interpolation

In order to construct degenerate approximations for multi-dimensional kernel functions
like the gravitational potential (3.2), we have to extend the results of section 2.6 from
intervals to suitable subsets of of Rd. This task is particularly straightforward if we
consider axis-parallel boxes, i.e., domains

B = [a1, b1]× . . .× [ad, bd], aι < bι for all ι ∈ [1 : d]. (3.3)

We recall that we can define transformed interpolation operators

I[a,b] : C[a, b]→ Πm, f 7→ I[f ◦ Φ[a,b]] ◦ Φ−1[a,b],

for arbitrary non-empty intervals [a, b] and that these operators can be written in the
form

I[a,b][f ] =
m∑
ν=0

f(ξ[a,b],ν)`[a,b],ν

with transformed interpolation points (ξ[a,b],ν)mν=0 and corresponding Lagrange polyno-
mials (`[a,b],ν)mν=0.

In order to extend the interpolation operator to the d-dimensional setting, we “freeze”
all variables but one and apply interpolation to this one variable.

Definition 3.1 (Partial interpolation) Let ι ∈ [1 : d], and let B denote the axis-
parallel box given by (3.3). The operator IB,ι : C(B)→ C(B) defined by

IB,ι[f ](x) =

m∑
ν=0

f(x1, . . . , xι−1, ξ[aι,bι],ν , xι+1, . . . , xd) `[aι,bι],ν(xι)

for all f ∈ C(B), x ∈ B

is called the ι-th partial interpolation operator for B.

The partial interpolation operator IB,ι inherits many valuable properties of the one-
dimensional interpolation operator I[aι,bι], but it does not produce a polynomial, merely
a function that is polynomial with respect to the ι-th variable.

In order to obtain a “proper” interpolation operator, we have to apply partial inter-
polation operators to all coordinate directions ι ∈ [1 : d].

Definition 3.2 (Tensor interpolation) The operator

IB := IB,1 ◦ · · · ◦ IB,d

is called the tensor interpolation operator for B.
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3.2 Approximation by interpolation

We would like to obtain a representation similar to (2.15) for the tensor interpolation
operator IB, since this would in turn allow us to obtain approximations of the kernel
function in the form (2.18).

To this end, we introduce the set M := [0 : m]d of d-dimensional multi-indices and let

ξB,ν := (ξ[a1,b1],ν1 , . . . , ξ[ad,bd],νd), (3.4a)

`B,ν(x) := `[a1,b1],ν1(x1) · · · `[ad,bd],νd(xd) for all ν ∈M, x ∈ B. (3.4b)

Using these tensor interpolation points and tensor Lagrange polynomials, the interpola-
tion operator IB can be written in the desired form.

Lemma 3.3 (Lagrange representation) We have

IB[f ](x) =
∑
ν∈M

f(ξB,ν) `B,ν(x) for all f ∈ C(B), x ∈ B. (3.5)

Proof. In order to be able to apply induction, we introduce

P0 := I, Pι := Pι−1 ◦ IB,ι for all ι ∈ [1 : d]

and observe Pd = IB. We let

Mι := [0 : m]ι,

ξι,ν := (ξ[a1,b1],ν1 , . . . , ξ[aι,bι],νι),

`ι,ν(x) := `[a1,b1],ν1(x1) · · · `[aι,bι],νι(xι) for all ι ∈ [1 : d], x ∈ Rι

and aim to prove

Pι[f ](x) =
∑
ν∈Mι

f(ξι,ν , xι+1, . . . , xd) `ι,ν(x1, . . . , xι) for all f ∈ C(B), x ∈ B (3.6)

by induction on ι ∈ [1 : d].
We start with ι = 1. Let f ∈ C(B) and x ∈ B. Due to P1 = IB,1, we can directly

apply Definition 3.1 to obtain

P1[f ](x) = IB,1[f ](x) =
m∑
ν=0

f(ξ[a1,b1],ν , x2, . . . , xd) `[a1,b1],ν(x1)

=
∑
ν∈M1

f(ξ1,ν , x2, . . . , xd) `1,ν(x1).

Let now ι ∈ [1 : d − 1] be such that (3.6) holds. Let f ∈ C(B) and x ∈ B. By the
induction assumption, we have

Pι+1[f ](x) = Pι ◦ IB,ι+1[f ](x)

= Pι[IB,ι+1[f ]](x) =
∑
ν∈Mι

IB,ι+1[f ](ξι,ν , xι+1, . . . , xd) `ι,ν(x1, . . . , xι)
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=
∑
ν∈Mι

m∑
µ=0

f(ξι,ν , ξ[aι+1,bι+1],µ, xι+2, . . . , xd) `ι,ν(x1, . . . , xι) `[aι+1,bι+1],µ(xι+1)

=
∑

ν̂∈Mι+1

f(ξι+1,ν̂ , xι+2, . . . , xd)`ι+1,ν̂(x1, . . . , xι+1).

Applying (3.6) to ι = d and observing

M = Md, ξd,ν = ξB,ν , `d,ν = `B,ν for all ν ∈M

completes the proof.

In order to approximate the kernel function g, we follow the approach outlined in
the previous chapter, but replace the intervals t and s by axis-parallel boxes. The
corresponding tensor interpolation operator

It[f ] =
∑
ν∈M

f(ξt,ν) `t,ν for all f ∈ C(t)

can be used in the by now familiar way: we fix y ∈ s and apply It to the function
x 7→ g(x, y), obtaining

g̃t,s(x, y) :=
∑
ν∈M

`t,ν(x) g(ξt,ν , y) for all x ∈ t, y ∈ s, (3.7)

and this is the multi-dimensional counterpart of (2.18).

Example 3.4 (Gravitational potential) We can use (3.7) directly to obtain an ap-
proximation of the matrix G corresponding to the gravitational potential (3.1): assume
that we have sets t̂ ⊆ I and ŝ ⊆ J such that g̃t,s is a good approximation of g for all
target points xi with i ∈ t̂ and all source points yj with j ∈ ŝ. We find

gij = g(xi, yj) ≈ g̃t,s(xi, yj) =
∑
ν∈M

`t,ν(xi) g(ξt,ν , yj) =
∑
ν∈M

ats,iνbts,jν = (AtsB
∗
ts)ij

(3.8)

with the matrices Ats ∈ Rt̂×M and Bts ∈ Rŝ×M given by

ats,iν := `t,ν(xi), bts,jν := g(ξt,ν , yj) for all i ∈ t̂, j ∈ ŝ, ν ∈M.

Preparing the entries of Ats is fairly straightforward, we only have to evaluate the tensor
Lagrange polynomials given by (3.4b). We can use the structure of these polynomials to
compute rows of Ats very efficiently.

Preparing the entries of Bts is even more simple: we have to set up the tensor points
(3.4a) and evaluate the kernel function (3.2).

In a practical implementation, handling the general index sets t̂, ŝ, and M may
pose a minor challenge. Usually t̂ and ŝ can be simply represented by arrays listing
all indices, and these arrays give rise to a natural ordering of the rows of Ats and
Bts. For the columns, the lexicographic order on the multi-index set M is convenient:
ν = (ν1, ν2, ν3) ∈M is mapped to ν1 + (m+ 1)(ν2 + (m+ 1)ν3) ∈ [0 : (m+ 1)3 − 1].
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3.3 Error analysis

The degenerate kernel (3.7) is only useful if it provides us with a reasonable approxima-
tion of the original kernel function g, therefore we have to investigate the accuracy of
tensor interpolation.

We start by taking a look at the partial interpolation operator and noticing that it
inherits important properties of one-dimensional interpolation.

Lemma 3.5 (Partial interpolation) Let ι ∈ [1 : d], let B denote the axis-parallel box
given by (3.3), let Λm be a stability constant satisfying (2.24), and let ω be the node
polynomial defined by (2.20). We have

‖IB,ι[f ]‖∞,B ≤ Λm‖f‖∞,B for all f ∈ C(B), (3.9a)

‖f − IB,ι[f ]‖∞,B ≤ ‖ω‖∞,[−1,1]
(
bι − aι

2

)m+1 ‖∂m+1
ι f‖∞,B
(m+ 1)!

for all f ∈ Cm+1(B).

(3.9b)

Proof. Let f ∈ C(B), and let x ∈ B. We define the function

f̂ : [aι, bι]→ R, y 7→ f(x1, . . . , xι−1, y, xι+1, . . . , xd)

and observe

IB,ι[f ](x) =

m∑
ν=0

f(x1, . . . , xι−1, ξ[aι,bι],ν , xι+1, . . . , xd) `[aι,bι],ν(xι)

=
m∑
ν=0

f̂(ξ[aι,bι],ν) `[aι,bι],ν(xι) = I[aι,bι][f̂ ](xι).

Due to (2.24), we have

|I[aι,bι][f̂ ](xι)| ≤ ‖I[aι,bι][f̂ ]‖∞,[aι,bι] ≤ Λm‖f̂‖∞,[aι,bι] = max{|f̂(y)| : y ∈ [aι, bι]}
= max{|f(x1, . . . , xι−1, y, xι+1, . . . , xd)| : y ∈ [aι, bι]} ≤ ‖f‖∞,B,

and this implies (3.9a). Let now f ∈ Cm+1(B). This implies f̂ ∈ Cm+1[aι, bι], and (2.22)
yields

|f(x)− IB,ι[f ](x)| = |f̂(xι)− I[aι,bι][f̂ ](xι)|

≤ ‖ω‖∞,[−1,1]
(
bι − aι

2

)m+1 ‖f̂ (m+1)‖∞,[aι,bι]
(m+ 1)!

≤ ‖ω‖∞,[−1,1]
(
bι − aι

2

)m+1 ‖∂m+1
ι f‖∞,B
(m+ 1)!

.

This is already (3.9b).

Using the representation (3.5), the investigation of the multi-dimensional tensor in-
terpolation can be reduced to the one-dimensional case.

Due to the special struction of the tensor interpolation operator, stability and approx-
imation error estimates carry over directly from the partial interpolation operators.
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Theorem 3.6 (Stability and approximation) Let Λm denote the stability constant
of (2.24). We have

‖IB[f ]‖∞,B ≤ Λdm‖f‖∞,B,

‖f − IB[f ]‖∞,B ≤
d∑
ι=1

Λι−1m ‖f − IB,ι[f ]‖∞,B for all f ∈ C(B).

Proof. As in the proof of Lemma 3.3, we introduce

P0 := I, Pκ := Pκ−1 ◦ IB,κ for all κ ∈ [1 : d].

We prove

‖Pκ[f ]‖∞,B ≤ Λκm, (3.10a)

‖f −Pκ[f ]‖∞,B ≤
κ∑
ι=1

Λι−1m ‖f − IB,ι[f ]‖∞,B for all f ∈ C(B) (3.10b)

by induction on κ ∈ [0 : d].

For κ = 0, we have Pκ = P0 = I and (3.10) holds trivially.

Let now κ ∈ [0 : d − 1] be such that (3.10) holds. Due to the induction assumption
and Lemma 3.5, we have

‖Pκ+1[f ]‖∞,B = ‖Pκ ◦ IB,κ+1[f ]‖∞,B = ‖Pκ[IB,κ+1[f ]]‖∞,B
≤ Λκm‖IB,κ+1[f ]‖∞,B ≤ ΛκmΛm‖f‖∞,B = Λκ+1

m ‖f‖∞,B

for all f ∈ C(B). This proves the stability estimate (3.10a).

We can use both induction assumptions and Lemma 3.5 to prove

‖f −Pκ+1[f ]‖∞,B = ‖f −Pκ[f ] + Pκ[f ]−Pκ+1[f ]‖∞,B
≤ ‖f −Pκ[f ]‖∞,B + ‖Pκ[f ]−Pκ[IB,κ+1[f ]]‖∞,B
= ‖f −Pκ[f ]‖∞,B + ‖Pκ[f − IB,κ+1[f ]]‖∞,B
≤ ‖f −Pκ[f ]‖∞,B + Λκm‖f − IB,κ+1[f ]‖∞,B

≤
κ∑
ι=1

Λι−1m ‖f − IB,ι[f ]‖∞,B + Λκm‖f − IB,κ+1[f ]‖∞,B

=

κ+1∑
ι=1

Λι−1m ‖f − IB,ι[f ]‖∞,B.

This proves the approximation error estimate (3.10b).

This is a particularly useful result, since it allows us to reduce the entire error analysis
of tensor interpolation to the investigation of partial interpolation operators, which due
to Lemma 3.5 behave essentially like one-dimensional interpolation operators.
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Corollary 3.7 (Tensor interpolation error) Let I be the Chebyshev interpolation
operator, and let Λm denote the stability constant of (2.24). We have

‖f − IB[f ]‖∞,B ≤ 2
d∑
ι=1

Λι−1m

(
bι − aι

4

)m+1 ‖∂m+1
ι f‖∞,B
(m+ 1)!

for all f ∈ Cm+1(B).

Proof. We combine Theorem 3.6 with Lemma 3.5. Since we are using Chebyshev inter-
polation, we have ‖ω‖∞,[−1,1] = 2−m.

In order to turn this into a meaningful error estimate, we require bounds for the
derivatives of f(x) = g(x, y). This turns out to be surprisingly challenging, but complex
analysis can help.

Lemma 3.8 (Holomorphic extension) Let x, p ∈ Rn \ {0}, and let r := ‖p‖2 and
ζ := ‖x‖2/r. There is a complex number w ∈ C such that |w| = ‖x‖2, and the function

f̂ : {z ∈ C : |z| < ζ} → C, z 7→ 1√
(w + zr)(w̄ + zr)

,

is holomorphic and satisfies

|w + tr|2 = ‖x+ tp‖22 for all t ∈ R,

f̂(t) =
1

‖x+ tp‖2
for all t ∈ (−ζ, ζ),

|f̂(z)| ≤ 1

‖x‖2 − |z| ‖p‖2
for all z ∈ C, |z| < ζ.

Proof. We can find an orthogonal transformation Q ∈ Rn×n and r ∈ R \ {0} such that

p̂ := Qp =


r
0
...
0

 .

We introduce x̂ := Qx and

w := x̂1 + ι
(
x̂22 + . . .+ x̂2n

)1/2
,

where ι ∈ C denotes the complex unity. We observe |w| = ‖x̂‖2 = ‖x‖2 and

|w + tr|2 = (w + tr)(w̄ + tr) = |w|2 + tr(w + w̄) + t2r2

= x̂21 + . . .+ x̂2n + 2trx̂1 + t2r2 = (x̂1 + tr)2 + x̂22 + . . .+ x̂2n

= ‖x̂+ tp̂‖22 = ‖x+ tp‖22 for all t ∈ R,

i.e., we can switch from the n-dimensional space to the complex plane.
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Figure 3.1: The set S for |w| = 2 and different values of r.

In order to define f̂ , we need a holomorphic extension of the square root to the set

S := {(w + zr)(w̄ + zr) : z ∈ C, |z| < ζ}.

We would like to use the principal branch of the square root defined on C \ R≤0 and
therefore have to prove R≤0 ∩ S = ∅.

Let z = a+ ιb with a, b ∈ R and |z| =
√
a2 + b2 < ζ. We have

(w + zr)(w̄ + zr) = |w|2 + (w + w̄)zr + z2r2 = |w|2 + 2x̂1zr + z2r2

= |w|2 + 2x̂1ar + (a2 − b2)r2 + ι(2x̂1br − 2abr2).

If the imaginary part is non-zero, this number is not in R≤0 and we are done.
If the imaginary part is zero, we have

2x̂1br = 2abr2 ⇐⇒ b = 0 ∨ x̂1 = ar.

If b = 0, we have

|w|2 + 2x̂1ar + (a2 − b2)r2 = |w|2 + 2x̂1ar + a2r2

≥ |w|2 − 2|w|ar + a2r2 = (|w| − ar)2 > 0,

and due to |ar| ≤ |z| r < ζ r = |w|, the real part is strictly positive.
If x̂1 = ar, on the other hand, we have

|w|2 + 2x̂1ar + (a2 − b2)r2 = |w|2 + 2a2r2 + a2r2 − b2r2 ≥ |w|2 + 3a2r2 − |z|2r2

> |w|2 + 3a2r2 − ζ2r2 = |w|2 + 3a2r2 − |w|2 = 3a2r2 ≥ 0,
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i.e., the real part is again strictly positive.
We conclude that S is contained in the domain C \R≤0 of the principal branch of the

square root and

f̂(z) :=
1√

(w + zr)(w̄ + zr)
for all z ∈ C, |z| < ζ,

is a well-defined holomorphic function. We have

f̂(t) =
1√

(w + tr)(w̄ + tr)
=

1√
|w + tr|2

=
1√

‖x̂+ tp̂‖2
=

1

‖x̂+ tp̂‖
=

1

‖x+ tp‖
for all t ∈ (−ζ, ζ),

and

|f̂(z)| = 1

|
√

(w + zr)(w̄ + zr)|
=

1√
|w + zr|

√
|w̄ + zr|

≤ 1√
|w| − |z| r

√
|w̄| − |z| r

=
1

|w| − |z| r
=

1

‖x‖2 − |z| ‖p‖2
for all z ∈ C, |z| < ζ.

This completes the proof.

Lemma 3.9 (Derivatives) Let x, p ∈ Rn \ {0}. The ν-th directional derivative of
ĝ(x) := 1/‖x‖ is bounded by

‖∂νp ĝ(x)‖2 ≤ (ν + 1)! e
‖p‖ν2
‖x‖ν+1

2

for all ν ∈ N.

Proof. Let ζ, w and f̂ be defined as in Lemma 3.8. We have

∂νp ĝ(x) =
∂ν

∂tν
ĝ(x+ tp)

∣∣∣∣
t=0

=
∂ν

∂tν
f̂(t)

∣∣∣∣
t=0

= f̂ ′(0)

and therefore ∂νp ĝ(x) = f̂ (ν)(0). Since f̂ is holomorphic in the circle of radius ζ around
zero, we can use the Cauchy identity for derivatives.

Let ε ∈ (0, 1), set ζ̂ := (1− ε)ζ. We have

|f̂ (ν)(0)| =

∣∣∣∣∣ ν!

2πι

∫
|z|=ζ̂

f̂(z)

zν+1
dz

∣∣∣∣∣ ≤ ν!

2π
2πζ̂

max{|f̂(z)| : z ∈ C, |z| = ζ̂}
ζ̂ν+1

≤ ν! ζ̂−ν
1

‖x‖2 − ζ̂‖p‖2
= ν!

‖p‖ν2
(1− ε)ν‖x‖ν2

1

ε‖x‖2
= ν!

‖p‖ν2
(1− ε)νε‖x‖ν+1

2

.

In order to reach our goal, we should choose an ε ∈ (0, 1) that makes (1− ε)νε as large
as possible. We have

∂

∂ε
(1− ε)νε = −ν(1− ε)ν−1ε+ (1− ε)ν for all ε ∈ (0, 1),
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and computing the extremum at

ν(1− ε)ν−1ε = (1− ε)ν ⇐⇒ νε = 1− ε ⇐⇒ 1 = (ν + 1)ε ⇐⇒ ε =
1

ν + 1

looks like a promising approach. Using this choice, we obtain

(1− ε)ν =

(
1− 1

ν + 1

)ν
=

(
ν

ν + 1

)ν
=

(
ν + 1

ν

)−ν
=

(
1 +

1

ν

)−ν
>

1

e

and

|f̂ (ν)(0)| < ν! e (ν + 1)
‖p‖ν2
‖x‖ν+1

2

= e (ν + 1)!
‖p‖ν

‖x‖ν+1
.

Due to |∂νp ĝ(x)| = |f̂ (ν)(0)|, our proof is complete.

We have

g(x, y) =
γ

‖x− y‖
= γ ĝ(x− y) for all x ∈ t, y ∈ s,

and in order to estimate the interpolation error

g(x, y)− g̃ts(x, y) = f(x)− It[f ](x) for all x ∈ t

with a fixed y ∈ s, we have to analyze the partial derivatives of

f(x) = g(x, y) = γ ĝ(x− y) for all x ∈ t.

According to Lemma 3.9, we have to be able to bound both ‖x − y‖ from below and
|bι − aι| from above. To obtain a similar result as in the previous chapter, we introduce

diam(t) := max{|bι − aι| : ι ∈ [1 : d]},
dist(t, s) := inf{‖x− y‖ : x ∈ t, y ∈ s}

and apply the previous Lemma.

Corollary 3.10 (Kernel function) Let dist(t, s) > 0. We have

‖g − g̃ts‖∞,t×s ≤
2eγd(m+ 2)Λd−1m

dist(t, s)

(
diam(t)

4 dist(t, s)

)m+1

for all m ∈ N.

Proof. Let y ∈ s. We define again f(x) := g(x, y) = γ ĝ(x − y) for all x ∈ t. Due to
Lemma 3.9, we have

‖∂m+1
ι f‖∞,t ≤ γ(m+ 2)! e

1

dist(t, s)m+2
for all ι ∈ [1 : d],

and Corollary 3.7 yields

‖f − I[f ]‖∞,t ≤ 2

d∑
ι=1

Λι−1m

(
bι − aι

4

)m+1

γ
(m+ 2)! e

(m+ 1)!

1

dist(t, s)m+2

≤ 2edΛd−1m γ(m+ 2)

dist(t, s)

(
diam(t)

4 dist(t, s)

)m+1

.

This is already the required estimate for the interpolation error.
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3.4 Cluster tree and block tree

Corollary 3.10 states that we can expect fast convergence of the kernel approximation if

diam(t)

4 dist(t, s)

is small, at least less than one. As in the one-dimensional model problem, we use an
admissibility condition

diam(t) ≤ 2η dist(t, s) (3.11)

with a parameter η ∈ (0, 2) that can be used to balance the rate of convergence ver-
sus the storage requirements. If (3.11) holds, Corollary 3.10 leads us to expect a rate
of approximately η/2, since Λd−1m and m + 2 grow only slowly while (η/2)m+1 decays
exponentially.

To ensure (3.11), we proceed as in the previous chapter, i.e., we split the domains t
and s into subdomains until they are either admissible or small enough to be handled
directly. In our example, the boxes t and s correspond to clusters of suns, therefore we
will refer to them as clusters in the following.

In order to split a cluster t, we generalize the bisection approach introduced in sec-
tion 2.4. Assume that

t = [a1, b1]× · · · × [ad, bd]

is too large. We choose a coordinate index ι ∈ [1 : d] and define

cι :=
bι + aι

2
.

We split t into two halves along the plane xι = cι, i.e., we define

t1 := {x ∈ t : xι ≤ cι}
= [a1, b1]× · · · × [aι−1, bι−1]× [aι, cι]× [aι+1, bι+1]× · · · × [ad, bd],

t2 := {x ∈ t : xι ≥ cι}
= [a1, b1]× · · · × [aι−1, bι−1]× [cι, bι]× [aι+1, bι+1]× · · · × [ad, bd].

If t1 and t2 are still too large, we can repeat the procedure recursively.

Remark 3.11 (Coordinate selection) A simple and effective strategy for choosing
the coordinate index ι ∈ [1 : d] for splitting a cluster is to go by the maximal extent, i.e.,
to choose ι ∈ [1 : d] such that

bι − aι ≥ bκ − aκ for all κ ∈ [1 : d],

since this guarantees that diam(t) shrinks as rapidly as possible. We will refer to this
approach as adaptive coordinate selection.

For theoretical investigations, the regular coordinate selection approach is sometimes
more attractive: we use ι = 1 for the first cluster, ι = 2 for the second generation,
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Figure 3.2: Cluster construction by bisection

ι = d for the d-th generation, and then we start again with ι = 1 for the (d + 1)-th
generation. This strategy ensures that the ratios of the sides of the clusters obtained
in the d-th generation are identical to those we started with, a useful property for the
geometric complexity analysis.

Every cluster t is associated with a set t̂ ⊆ I of indices such that xi ∈ t for all i ∈ t̂,
and it is frequently a good idea to construct these sets together with the corresponding
clusters. In our case, the sets

t̂1 := {i ∈ t̂ : xi,ι ≤ cι},
t̂2 := {i ∈ t̂ : xi,ι > cι}

are an obvious choice. We want t̂1 and t̂2 to be disjoint, since every point should be
approximated only once, and we ensure this by including i ∈ t̂ with xi,ι = cι only in the
first domain.

Remark 3.12 (A posteriori index sets) Computing the index sets t̂ during the con-
struction of the clusters is attractive since it allows us to stop subdividing as soon as a
cluster contains only a small number of indices.

The price for this advantage is that sorting indices into the clusters typically takes
O(n) operations for each generation, where n = |t̂| is the cardinality of the index set in
the first generation. Since we usually need O(log n) generations to arrive at sufficiently
small subdomains, this approach can be expected to take at least O(n log n) operations.

An alternative is to construct all generations without considering the index sets. Once
the final generation has been created, the indices are distributed to the last-generation
clusters. If we store the indices in nested arrays, i.e., if the arrays corresponding to child
clusters are sub-arrays of the array corresponding to the parent, filling the last generation
index sets also fills all other index sets, and we obtain linear complexity O(n).

We can see that the bisection procedure gives rise to a hierarchical decomposition of
clusters and index sets: the clusters can be arranged in a tree, using the original domains
as the root and creating children of a cluster by bisection.
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Definition 3.13 (Tree) Let V be a finite set, let r ∈ V and E ⊆ V × V . We call
T := (V, r, E) a tree if for each v ∈ V there is exactly one sequence v0, v1, . . . , v` ∈ V ,
` ∈ N0, such that

v0 = r, v` = v, (vi−1, vi) ∈ E for all i ∈ [1 : `].

We call V the nodes of the tree, r its root, and E its edges. The root is denoted by
root(T ) = r. We frequently use v ∈ T as short-hand for v ∈ V .

For each v ∈ T , we call

chil(v) := {w ∈ V : (v, w) ∈ E}

the set of children of v. If chil(v) = ∅, we call v a leaf.
If there is a w ∈ V such that (w, v) ∈ E, this w is unique and is called the parent of

v. Our definition implies that only the root r has no parent.

Definition 3.14 (Cluster tree) Let I be a finite set, let TI be a tree with nodes t ∈ TI ,
and let a subset t̂ ⊆ I be given for each t ∈ TI .

We call it a cluster tree for I if

• the index set corresponding to the root r is I, i.e.,

r̂ = I, (3.12a)

• the index set corresponding to a non-leaf node consists of the union of the index
sets of its children, i.e.,

t̂ =
⋃

t′∈chil(t)

t̂′ for all t ∈ TI , chil(t) 6= ∅, and (3.12b)

• the index sets of different children of a node are disjoint, i.e.,

t̂1 ∩ t̂2 6= ∅ ⇒ t1 = t2 for all t ∈ TI , t1, t2 ∈ chil(t). (3.12c)

The nodes t ∈ TI of a cluster tree TI are called clusters. The set of leaves of TI is
denoted by LI := {t ∈ TI : chil(t) = ∅}.

Splitting the clusters into levels is frequently a very useful tool, both for proving
statements about trees and sometimes also for implementing tree algorithms.

Definition 3.15 (Level) Let TI be a cluster tree with root r := root(TI). The level of
a cluster t ∈ TI is defined by

level(t) :=

{
0 if t = r,

level(t+) + 1 if there exists t+ ∈ TI with t ∈ chil(t+)
for all t ∈ TI .

The maximal level
pI := max{level(t) : t ∈ TI}

is called the depth of the cluster tree.
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Lemma 3.16 (Leaf indices) Let TI be a cluster tree for the index set I. For every
i ∈ I, there exists a leaf t ∈ LI with i ∈ t̂.

Proof. Let i ∈ TI . The set
Ci := {t ∈ TI : i ∈ t̂}

contains the root due to (3.12a), so it is not empty.
If a cluster t ∈ Ci has children, (3.12b) yields that there has to be t′ ∈ chil(t) with

i ∈ t̂′ and therefore t′ ∈ Ci. Definition 3.15 yields level(t′) = level(t) + 1.
Since Ci is finite and not empty, we can choose a t ∈ Ci such that level(t) is maximal.

We have seen that this implies chil(t) = ∅, i.e., we have t ∈ LI and i ∈ t̂.

Definition 3.17 (Descendants and predecessors) Let TI be a cluster tree. We de-
fine the sets of descendants

desc(t) := {t} ∪
⋃

t′∈chil(t)

desc(t′) for all t ∈ TI

and predecessors

pred(t) := {t∗ ∈ TI : t ∈ desc(t∗)} for all t ∈ TI .

Lemma 3.18 (Intersecting clusters) Let t, s ∈ TI with t̂ ∩ ŝ 6= ∅.
If level(s) = level(t), we have t = s. If level(s) ≤ level(t), we have t ∈ desc(s).

Proof. We first prove that level(t) = level(s) and t̂∩ ŝ 6= ∅ implies t = s by induction on
level(t) ∈ N0.

Let t, s ∈ TI with level(t) = level(s) = 0. Then both clusters are the root and therefore
identical.

Let now ` ∈ N0 be given such that for all t, s ∈ TI the identity level(t) = level(s) = `
and t̂ ∩ ŝ 6= ∅ imply t = s.

Let t, s ∈ TI with level(t) = level(s) = `+ 1 and t̂ ∩ ŝ 6= ∅. Since level(t), level(s) > 0,
there are parent clusters t+, s+ ∈ TI with t ∈ chil(t+) and s ∈ chil(s+) and level(t+) =
level(s+) = `. Due to (3.12b), we have t̂+∩ ŝ+ ⊇ t̂∩ ŝ 6= ∅, so we can apply the induction
assumption to obtain t+ = s+. This means that t, s ∈ chil(t+), and (3.12c) yields t = s.

We now prove that level(t) − level(s) ∈ N0 and t̂ ∩ ŝ 6= ∅ implies t ∈ desc(s) by
induction on level(t)− level(s) ∈ N0.

Let t, s ∈ TI with level(t)− level(s) = 0 and t̂ ∩ ŝ 6= ∅. By the first part of this proof,
this implies t = s.

Let now m ∈ N0 be given such that for all t, s ∈ TI the identity level(t)− level(s) = m
and t̂ ∩ ŝ 6= ∅ imply t ∈ desc(s).

Let t, s ∈ TI with level(t)−level(s) = m+1 and t̂∩ ŝ 6= ∅. Since level(t) > level(s) ≥ 0,
there is a parent cluster t+ ∈ TI with t ∈ chil(t+). We have level(t+) − level(s) =
level(t) − 1 − level(s) = m and t̂+ ∩ ŝ ⊇ t̂ ∩ ŝ 6= ∅, so we can apply the induction
assumption to obtain t+ ∈ desc(s). t ∈ desc(s) follows by definition.
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Corollary 3.19 (Leaf partition) The set {t̂ : t ∈ LI} is a disjoint partition of I.

Proof. Lemma 3.16 provides that every i ∈ I appears in a leaf cluster.
Lemma 3.18 provides that for all t, s ∈ LI with t̂ ∩ ŝ 6= ∅, we have either t ∈ desc(s)

or s ∈ desc(t). Since both are leaves, this is only possible if t = s.

Once we have cluster trees TI and TJ for target and source points at our disposal,
we can look for admissible pairs of clusters. We can use a recursive procedure: given
clusters t and s, we check the admissibility condition (3.11). If it holds, we stop and
apply our low-rank approximation. If it does not hold, we check whether t and s have
children. If they do, we recursively check pairs of children. If both are leaves, we stop
and use a standard representation. This approach again gives rise to a tree structure.

Definition 3.20 (Block tree) Let TI and TJ be cluster trees for index sets I and J .
A tree TI×J is called a block tree for TI and TJ if

• the nodes are pairs of clusters, i.e., for every b ∈ TI×J there are t ∈ TI and s ∈ TJ
with b = (t, s),

• the root consists of the roots of TI and TJ , i.e.,

r = (root(TI), root(TJ )), and (3.13a)

• if b = (t, s) ∈ TI×J has children, they are pairs of the children of t and s, i.e.,

chil(b) =


chil(t)× chil(s) if chil(t) 6= ∅, chil(s) 6= ∅,
{t} × chil(s) if chil(t) = ∅, chil(s) 6= ∅,
chil(t)× {s} if chil(t) 6= ∅, chil(s) = ∅.

(3.13b)

The nodes of a block tree TI×J are called blocks. For a block b = (t, s) ∈ TI×J , t ∈ TI
is called the row cluster or target cluster and s ∈ TJ is called the column cluster or
source cluster.

The set of leaves of TI×J is denoted by LI×J .
For every block b = (t, s) ∈ TI×J , we let b̂ := t̂× ŝ ⊆ I × J .

We introduce an abbreviation to avoid the special cases when treating (3.13b).

Lemma 3.21 (Extended children) We let

chil+(t) :=

{
chil(t) if sons(t) 6= ∅,
{t} otherwise

for all t ∈ TI . (3.14)

We have

t̂ =
⋃

t′∈chil+(t)

t̂′ for all t ∈ TI ,

t̂1 ∩ t̂2 6= ∅ ⇒ t1 = t2 for all t ∈ TI , t1, t2 ∈ chil+(t).
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Proof. Follows directly from Definition 3.14.

As a first application of this notation, we prove that block trees are, in fact, cluster
trees for the product index set I × J , i.e., the statements we have proven so far for
cluster trees carry over directly to block trees.

Lemma 3.22 (Product cluster tree) Let TI×J be a block tree for TI and TJ . Then
TI×J is a cluster tree for the product index set I × J .

Proof. Let r = root(TI×J ). By definition, we have r = (t, s) with t = root(TI) and
s = root(TJ ), and (3.12a) implies t̂ = I and ŝ = J . Due to r̂ = t̂× ŝ = I × J , we have
proven (3.12a) for TI×J .

Let now b = (t, s) ∈ TI×J be given with chil(b) 6= ∅. (3.13b) yields

chil(b) = chil+(t)× chil+(s),

and we can use Lemma 3.21 to obtain

⋃
b′∈chil(b)

b̂′ =
⋃

t′∈chil+(t)

⋃
s′∈chil+(s)

t̂′ × ŝ′ =

 ⋃
t′∈chil+(t)

t̂′

×
 ⋃
s′∈chil+(s)

ŝ′

 = t̂× ŝ = b̂.

This proves (3.12b).

Let now b1, b2 ∈ chil(b) with b̂1 ∩ b̂2 6= ∅. By Definition 3.20, we can find row clusters
t1, t2 ∈ chil+(t) and column clusters s1, s2 ∈ chil+(s) such that b1 = (t1, s1) and b2 =
(t2, s2). Since we have

(t̂1 ∩ t̂2)× (ŝ1 ∩ ŝ2) = (t̂1 × ŝ1) ∩ (t̂2 × ŝ2) = b̂1 ∩ b̂2 6= ∅,

we find t̂1 ∩ t̂2 6= ∅ and ŝ1 ∩ ŝ2 6= ∅. Lemma 3.21 yields t1 = t2 and s1 = s2, and this
implies b1 = b2.

Corollary 3.23 (Block partition) Let TI×J be a block tree for TI and TJ . Then

{t̂× ŝ : b = (t, s) ∈ LI×J }

is a disjoint partition of I × J .

Proof. Combine Lemma 3.22 with Corollary 3.19.

This result is at the heart of our approximation strategy: it allows us to construct
an approximation of a matrix G ∈ RI×J by combining approximations of submatrices
G|t̂×ŝ for b = (t, s) ∈ LI×J .
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3.5 Hierarchical matrices

Our construction of a block tree stops if one of two conditions is met: either a block
b = (t, s) satisfies an admissibility condition like (2.11) or (3.11), or if a block cannot be
subdivided any further.

In the first case, we use a low-rank approximation G|t̂×ŝ ≈ AtsB∗ts, while in the second
case we assume that the matrix G|t̂×ŝ is sufficiently small to allow us to store it directly.
This difference between leaf blocks gives rise to the following definition:

Definition 3.24 (Admissible and inadmissible leaves) Let TI×J be a block tree
for cluster trees TI and TJ . We split the set LI×J of the leaves of TI×J into

• a set of admissible leaves L+I×J ⊆ LI×J corresponding to the given admissibility
condition, and

• a set of inadmissible leaves L−I×J := LI×J \ L+I×J .

Due to Corollary 3.23, the leaves of the block tree give rise to a partition of the index
set I × J , and therefore to a decomposition of a matrix G ∈ KI×J into submatrices.

Notation 3.25 (Matrix notations) Since most of our algorithms work for both real-
and complex-valued matrices, we introduce K ∈ {R,C} as a placeholder for the field
currently under consideration.

If I is a general index set and k ∈ N, we use the abbreviation KI×k := KI×[1:k].
For a general matrix X ∈ KI×J , X∗ denotes the adjoint with respect to the Euclidean

inner product, i.e., X∗ = XT if K = R and X∗ = XH if K = C.

In practice, we frequently cannot work with the matrices G ∈ KI×J corresponding to
our model problems, since they are simple too large. That is why we replace them with
blockwise low-rank approximations, and these approximations have a structure that is
worth a far closer look, since it can be used in far more general applications than the
ones we have seen so far.

Definition 3.26 (Hierarchical matrix) Let TI×J be a block tree for cluster trees TI
and TJ , and let L+I×J denote its admissible leaves. Let k ∈ N0.

A matrix G ∈ KI×J is called a hierarchical matrix (or H-matrix) of local rank k for

TI×J if for every admissible leaf b = (t, s) ∈ L+I×J , there are matrices Ab ∈ Kt̂×k and

Bb ∈ Kŝ×k such that
G|t̂×ŝ = AbB

∗
b . (3.15)

The set of all such hierarchical matrices is denoted by H(TI×J , k).

The mere existence of the factors in (3.15) may be of theoretical interest, but for
practical considerations, it is important that we can represent the entire matrix G by
factorized matrices for admissible blocks and by small matrices for inadmissible leaves.
To capture this concept, we introduce the representation of a hierarchical matrix explic-
itly, so that we can, e.g., investigate the storage requirements.
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Definition 3.27 (H-matrix representation) Let TI×J be a block tree, and let G ∈
H(TI×J , k) be a hierarchical matrix.

Let A = (Ab)b∈L+I×J
, B = (Bb)b∈L+I×J

, and N = (Nb)b∈L−I×J
be families of matrices.

We call (A,B,N) an H-matrix representation of G if

G|t̂×ŝ = AbB
∗
b , Ab ∈ Kt̂×k, Bb ∈ Kŝ×k for all b = (t, s) ∈ L+I×J ,

G|t̂×ŝ = Nb for all b = (t, s) ∈ L−I×J .

In the case of the gravitational potential, (3.8) is of the form (3.15) if we let k :=
(m+ 1)d. In the one-dimensional model problem, (2.8) and (2.16) are also of this form,
but with k = m and k = m+ 1, respectively. This means that the three matrix approx-
imations we have constructed so far are hierarchical matrices, and general statements
about and algorithms for hierarchical matrices apply directly to them.

3.6 Complexity estimates

In our applications, H-matrix approximations take the place of the original matrix G,
therefore we have to store only these approximations and we have to perform arithmetic
operations like the matrix-vector multiplication only with these approximations.

In order to obtain useful estimates for the storage requirements and the algorithmic
complexity, we have to ensure

• that the inadmissible leaves of the block tree correspond to small matrices, and

• that the overall number of blocks is not too large.

For the first property, we can rely on the construction of the block tree that stops only
once the row or column clusters are leaves. If the leaves are small, we immediately obtain
a bound for the number of coefficients in the resulting H-matrix representation.

Definition 3.28 (Admissible block tree) Let TI×J be a block tree, and let L+I×J
and L−I×J denote the admissible and inadmissible leaves of TI×J .

The block tree TI×J is called admissible if

(t, s) ∈ L−I×J ⇒ (t ∈ LI ∨ s ∈ LJ ) holds for all (t, s) ∈ TI×J ,

and it is called strictly admissible if

(t, s) ∈ L−I×J ⇒ (t ∈ LI ∧ s ∈ LJ ) holds for all (t, s) ∈ TI×J .

Definition 3.29 (Cluster resolution) Let TI be a cluster tree. We call

rI := max{|t̂| : t ∈ LI},

i.e., that maximal number of indices in leaf clusters, the resolution of TI .
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Lemma 3.30 (Storage requirements) Let TI×J be an admissible block tree, let rI
and rJ denote the resolutions of TI and TJ , and let G ∈ H(TI×J , k). An H-matrix
representation of G requires not more than

max{k, rI , rJ }
∑

b=(t,s)∈LI×J

(|t̂|+ |ŝ|)

units of storage.

Proof. Let b = (t, s) ∈ LI×J . If b is an admissible leaf, we have to store the matrices

Ab ∈ Kt̂×k and Bb ∈ Kŝ×k, and this takes

k(|t̂|+ |ŝ|)

units of storage.

If b is an inadmissible leaf, we have to store Nb ∈ Kt̂×ŝ, and this takes |t̂| |ŝ| units
of storage. Since TI×J is admissible, t or s has to be a leaf. In the first case we have
|t̂| ≤ rI and can bound the storage requirements by

rI |ŝ| ≤ rI(|t̂|+ |ŝ|),

in the second case we have |ŝ| ≤ rJ and obtain the bound

rJ |t̂| ≤ rJ (|t̂|+ |ŝ|).

Taking the maximum of the three estimates yields that each leaf b = (t, s) ∈ LI×J
requires not more than

max{k, rI , rJ }(|t̂|+ |ŝ|)

units of storage. Accumulating the requirements of all leaves leads to our estimate.

In order to bound sums of the form ∑
b=(t,s)∈TI×J

|t̂|,

we employ the concept of sparse block trees [21]: Using admissibility conditions like
(2.11) and (3.11), the row and column clusters of inadmissible blocks are geometrically
close (cf. Figure 3.3). If we use a geometrically regular clustering strategy, the clus-
ters have a certain size and do not (or hardly) overlap, and this means that only a
bounded number of clusters can be close enough to make them inadmissible, the number
of inadmissible blocks for a fixed row or column cluster is bounded.

Our strategy for constructing block trees ensures that only inadmissible blocks are
split, therefore the parent of every block in TI×J is inadmissible, and we have just seen
that the number of inadmissible blocks can be bounded.

55



3 Multi-dimensional problems

Figure 3.3: Given a cluster (red), only a bounded number of other clusters (blue) are
close enough to lead to inadmissible blocks.

Definition 3.31 (Sparse block tree) Let TI×J be a block tree for the cluster trees TI
and TJ . We call

row(t) := {s ∈ TJ : (t, s) ∈ TI×J } for all t ∈ TI

the block rows for the row clusters t and

col(s) := {t ∈ TI : (t, s) ∈ TI×J } for all s ∈ TJ

the block columns for the column clusters s.
Let Csp ∈ N. We call TI×J Csp-sparse if

# row(t) ≤ Csp for all t ∈ TI ,
# col(s) ≤ Csp for all s ∈ TJ .

If TI×J is sparse, we can use the sparsity constant Csp to replace a sum of blocks by
a sum of clusters, we have∑

b=(t,s)∈LI×J

|t̂| =
∑
t∈TI

∑
s∈row(t)

|t̂| ≤ Csp

∑
t∈TI

|t̂|.

In order to bound this sum, we can take advantage of the fact that Lemma 3.18 implies
that an index i ∈ I appears at most once on each level of the cluster tree. As in
Definition 3.15, we denote the depth of the cluster tree TI by

pI := max{level(t) : t ∈ TI}.

Since the level numbers start at zero for the root, the total number of levels is pI + 1.
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Figure 3.4: Block row and block column (magenta) for a given row or column cluster
(blue)

Lemma 3.32 (Cluster sum) Let TI be a cluster tree of depth pI . We have∑
t∈TI

|t̂| ≤ (pI + 1)|I|,
∑
t∈LI

|t̂| = |I|.

Proof. Since Lemma 3.18 implies that the index sets for all clusters on the same level
are disjoint, we have∑

t∈TI
level(t)=`

|t̂| =
∣∣∣ ⋃

t∈TI
level(t)=`

t̂
∣∣∣ ≤ |I| for all ` ∈ N0

and conclude ∑
t∈TI

|t̂| =
pI∑
`=0

∑
t∈TI

level(t)=`

|t̂| ≤
pI∑
`=0

|I| = (pI + 1)|I|.

The second equation follows directly from Corollary 3.19.

We could apply this result directly to find a bound for the storage requirements, but
it is possible that the depth pI×J of the block tree TI×J is smaller than the depths pI
and pJ of the corresponding cluster trees TI and TJ , and in these situations a sharper
estimate can be derived, since Definition 3.20 implies that the levels of the row and
column clusters of a block cannot be larger than the level of the block.

Lemma 3.33 (Block level) Let b = (t, s) ∈ TI×J . We have

level(b) = max{level(t), level(s)}.

If level(t) < level(b), the row cluster t is a leaf. If level(s) < level(b), the column cluster
s is a leaf.
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Proof. By induction on level(b).
Let b ∈ TI×J with level(b) = 0. Then b is the root of TI×J , and Definition 3.20 yields

that t and s are the roots of TI and TJ , respectively, so we have level(t) = level(s) = 0.
Let now n ∈ N0 be given such that level(b) = max{level(t), level(s)} holds for all

blocks b = (t, s) ∈ TI×J with level(b) = n, that level(t) < level(b) implies t ∈ LI , and
that level(s) < level(b) implies s ∈ LJ .

Let b = (t, s) ∈ TI×J with level(b) = n + 1. Since level(b) > 0, we can find a parent
block b+ = (t+, s+) ∈ TI×J with b ∈ chil(b+), and Definition 3.15 yields level(b+) = n.

If level(t+) < level(b+), we have t+ ∈ LI by the induction assumption. Definition 3.20
implies t = t+ and s ∈ chil(s+), and we can use the induction assumption to obtain

level(b) = level(b+) + 1 = level(s+) + 1 = level(s).

Together with level(t) = level(t+) < level(b+), this proves our claim.
If level(s+) < level(b+), we can use the same arguments.
Otherwise we have level(t+) = level(s+) = level(b+). Definition 3.20 guarantees

chil(t+) 6= ∅ or chil(s+) 6= ∅. We have

level(t) =

{
level(t+) + 1 = level(b+) + 1 = level(b) if chil(t+) 6= ∅,
level(t+) < level(b+) + 1 = level(b) otherwise,

level(s) =

{
level(s+) + 1 = level(b+) + 1 = level(b) if chil(s+) 6= ∅,
level(s+) < level(b+) + 1 = level(b) otherwise,

and this completes the proof.

Lemma 3.34 (Block sum) Let TI×J be an admissible Csp-sparse block tree of depth
pI×J . We have∑

b=(t,s)∈TI×J

|t̂| ≤ Csp(pI×J + 1)|I|,
∑

b=(t,s)∈TI×J

|ŝ| ≤ Csp(pI×J + 1)|J |.

Proof. Lemma 3.33 yields

level(t) ≤ level(b), level(s) ≤ level(b) for all b = (t, s) ∈ TI×J ,

and we find∑
b=(t,s)∈TI×J

|t̂| =
∑
t∈TI

level(t)≤pI×J

∑
s∈row(t)

|t̂| ≤ Csp

∑
t∈TI

level(t)≤pI×J

|t̂| = Csp

pI×J∑
`=0

∑
t∈TI

level(t)=`

|t̂|.

We can again use Lemma 3.18 to obtain∑
t∈TI

level(t)=`

|t̂| =
∣∣∣ ⋃

t∈TI
level(t)=`

t̂
∣∣∣ ≤ |I| for all ` ∈ N0,
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and we conclude ∑
b=(t,s)∈TI×J

|t̂| ≤ Csp(pI×J + 1)|I|.

Similar arguments can be applied for the second estimate.

Theorem 3.35 (Storage requirements) Let TI×J be an admissible Csp-sparse block
tree of depth pI×J . Let rI and rJ be the resolutions of the row and column cluster trees
TI and TJ . A corresponding H-matrix representation of a matrix G with local rank k
requires not more than

Csp max{k, rI , rJ }(pI×J + 1)(|I|+ |J |)

units of storage.

Proof. We combine Lemma 3.30 and Lemma 3.34 to find that not more than

max{k, rI , rJ }
∑

b=(t,s)∈LI×J

(|t̂|+ |ŝ|)

= max{k, rI , rJ }

 ∑
b=(t,s)∈LI×J

|t̂|+
∑

b=(t,s)∈LI×J

|ŝ|


≤ max{k, rI , rJ }

 ∑
b=(t,s)∈TI×J

|t̂|+
∑

b=(t,s)∈TI×J

|ŝ|


≤ max{k, rI , rJ } (Csp(pI×J + 1)|I|+ Csp(pI×J + 1)|J |)
= Csp max{k, rI , rJ }(pI×J + 1)(|I|+ |J |)

units of storage are required.

Remark 3.36 (Matrix-vector multiplication) Given an H-matrix G, the matrix-
vector multiplication y ← y +Gx can be performed blockwise, i.e., by taking the steps

y|t̂ ← y|t̂ +G|t̂×ŝx|ŝ for all b = (t, s) ∈ LI×J

in any order. For admissible leaves, computing z ← B∗bx|ŝ takes (2k − 1)|ŝ| ≤ 2k|ŝ|
operations, and the update y|t̂ ← y|t̂ +Abz takes 2k|t̂| operations.

For inadmissible leaves, we have 2|t̂| |ŝ| operations. Assuming that TI×J is admissible,
we can bound this by 2 max{rI , rJ }(|t̂|+ |ŝ|) and obtain the upper bound

2 max{k, rI , rJ }
∑
LI×J

|t̂|+ |ŝ|

for the number of arithmetic operations. This is the same sum as in Lemma 3.30, and
we can proceed as before to obtain the bound

2Csp max{k, rI , rJ }(pI×J + 1)(|I|+ |J |)

for the number of operations.
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3.7 Estimates for cluster trees and block trees

Our complexity estimates rely on a number of assumptions:

1. The block tree is admissible.

This can be guaranteed by continuing to subdivide inadmissible blocks as long as
the row or the column cluster has children.

2. The resolution of the cluster trees is bounded.

This can be guaranteed by continuing to subdivide clusters as long as they contain
too many indices.

3. The block tree is sparse.

Proving this assumption can be quite challenging. Here, we focus on very regular
cluster strategies and a simple admissibility condition.

4. The depth of the block tree is bounded.

We can handle this assumption by proving that the depths of the cluster trees are
bounded and applying Lemma 3.33.

We briefly recall three popular cluster strategies. All are based on assigning points
xi ∈ Rd to all indices i ∈ I, e.g., the positions of planets or the nodal points of finite
element basis functions, and splitting the “point clouds” corresponding to clusters to
construct children.

We prescribe a resolution rI ∈ N and we keep splitting clusters recursively until the
condition |t̂| ≤ rI is met.

Adaptive bisection Clusters correspond to axis-parallel boxes

t = [a1, b1]× · · · × [ad, bd].

We choose the direction of maximal extent ι ∈ [1 : d], i.e., we have

bι − aι ≥ bκ − aκ for all κ ∈ [1 : d].

If this condition does not lead to a unique choice, we pick the smallest ι.
We denote the midpoint of the ι-th interval by

cι :=
bι + aι

2

and construct two children

t1 := {x ∈ t : xι ≤ cι}, t2 := {x ∈ t : xι ≥ cι}.

The corresponding index sets are

t̂1 := {i ∈ t̂ : xi,ι ≤ cι}, t̂2 := {i ∈ t̂ : xi,ι > cι},

where we arbitrarily assign indices on the boundary between the two children to t1.
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3.7 Estimates for cluster trees and block trees

Regular bisection We proceed as in the adaptive bisection approach, only instead of
choosing the direction of maximal extent, we cycle through all directions ι ∈ [1 : d].

Tensor bisection Clusters correspond to axis-parallel boxes

t = [a1, b1]× · · · × [ad, bd]

and are split along all coordinate axes simultaneously.
We denote the midpoints by

cι :=
bι + aι

2
for all ι ∈ [1 : d]

and define

a(0)ι := aι, b(0)ι := cι, a(1)ι := cι, b(1)ι := bι for all ι ∈ [1 : d].

This implies

[a(0)ι , b(0)ι ] ∪ [a(1)ι , b(1)ι ] = [aι, bι],

[a(0)ι , b(0)ι ] ∩ [a(1)ι , b(1)ι ] = {cι} for all ι ∈ [1 : d],

i.e., we split all intervals [aι, bι] along the middle into [a
(0)
ι , b

(0)
ι ] and [a

(1)
ι , b

(1)
ι ].

Given the multiindex set S := {0, 1}d, we construct 2d children

tν := [a
(ν1)
1 , b

(ν1)
1 ]× · · · × [a

(νd)
d , b

(νd)
d ] for all ν ∈ S.

The corresponding index sets are given by

t̂ν := {i ∈ t̂ : ∀ι ∈ [1 : d] : (νι = 0⇒ xi,ι ≤ cι)∧
(νι = 1⇒ xi,ι > cι)} for all ν ∈ S.

Remark 3.37 (Diameters) For the tensor bisection strategy, we immediately obtain

diam(t′) ≤ diam(t)

2
for all t′ ∈ chil(t), t ∈ TI .

For the regular bisection strategy, we have to take d splitting steps before the diameter
is halved, i.e.,

diam(t∗) ≤ diam(t)

2
for all t∗ ∈ desc(t), level(t∗) = level(t) + d, t ∈ TI .

Adaptive bisection is a little more challenging. We again consider a cluster t ∈ TI and
perform d splitting steps to obtain a descendant t∗ ∈ desc(t) with level(t∗) = level(t) +d.
We let

t∗ = [a∗1, b
∗
1]× · · · × [a∗d, b

∗
d].
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For every ι ∈ [1 : d], let νι ∈ [0 : d] be the number of times we have split clusters in the
ι-th direction. Since we have performed d steps, we have

|ν| = ν1 + . . .+ νd = d.

We choose a direction ι ∈ [1 : d] with νι > 0. Our strategy splits only along the direction
of maximal extent. The ι-th direction can only have been chosen νι times if it was still
the direction of maximal extent after νι − 1 splits, i.e.,

2νι−1(b∗ι − a∗ι ) ≥ b∗κ − a∗κ for all κ ∈ [1 : d].

We conclude

diam(t∗) = max{b∗κ − a∗κ : κ ∈ [1 : d]} ≤ 2νι−1(b∗ι − a∗ι )

=
2νι(b∗ι − a∗ι )

2
=
bι − aι

2
≤ diam(t)

2
,

i.e., adaptive bisection reduces diameters at least as quickly as regular bisection.

Now that we know how many levels are required to reduce the diameter of a cluster, we
can easily calculate how many levels are required until clusters contain only one point,
i.e., when the splitting procedure stops.

Lemma 3.38 (Depth) Let H ∈ R>0 be the diameter of the root cluster. Let

h := min{‖xi − xj‖∞ : i, j ∈ I, i 6= j}

be the minimal distance between two points. The depth of the cluster tree is bounded by

pI ≤

{
blog2(H/h)c+ 1 for tensor bisection,

d(blog2(H/h)c+ 1) for regular and adaptive bisection.

Proof. We first consider the tensor bisection strategy. Using

diam(t′) ≤ diam(t)

2
for all t ∈ TI , t′ ∈ chil(t),

a simple induction yields

diam(t) ≤ 2−`H for all t ∈ TI , level(t) = `.

If we use ` := blog2(H/h)c+ 1, we have

2−` < 2− log2(H/h) = h/H

and therefore diam(t) < h for t ∈ TI with level(t) = `. Due to our choice of h, this
means that t can contain at most one point and therefore has to be a leaf.
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For regular and adaptive bisection, we can use

diam(t∗) ≤ diam(t)

2
for all t ∈ TI , t∗ ∈ desc(t), level(t∗)− level(t) = d,

to obtain

diam(t) ≤ 2−`H for all t ∈ TI , level(t) = `d.

Now we can proceed as before.

Once we have constructed cluster trees TI and TJ , we can consider the block tree TI×J .
Definitions 3.20 and 3.28 already prescribe the essential steps by which a minimal admis-
sible block tree can be constructed: we start with the root block r = (root(TI), root(TJ )).
If a block b = (t, s) ∈ TI×J is admissible, we stop and make it a leaf. If t and s are
leaves, we also stop and make b an inadmissible leaf. Otherwise we subdivide b into its
sons

sons(b) =


sons(t)× sons(s) if sons(t) 6= ∅, sons(s) 6= ∅,
{t} × sons(s) if sons(t) = ∅, sons(s) 6= ∅,
sons(t)× {s} if sons(t) 6= ∅, sons(s) = ∅.

and treat each of these sons b′ ∈ sons(b) recursively.
For our complexity analysis, we not only need TI×J to be admissible, it also has to

be sparse. In order to investigate this property, we follow the approach outlined in [21]:
a block b = (t, s) ∈ TI×J is only constructed if its father b+ = (t+, s+) ∈ TI×J is not
admissible. Since our cluster construction ensures that no cluster has more than 2d sons
for tensor bisection and two sons for adaptive or regular bisection, bounding the number
of inadmissible blocks yields an estimate for the number of blocks.

A bound for the number of inadmissible blocks can be obtained by counting how many
clusters “fit into a ball” surrounding a given cluster. If the ball centered at the cluster
t is sufficiently large, it contains all clusters s such that (t, s) is inadmissible, since any
cluster intersecting the outside of the sphere has to be admissible.

In order to turn this into a precise mathematical proof, we require that the clusters’
aspect ratios do not degenerate.

Lemma 3.39 (Inadmissible blocks) Let Car ∈ R>0 be given with

diam(t)d ≤ Carλd(t) for all t ∈ TI ,

where λd denotes the d-dimensional Lebesgue measure. Let

ωd := λd({x ∈ Rd : ‖x‖2 ≤ 1})

denote the measure of the d-dimensional unit ball. Let t ∈ TI . The set of inadmissible
clusters

It := {s ∈ TI : level(s) = level(t), 2η dist(t, s) < diam(t)}
is bounded by

|It| ≤ Carωd
(3
√
d+ 1/η)d

2d
.
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%
√
d

%/η

2%
√
d

Figure 3.5: Inadmissible clusters intersect the green ball and are in the blue one.

Proof. Let ` := level(t), and let mt ∈ t denote the center of the axis-parallel box t. We
let % := diam(t)/2 and observe

‖x−m‖22 =
d∑
ι=1

(xι −mι)
2 ≤

d∑
ι=1

diam(t)2

4
= d

diam(t)2

4
= d%2 for all x ∈ t.

We prove that all inadmissible clusters s ∈ It are contained in the ball

B := {y ∈ Rd : ‖y −m‖2 ≤ (3
√
d+ 1/η)%},

cf. Figure 3.5. Let s ∈ It, i.e., we have

dist(t, s) <
diam(t)

2η
=
%

η
.

In order to prove s ⊆ B, we let z ∈ s and have to show z ∈ B. Let x ∈ t and y ∈ s with
‖x− y‖2 = dist(t, s). We find

‖z − y‖22 =
d∑
ι=1

(zι − yι)2 ≤
d∑
ι=1

diam(s)2 = d diam(s)2 = 4d%2

due to diam(s) = diam(t) = 2% and find

‖z −m‖2 = ‖z − y + y − x+ x−m‖2 ≤ ‖z − y‖2 + ‖y − x‖2 + ‖x−m‖2
≤ 2
√
d%+ dist(t, s) +

√
d% < 3

√
d%+

%

η
= (3
√
d+ 1/η)%,
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3.7 Estimates for cluster trees and block trees

so we have indeed proven z ∈ B.
By our construction, the clusters on the same level as t are disjoint up to null sets and

have the same measure as t, so we have

|It| =
1

λd(t)

∑
s∈It

λd(s) =
λd
(⋃

s∈It s
)

λd(t)
≤ λd(B)

λd(t)
=
ωd((3

√
d+ 1/η)%)d

λd(t)

≤ Carωd
(3
√
d+ 1/η)d%d

diam(t)d
= Carωd

(3
√
d+ 1/η)d%d

2d%d
= Carωd

(3
√
d+ 1/η)d

2d
.

Lemma 3.40 (Sparsity) Let TI be a cluster tree constructed by our algorithm. TI×I
be a minimal admissible block tree for the admissibility condition (3.11) with η ∈ R>0.
The block tree TI×I is Csp-sparse with

Csp :=

{
Carωd(3

√
d+ 1/η)d for tensor bisection,

Carωd(3
√
d+ 1/η)d21−d for regular and adaptive bisection,

where Car and ωd are defined as in Lemma 3.39.

Proof. Since TI×I is the minimal admissible block tree, blocks are not subdivided as
soon as the row or the column cluster is a leaf. Together with Definition 3.20, this
implies level(t) = level(s) for all b = (t, s) ∈ TI×I .

Let t ∈ TI . If t = root(TI), (t, s) ∈ TI×I already implies t = s.
Otherwise let t+ ∈ TI denote the parent of t.
Let s ∈ row(t), and let s+ ∈ TI denote the parent of s. Due to the minimality of

the block tree, (t+, s+) cannot be admissible, since otherwise the algorithm would have
stopped before creating (t, s).

Due to Lemma 3.39, we have

|It+ | ≤ Carωd
(3
√
d+ 1/η)d

2d
.

For the tensor bisection strategy, s+ can have no more than 2d children, and we conclude

| row(t)| = |{s ∈ TI : (t, s) ∈ TI×I}| ≤
∣∣∣ ⋃
s+∈It+

chil(s+)
∣∣∣

≤ 2d|It+ | ≤ 2dCarωd
(3
√
d+ 1/η)d

2d
= Carωd(3

√
d+ 1/η)d.

For the regular or adaptive bisection strategy, s+ can have no more than two children,
and we can modify the argument to obtain

| row(t)| = |{s ∈ TI : (t, s) ∈ TI×I}| ≤
∣∣∣ ⋃
s+∈It+

chil(s+)
∣∣∣

≤ 2|It+ | ≤ 2Carωd
(3
√
d+ 1/η)d

2d
= Carωd(3

√
d+ 1/η)d21−d.
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3.8 Improved interpolation error estimates
∗

The estimate provided by Corollary 3.10 for the interpolation error is not optimal: it
requires the relative distance between the clusters t and s to be “large enough”, and we
have already seen in Section 2.8 that one-dimensional interpolation converges as long as
the distance is non-zero. Since tensor interpolation is closely related to one-dimensional
interpolation, we can expect this property to carry over to the multi-dimensional case.

To investigate the interpolation error a little closer, we fix a cluster

t = [a1, b1]× · · · × [ad, bd]

and a closed set s ⊆ Rd with dist(t, s) > 0.
We have already seen that it is sufficient to take a look at the error f − It,ι[f ] of the

partial interpolation operators for all direction indices ι ∈ [1 : d].

Lemma 3.41 (Best approximation) Let y ∈ s, ι ∈ [1 : d], and

f : t→ R, x 7→ g(x, y).

Let x ∈ t and

f̂ι : [−1, 1]→ R, τ 7→ f(x1, . . . , xι−1,Φ[aι,bι](τ), xι+1, . . . , xd).

Using the Lebesgue stability constant Λm introduced in (2.24), we have

|f(x)− It,ι[f ](x)| ≤ (1 + Λm)‖f̂ι − p‖∞,[−1,1] for all p ∈ Πm.

Proof. As in Lemma 3.5, we introduce the auxiliary function

fι : [aι, bι]→ R, z 7→ f(x1, . . . , xι−1, z, xι+1, . . . , xd),

and recall
It,ι[f ](x) = I[aι,bι][fι](xι).

Due to the definition of the transformed interpolation operator I[aι,bι], we have

|f(x)− It,ι[f ](x)| = |fι(xι)− I[aι,bι][fι](xι)|

= |fι ◦ Φ[aι,bι](τ)− I[fι ◦ Φ[aι,bι]](τ)| = |f̂ι(τ)− I[f̂ι](τ)| (3.16)

with τ := Φ−1[aι,bι]
(xι) ∈ [−1, 1].

Let p ∈ Πm. Due to I[p] = p, we have

‖f̂ι − I[f̂ι]‖∞,[−1,1] = ‖f̂ι − p+ I[p− f̂ι]‖∞,[−1,1]
≤ ‖f̂ι − p‖∞,[−1,1] + ‖I[f̂ι − p]‖∞[−1,1]

≤ ‖f̂ι − p‖∞,[−1,1] + Λm‖f̂ι − p‖∞,[−1,1]
= (1 + Λm)‖f̂ι − p‖∞,[−1,1].

Combining this estimate with (3.16) completes the proof.

Using this result, we “only” have to prove that f̂ι can be approximated by polynomials.
We approach this task by rewriting the function.
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3.8 Improved interpolation error estimates

Lemma 3.42 (Interpolant) Let ι ∈ [1 : d], let x ∈ t and y ∈ s. We define vectors
m, p ∈ Rd with

mκ :=

{
bι+aι

2 − yι if κ = ι,

xκ − yκ otherwise,

pκ :=

{
bι−aι

2 if κ = ι,

0 otherwise
for all κ ∈ [1 : d].

We have ‖p‖2 ≤ diam(t)/2, and

‖m+ τp‖2 ≥ dist(t, s), f̂ι(τ) =
γ

‖m+ τp‖2
for all τ ∈ [−1, 1].

Proof. We introduce the extension operator

E : [−1, 1]→ t, τ 7→ (x1, . . . , xι−1,Φ[aι,bι](τ), xι+1, . . . , xd),

and write f̂ι in the form

f̂ι(τ) = g(E(τ), y) =
γ

‖E(τ)− y‖2
for all τ ∈ [−1, 1].

Let τ ∈ [−1, 1] Due to

Φ[aι,bι](τ) =
bι + aι

2
+ τ

bι − aι
2

,

we find

E(τ) = E(0) + τp, E(τ)− y = E(0)− y + τp = m+ τp.

Due to E(τ) ∈ t, we have

‖m+ τp‖2 = ‖E(τ)− y‖2 ≥ dist(t, s),

f̂ι(τ) = g(E(τ), y) =
γ

‖E(τ)− y‖2
=

γ

‖m+ τp‖2
.

In the following, we fix ι ∈ [1 : d] and write f̂ instead of f̂ι. We have already seen in
Lemma 3.8 that we can find a complex number w ∈ C with |w| = ‖m‖2 such that

z 7→ γ√
(w + zr)(w̄ + zr)

for all z ∈ C, |z| < ζ,

is a holomorphic extension of f̂ , where r := ‖p‖2 and ζ := ‖m‖2/r.
In order to apply Theorem 2.29, we require a holomorphic extension of f̂ not just to

a disc around zero, but to a Bernstein disc that is as large as possible.
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−w̄/r

−w/r

1−1

Figure 3.6: Maximal Bernstein disc D% for w = −3
2 + ι34 and r = 1

Lemma 3.43 (Maximal holomorphic extension) Let w = wr + ιwi ∈ C \ [−1, 1]
with wr, wi ∈ R and

Sw := C \ {a+ ιb : a, b ∈ R with ar + wr = 0 and |b| r ≥ |wi|}.

The function

f̂ : Sw → C, z 7→ γ√
(w + zr)(w̄ + zr)

,

is holomorphic.

Proof. We have to prove that z ∈ Sw implies that (w + zr)(w̄ + zr) is contained in the
domain C \ R≤0 of the principal branch of the holomorphic square root function.

We accomplish this by contraposition: let z ∈ C be given with

(w + zr)(w̄ + zr) ∈ R≤0.

We will prove z 6∈ Sw. Let a, b ∈ R with z = a+ ιb. We have

(w + zr)(w̄ + zr) = (ar + wr + ι(br + wi))(ar + wr + ι(br − wi))
= (ar + wr)

2 − (br + wi)(br − wi) + ι(ar + wr)(br + wi + br − wi)
= (ar + wr)

2 + w2
i − b2r2 + 2ι(ar + wr)br.

Due to our assumption (w + zr)(w̄ + zr) ∈ R≤0, we have

(ar + wr)br = 0, (ar + wr)
2 + w2

i − b2r2 ≤ 0.
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δ

1−1

Figure 3.7: Bernstein disc included in a δ-neighbourhood of the interval [−1, 1]

Due to r = ‖p‖2 > 0, the left equation implies either b = 0 or ar + wr = 0.
In the first case, i.e., if b = 0, the right inequality takes the form

(ar + wr)
2 + w2

i ≤ 0,

which implies ar + wr = 0 and wi = 0, i.e., wi = br and |wi| = |b| r, i.e., z 6∈ Sw.
In the second case, i.e., if ar + wr = 0, the right inequality becomes

w2
i − b2r2 ≤ 0 ⇐⇒ w2

i ≤ b2r2 ⇐⇒ |wi| ≤ |b| r.

We conclude again z 6∈ Sw.

If w is known explicitly, we can find the major axis α of the Bernstein ellipse E%
running through w via ∣∣∣w

r
− 1
∣∣∣+
∣∣∣w
r

+ 1
∣∣∣ = 2α

and compute % by means of

%+
1

%
= 2α ⇐⇒ %2 − 2α%+ 1 = 0 ⇐⇒ (%− α)2 = α2 − 1 ⇐⇒ % = α±

√
α2 − 1.

In practice, we want to use an admissibility condition like (3.11), and this condition only
provides us with an upper bound for

γ

|w + τr|
=

∣∣∣∣∣ γ√
(w + τr)(w̄ + τr)

∣∣∣∣∣
= |f̂(τ)| = γ

‖m+ τp‖2
≤ γ

dist(t, s)
for all τ ∈ [−1, 1],

i.e., the distance between w and the interval [−1, 1] is at least dist(t, s), but we do not
know exactly where w is positioned. Fortunately, if we stay close enough to [−1, 1], the
triangle equality guarantees that we stay far enough from w, so we only have to find an
Bernstein disc that is sufficiently close to [−1, 1], cf. Figure 3.7

Lemma 3.44 (Bernstein neighbourhood) Let δ ∈ R>0, and let % := δ +
√
δ2 + 1.

For every z ∈ D%, we can find τ ∈ [−1, 1] with |z − τ | ≤ δ.
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Proof. Let z ∈ D%. Using Lemma 2.26, we find w ∈ C with 1 ≤ |w| ≤ % and

z =
w + 1/w

2
.

We define v := w/|w| and consider

τ :=
v + 1/v

2
.

Due to |v| = 1, we have

τ =
v + 1/v

2
=
v + v̄/|v|2

2
=
v + v̄

2
= <(v) ∈ R, |τ | ≤ |v|+ 1/|v|

2
= 1,

and therefore τ ∈ [−1, 1]. Using |w| ≥ 1, we also find

|z − τ | =
∣∣∣∣w + 1/w − v − 1/v

2

∣∣∣∣ =

∣∣∣∣∣∣
(

1− 1
|w|

)
w + 1−|w|

w

2

∣∣∣∣∣∣
≤

∣∣∣1− 1
|w|

∣∣∣ |w|+ |1−|w| |
|w|

2
=
|w| − 1 + |w|−1

|w|

2
=
|w| − 1/|w|

2

≤ %− 1/%

2
=

(δ +
√
δ2 + 1)2 − 1

2(δ +
√
δ2 + 1)

=
δ2 + 2δ

√
δ2 + 1 + δ2 + 1− 1

2(δ +
√
δ2 + 1)

= δ.

In order to apply Theorem 2.29, we need an upper bound for f̂ in a Bernstein disc
that is as large as possible.

Lemma 3.45 (Upper bound) Let δmax := 2 dist(t,s)
diam(t) , and let δ ∈ [0 : δmax). Let % :=

δ +
√
δ2 + 1. We have

|f̂(z)| ≤ δmax

δmax − δ
γ

dist(t, s)
for all z ∈ D%.

Proof. Let z ∈ D%. Using Lemma 3.44, we find τ ∈ [−1, 1] with |z − τ | ≤ δ.
Using the triangle inequality, we obtain

|w + zr| ≥ |w + τr| − |τ − z|r ≥ ‖m+ τp‖2 − δr ≥ dist(t, s)− δdiam(t)

2

= dist(t, s)− δ

δmax
δmax

diam(t)

2
=

(
1− δ

δmax

)
dist(t, s),

|w̄ + zr| ≥ |w̄ + τr| − |τ − z|r = |w + τr| − |τ − z|r ≥
(

1− δ

δmax

)
dist(t, s),

|f̂(z)| = γ

|
√

(w + zr)(w̄ + zr)|
=

γ√
|w + zr| |w̄ + zr|

≤ γ

(1− δ/δmax) dist(t, s)
.
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Theorem 3.46 (Partial approximation) Let δmax := 2 dist(t,s)
diam(t) > 0 and %max :=

δmax +
√
δ2max + 1. For every m ∈ N, we can find a polynomial p ∈ Πm with

‖f̂ − p‖∞,[−1,1] ≤
2e(m+ 1)2

mδmax

γ

dist(t, s)
%−mmax.

Proof. We define

δ :=
m

m+ 1
δmax, % := δ +

√
δ2 + 1.

Due to δmax > 0, we have δ > 0 and % > 1. Lemma 3.45 yields

|f̂(z)| ≤ δmax

δmax − δ
γ

dist(t, s)
=
γ(m+ 1)

dist(t, s)
for all z ∈ D%,

and we can apply Theorem 2.29 with %̂ = 1 to find a polynomial p ∈ Πm with

‖f̂ − p‖∞,[−1,1] ≤
2

%− 1

(
1

%

)m γ(m+ 1)

dist(t, s)
.

We have

% = δ +
√
δ2 + 1 =

m

m+ 1
δmax +

√(
m

m+ 1

)2

δ2max + 1

≥ m

m+ 1
δmax +

√(
m

m+ 1

)2

(δ2max + 1)

=
m

m+ 1

(
δmax +

√
δ2max + 1

)
=

m

m+ 1
%max,

%− 1 = δ +
√
δ2 + 1− 1 ≥ δ =

m

m+ 1
δmax,

and conclude

‖f̂ − p‖∞,[−1,1] ≤
2

%− 1

(
1

%

)m γ (m+ 1)

dist(t, s)
≤ 2

m
m+1δmax

(
m+ 1

m

)m γ (m+ 1)

dist(t, s)
%−mmax

≤ 2(m+ 1)2

mδmax

(
1 +

1

m

)m γ

dist(t, s)
%−mmax ≤

2e(m+ 1)2

mδmax

γ

dist(t, s)
%−mmax

Corollary 3.47 (Kernel function) Let diam(t) ≤ 2η dist(t, s). Let m ∈ N. Let Λm
be the stability constant of (2.24). We have

‖g − g̃ts‖∞,t×s ≤ 2deΛd−1m (1 + Λm)η
(m+ 1)2

m

γ

dist(t, s)

(
η

1 +
√
η2 + 1

)m
.
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3 Multi-dimensional problems

Proof. Let x ∈ t and y ∈ s. Theorem 3.6 yields

|g(x, y)− g̃ts(x, y)| = |f(x)− It[f ](x)| ≤
d∑
ι=1

Λι−1m ‖f − It,ι[f ]‖∞,t

for the function f defined in Lemma 3.41. For ι ∈ [1 : d], this lemma states

|f(x)− I[f ](x)| ≤ (1 + Λm)‖f̂ι − p‖∞,[−1,1] for all p ∈ Πm.

Finally, Theorem 3.46 provides us with a polynomial p ∈ Πm such that

‖f̂ι − p‖∞,[−1,1] ≤
2e(m+ 1)2

mδmax

γ

dist(t, s)
%−mmax

with

δmax =
2 dist(t, s)

diam(t)
≥ 1

η
, %max = δmax +

√
δ2max + 1 ≥ 1 +

√
η2 + 1

η
.

Combining these estimates yields the result.
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4 Low-rank matrices

Most approximation schemes for non-local operators make use of low-rank matrices to
express long-range interactions by a small number of coefficients. In this chapter, we
consider techniques for obtaining low-rank approximations.

4.1 Definition and basic properties

In order to approximate an arbitrary matrix by an H-matrix, we have to find low-rank
approximations of all admissible submatrices.

Let I and J be finite index sets, and let nI := |I| and nJ := |J | denote their
cardinalities.

For convenience, we introduce the following notations.

Definition 4.1 (Range) Let X ∈ KI×J . The set

range(X) := {Xy : y ∈ KJ }

is called the range of X. It is a subspace of KI .

Definition 4.2 (Rank) Let X ∈ KI×J . The rank of X is given by

rank(X) := dim range(X).

Due to range(X) ⊆ KI , the rank is bounded by nI .

Notation 4.3 (Matrices, vectors, scalars) We identify KI and KI×1, i.e., each vec-
tor can also be treated as a matrix with only one column containing its entries.

We also identify K and K1×1, i.e., a one-by-one matrix can be treated as a scalar.

Most importantly, these notations imply that x∗y is the Euclidean inner product of
x, y ∈ KI , and that ‖x‖2 :=

√
x∗x is the Euclidean norm of x ∈ KI .

Using these notations, we can construct matrices of rank one in factorized form: let
a ∈ KI \ {0} and b ∈ KJ \ {0}. Then

R := ab∗ (4.1)

is a matrix in KI×J . Its range is contained in the span of a and due to Rb = ab∗b =
a‖b‖22 6= 0 it is also non-trivial, so R is a rank-one matrix.

We can prove that any rank-one matrix can be represented in this way.
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4 Low-rank matrices

Lemma 4.4 (Rank reduction) Let X ∈ KI×J be a matrix of rank k, and let a ∈
range(X) and c ∈ KI be vectors with c∗a = 1. Then

X̃ := X − ac∗X

is a matrix of rank k − 1.

Proof. Due to a 6= 0, a ∈ range(X) and rank(X) = dim range(X) = k, we can apply the
basis extension theorem to find b1, . . . , bk−1 ∈ KI such that {a, b1, . . . , bk−1} is a basis of
range(X).

We define

di := bi − ac∗bi for all i ∈ [1 : k − 1]

and will prove that {d1, . . . , dk−1} is a basis of range(X̃).
We first prove that range(X̃) is contained in the span of d1, . . . , dk−1. Let y ∈ KJ .

Due to Xy ∈ range(X), we can find α, β1, . . . , βk−1 ∈ K such that

Xy = αa+ β1b1 + . . .+ βk−1bk−1.

By our definitions, we have

X̃y = Xy − ac∗Xy
= αa+ β1b1 + . . .+ βk−1bk−1 − ac∗(αa+ β1b1 + . . .+ βk−1bk−1)

= αa+ β1b1 + . . .+ βk−1bk−1 − αac∗a− β1ac∗b1 − . . .− βk−1ac∗bk−1
= α(1− c∗a)a+ β1(b1 − ac∗b1) + . . .+ βk−1(bk−1 − ac∗bk−1)
= α(1− c∗a)a+ β1d1 + . . .+ βk−1dk−1.

Due to c∗a = 1, the first term vanishes and we have proven our claim.
Now we will prove that the vectors d1, . . . , dk−1 are linearly independent. Let

γ1, . . . , γk−1 ∈ K be such that

γ1d1 + . . .+ γk−1dk−1 = 0.

Our definition implies

0 = γ1d1 + . . .+ γk−1dk−1

= γ1(b1 − ac∗b1) + . . .+ γk−1(bk−1 − ac∗bk−1)
= γ1b1 + . . .+ γk−1bk−1 − (γ1c

∗b1 + . . .+ γk−1c
∗bk−1)a.

Since the vectors {a, b1, . . . , bk−1} are linearly independent, we conclude γ1 = . . . =
γk−1 = 0. This completes our proof.

We apply Lemma 4.4 to a rank-one matrix R: we choose a ∈ range(R) with ‖a‖2 = 1,
let c := a and find that R̃ := R − aa∗R is a matrix of rank zero. This means that its
range is trivial, so we have R̃ = 0 and conclude R = aa∗R = a(R∗a)∗. Setting b := R∗a,
we have proven R = ab∗.
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4.1 Definition and basic properties

Remark 4.5 (Projection) Due to c∗a = 1, the mapping P := I − ac∗ appearing in
Lemma 4.4 is a projection, i.e., satisfies P 2 = P , and its nullspace is the span of a.

This means that P is injective on complements of a, e.g., on the space spanned by
b1, . . . , bk−1. Therefore the vectors di = Pbi are linear independent and span the range
of X̃ = PX.

We can extend this result: matrices of rank k can be represented as sums of k rank-one
matrices, each of which can again be represented in factorized form.

Theorem 4.6 (Low-rank representation) Let X ∈ KI×J be a matrix of rank k. We
can find vectors a1, . . . , ak ∈ KI and b1, . . . , bk ∈ KJ such that

X =
k∑
ν=1

aνb
∗
ν . (4.2)

Proof. By induction.
Let first k = 1, and let X ∈ KI×J be a matrix of rank one. We can find a ∈ range(X)

with ‖a‖2 = 1, and applying Lemma 4.4 to c := a with c∗a = ‖a‖22 = 1 yields that
X − aa∗X is a matrix of rank zero, i.e.,

X = aa∗X = a(X∗a)∗ = ab∗,

where we have chosen b := X∗a.
Let now k ∈ N be given such that our claim holds. Let X ∈ KI×J be a matrix of rank

k+ 1. We can again find a ∈ range(X) with ‖a‖2 = 1, and Lemma 4.4 again yields that

X̃ := X − aa∗X

is a matrix of rank k. Applying the assumption yields vectors a1, . . . , ak ∈ KI and
b1, . . . , bk ∈ KJ such that

X̃ =

k∑
ν=1

aνb
∗
ν ,

and setting ak+1 := a and bk+1 := X∗a, we conclude

X = X̃ + aa∗X =
k∑
ν=1

aνb
∗
ν + ak+1b

∗
k+1 =

k+1∑
ν=1

aνb
∗
ν .

In order to avoid sums and indices for this representation of low-rank matrices, we
collect the vectors a1, . . . , ak in the columns of a matrix A and the vectors b1, . . . , bk in
the columns of a matrix B and obtain a compact notation that naturally extends (4.1)
to the case of higher ranks.

Since A and B now have column indices in [1 : k] and row indices in I and J , we
introduce a suitable notation.

75



4 Low-rank matrices

Notation 4.7 (Column matrices) When dealing with matrices with column indices
in N, we write KI×k := KI×[1:k] and Kk×J := K[1:k]×J .

Correspondingly, for A ∈ KI×k and ` ∈ [1 : k], we define the restriction to the first `
columns as A|t̂×` := A|t̂×[1:`] for subsets t̂ ⊆ I.

Definition 4.8 (R(I,J , k)-representation) Let k ∈ N and X ∈ KI×J . We call a
pair (A,B) of matrices A ∈ KI×k and B ∈ KJ×k an R(I,J , k)-representation of X if

X = AB∗ (4.3)

and we denote the set of all these representations by

R(I,J , k) := {AB∗ : A ∈ KI×k, B ∈ KJ×k}.

This is not a vector space, since the sum of two rank-k-matrices can have a rank higher
than k. If the index sets I and J are irrelevant or implied by the context, we use the
short notation R(k).

Using this notation, Theorem 4.6 takes the form of the following existence result for
R(I,J , k)-representations.

Corollary 4.9 (R(I,J , k)-representation) Let k ∈ N and X ∈ KI×J .
If X is of rank k, we have X ∈ R(I,J , k).
If X ∈ R(I,J , k), we have rank(X) ≤ k.

Proof. Let first X be of rank k. Applying Theorem 4.6, we find vectors a1, . . . , ak ∈ KI
and b1, . . . , bk ∈ KJ such that

X =

k∑
ν=1

aνb
∗
ν .

We define

A :=
(
a1 . . . ak

)
∈ KI×k, B :=

(
b1 . . . bk

)
∈ KJ×k

and obtain X = AB∗, i.e., X ∈ R(I,J , k).
Let now X ∈ R(I,J , k). By definition, we find A ∈ KI×k and B ∈ KJ×k with

X = AB∗. We have range(X) ⊆ range(A), and since A has only k columns, we conclude

dim range(X) ≤ dim range(A) ≤ k,

i.e., rank(X) ≤ k.

Remark 4.10 (Storage) A matrix in R(I,J , k)-representation requires (nI + nJ )k
units of storage. If the rank is low compared to the number nI of rows and the number
nJ of columns, this representation is far more efficient than the representation as a
standard two-dimensional nI-by-nJ array.
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4.1 Definition and basic properties

Remark 4.11 (Matrix-vector multiplication) Computing the product of a matrix
X in R(I,J , k)-representation and a vector y ∈ KJ takes 2(nI + nJ )k operations: let
X = AB∗ with A ∈ KI×k and B ∈ KJ×k. In order to compute z := Xy, we first
compute the auxiliary vector ŷ := B∗y, using not more than 2nJ k operations, and then
z = Aŷ, using not more than 2nIk operations.

Using the representation (4.2), we can carry out this operation with minimal auxiliary
storage: we start by initializing z ← 0. Then we perform the update z ← z + aνb

∗
νy

for all ν ∈ [1 : k] by first computing the inner product ŷν := b∗νy and then updating
z ← z + aν ŷν .

Remark 4.12 (Matrix-matrix multiplication) If X ∈ R(I,J , k) and Y ∈ KJ×K,
we have XY ∈ R(I,K, k): using X = AB∗, we obtain XY = AB∗Y = A(Y ∗B)∗, and
setting C := Y ∗B, we have found the R(I,K, k)-representation XY = AC∗.

Similarly, if X ∈ KI×J and Y ∈ R(J ,K, k), we also have XY ∈ R(I,K, k).

Exercise 4.13 (Uniqueness) So far, we have only considered the existence of low-rank
representations. Sometimes the uniqueness may also be of interest.

(a) Let a1, a2 ∈ KI and b1, b2 ∈ KJ .

Prove that a1b
∗
1 = a2b

∗
2 6= 0 implies that there is a constant γ ∈ K \ {0} such that

a2 = γa1 and b2 = 1
γ b1.

(b) Let A1, A2 ∈ KI×k and B1, B2 ∈ KJ×k.

Prove that if A1B
∗
1 = A2B

∗
2 is a matrix of rank k, there is an invertible matrix C

such that A2 = A1C and B2 = B1(C
−1)∗.

Exercise 4.14 (Self-adjoint matrices) Let X ∈ KI×I be a self-adjoint matrix.

(a) Assume that X is positive semidefinite, i.e., that

y∗Xy ∈ R≥0 for all y ∈ KI .

Prove that y∗Xy = 0 implies Xy = 0 for all y ∈ KI .

(b) Since the unit sphere in KI is compact (cf. the Heine-Borel theorem), there is a
vector e ∈ KI with e∗e = ‖e‖22 = 1 and

y∗Xy ≤ e∗Xe for all y ∈ KI .

Prove that there is a λ ∈ R with Xe = λe.

(c) Let k := rank(X). Prove that there are λ1, . . . , λk ∈ R and e1, . . . , ek ∈ KI with

X =
k∑
ν=1

eνλνe
∗
ν .

Hints: Considering (y + αXy)∗X(y + αXy) for α → 0 may be useful in part (a). For
part (b), it may be a good idea to look for a λ ∈ R such that the matrix λI−X is positive
semidefinite. Part (c) can be solved by combining part (b) and Lemma 4.4.
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4 Low-rank matrices

4.2 Low-rank approximation

In most applications, we can only hope to approximate matrices by low-rank matrices.
Therefore it would be particularly attractive to have a reliable algorithm for finding the
best approximation of a given matrix by a matrix of given rank k. We will now introduce
this algorithm.

Definition 4.15 (Orthogonal and isometric matrices) Let Q ∈ KI×J . If we have
Q∗Q = I, we call Q an isometric matrix.

If we have Q∗Q = I and QQ∗ = I, we call Q an orthogonal matrix.

If Q ∈ KI×J is isometric, we have

(Qx)∗(Qy) = x∗Q∗Qy = x∗y for all x, y ∈ KJ , (4.4a)

‖Qx‖2 =
√

(Qx)∗(Qx) =
√
x∗x = ‖x‖2 for all x ∈ KJ . (4.4b)

The latter equation motivates the name “isometric”. It is possible to prove that it is
equivalent to the equation Q∗Q = I used in the definition.

If Q is orthogonal, it is both injective and surjective, and is therefore an isometric
isomorphism between KI and KJ .

Definition 4.16 (Singular value decomposition) Let X ∈ KI×J , and let p :=
rank(X). If there are isometric matrices U ∈ KI×p and V ∈ KJ×p and a diagonal
matrix

Σ :=

σ1 . . .

σp

 ∈ Rp×p

with σ1 ≥ σ2 ≥ . . . ≥ σp > 0 such that

X = UΣV ∗, (4.5)

we call (U,Σ, V ) a singular value decomposition of X.

We can rewrite (4.5) as

X =

p∑
ν=1

uνσνv
∗
ν

to make it resemble (4.2), where uν and vν are the ν-th columns of U and V , respec-
tively. The only difference compared to the result of Theorem 4.6 lies in the fact that
{u1, . . . , up} and {v1, . . . , vp} are now orthonormal families of vectors. This property
makes the singular value decomposition significantly more useful, but it also makes it
significantly harder to obtain.

Reminder 4.17 (Cauchy-Schwarz inequality) For all x, y ∈ KI , we have

|x∗y| ≤ ‖x‖2‖y‖2.

Equality holds only if x and y are linear dependent.
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4.2 Low-rank approximation

Theorem 4.18 (Singular value decomposition) Every matrix X ∈ KI×J has a
singular value decomposition.

Proof. By induction on rank(X).

For rank(X) = 0, we choose empty matrices U , V and Σ and are done.

Let now p ∈ N0 be such that every matrix X ∈ KI×J with rank(X) = p has a singular
value decomposition.

Let X ∈ KI×J be a matrix with rank(X) = p+ 1. We consider the function

f : KI ×KJ → R≥0, (z, y) 7→ |z∗Xy|,

on the unit spheres

SI := {z ∈ KI : ‖z‖2 = 1}, SJ := {y ∈ KJ : ‖y‖2 = 1}.

Since the unit spheres are compact and f is continuous, we can find a maximum

σ := max{f(z, y) : z ∈ SI , y ∈ SJ }.

Due to rank(X) = p+1 > 0, we have X 6= 0 and therefore σ > 0. Let u ∈ SI and v ∈ SJ
be vectors with f(u, v) = σ. By modifying the sign of u, we can ensure σ = u∗Xv.

We will now prove Xv = σu and X∗u = σv.

In order to prove Xv = σu, we make use of Xv 6= 0 to define

z :=
Xv

‖Xv‖2
.

Due to z ∈ SI , we have

|u∗Xv| = σ ≥ f(z, v) =
|(Xv)∗Xv|
‖Xv‖2

=
‖Xv‖22
‖Xv‖2

= ‖Xv‖2 = ‖u‖2‖Xv‖2.

By the Cauchy-Schwarz lemma, |u∗Xv| ≥ ‖u‖2‖Xv‖2 can only hold if u and Xv are
linearly dependent, so we find λ ∈ K with Xv = λu.

σ = u∗Xv = λu∗u = λ‖u‖22 = λ

yields the desired equation Xv = σu.

In order to prove X∗u = σv, we make use of X∗u 6= 0 to define

y :=
X∗u

‖X∗u‖2

with y ∈ SJ . Proceeding as before, we find |v∗X∗u| ≥ |y∗X∗u| = ‖v‖2‖X∗u‖2 and
finally X∗u = σv.

We consider the matrix

X̃ := X − uu∗X.
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4 Low-rank matrices

Due to Xv = σu and σ 6= 0, we have u ∈ range(X), and since we also have u∗u = ‖u‖22 =

1, we can apply Lemma 4.4 to conclude rank(X̃) = p.
Using the induction assumption yields a singular value decomposition (Ũ , Σ̃, Ṽ ) of X̃.
We define

U :=
(
u Ũ

)
, Σ :=

(
σ

Σ̃

)
, V :=

(
v Ṽ

)
and will now verify that (U,Σ, V ) is a singular value decomposition of X.

First we prove that U and V are isometric. We have

U∗U =
(
u Ũ

)∗ (
u Ũ

)
=

(
u∗

Ũ∗

)(
u Ũ

)
=

(
u∗u u∗Ũ

Ũ∗u Ũ∗Ũ

)
=

(
1 u∗Ũ

Ũ∗u I

)
,

V ∗V =
(
v Ṽ

)∗ (
v Ṽ

)
=

(
v∗

Ṽ ∗

)(
v Ṽ

)
=

(
v∗v v∗Ṽ

Ṽ ∗v Ṽ ∗Ṽ

)
=

(
1 v∗Ṽ

Ṽ ∗v I

)
.

We only have to show u∗Ũ = 0 and Ṽ ∗v = 0. Since Σ̃ is invertible, we have

X̃Ṽ Σ̃−1 = Ũ Σ̃Ṽ ∗Ṽ Σ̃−1 = Ũ Σ̃Σ̃−1 = Ũ ,

Σ̃−1Ũ∗X̃ = Σ̃−1Ũ∗Ũ Σ̃Ṽ ∗ = Σ̃−1Σ̃Ṽ ∗ = Ṽ ∗.

This implies

u∗Ũ = u∗X̃Ṽ Σ̃−1 = u∗(X − uu∗X)Ṽ Σ̃−1 = (u∗X − u∗X)Ṽ Σ̃−1 = 0, (4.6)

i.e., U∗U = I. In order to prove V ∗V = I, we observe

X̃ = X − uu∗X = X − u(X∗u)∗ = X − σuv∗ = X −Xvv∗

and can now use the same argument as before to get

Ṽ ∗v = Σ̃−1Ũ∗X̃v = Σ̃−1Ũ∗(X −Xvv∗)v = Σ̃−1Ũ∗(Xv −Xv) = 0,

i.e., V ∗V = I. To complete the proof, we have to show that σ is larger than all diagonal
entries of Σ̃. Let ν ∈ [1 : p], and let σ̃ν denote the ν-th diagonal element of Σ̃.

We denote the ν-th columns of Ũ and Ṽ by ũ ∈ KI and ṽ ∈ KJ . Since Ũ and Ṽ are
isometric, we have ũ ∈ SI and ṽ ∈ SJ . Equation (4.6) implies u∗ũ = 0, so we find

σ ≥ f(ũ, ṽ) = |ũ∗Xṽ| = |ũ∗(X − uu∗X)ṽ| = |ũ∗X̃ṽ| = |ũ∗Ũ Σ̃Ṽ ∗ṽ| = σ̃ν ,

since both Ũ∗ũ and Ṽ ∗ṽ are the ν-th canonical unit vector.

Lemma 4.19 (Range and null space) Let X ∈ KI×J , let p := rank(X), and let
(U,Σ, V ) be a singular value decomposition of X.

We have range(X) = range(U) and range(X∗) = range(V ).
For the null spaces we have ker(X) = ker(V ∗) and ker(X∗) = ker(U∗).
The dimensions satisfy

dim range(X) = dim range(U) = p, dim ker(X) = dim ker(V ∗) = |J | − p.

80



4.2 Low-rank approximation

Proof. The defining equation X = UΣV ∗ already implies range(X) ⊆ range(U). Since
both range(X) and range(U) are p-dimensional, we conclude range(X) = range(U).

Applying the same argument to X∗ = V ΣU∗, we obtain range(X∗) = range(V ).
The defining equation also yields ker(V ∗) ⊆ ker(X). Let y ∈ ker(X). We have

0 = ‖Xy‖2 = ‖UΣV ∗y‖2 = ‖ΣV ∗y‖2

due to (4.4b), i.e., ΣV ∗y = 0. Since Σ is invertible, this implies V ∗y = 0, i.e., y ∈
ker(V ∗). The same reasoning leads to ker(U∗) = ker(X∗).

The rank-nullity theorem yields

|J | = dim range(X) + dim ker(X) = dim range(U) + dim ker(V ∗),

and dim range(X) = p = dim range(U) completes the proof.

If the rank p is too large for our purposes, we can reduce it to a lower value k ≤ p
by dropping all but the first k terms of the representation, i.e., we can consider the
approximation

X̃ :=
k∑
ν=1

uνσνv
∗
ν = U



σ1
. . .

σk
0

. . .

0


V ∗. (4.7)

Obviously it would be of great interest to know how good this approximation actually
is. In order to measure the approximation error, we introduce appropriate norms.

Definition 4.20 (Frobenius norm) The Frobenius norm of a matrix X ∈ KI×J is
given by

‖X‖F :=

∑
i∈I

∑
j∈J
|xij |2

1/2

.

Lemma 4.21 (Frobenius norm) Let X ∈ KI×J . We have

‖X‖F = ‖X∗‖F , (4.8a)

‖Xy‖2 ≤ ‖X‖F ‖y‖2 for all y ∈ KJ , (4.8b)

‖QX‖F = ‖X‖F for all isometric Q ∈ KK×I , (4.8c)

‖XQ∗‖F = ‖X‖F for all isometric Q ∈ KK×J . (4.8d)

Proof. Equation (4.8a) follows directly from the definition

‖X‖2F =
∑
i∈I

∑
j∈J
|xij |2 =

∑
j∈J

∑
i∈I
|x̄ij |2 = ‖X∗‖2F .
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4 Low-rank matrices

The next equation (4.8b) is a consequence of the Cauchy-Schwarz inequality, i.e.,

‖Xy‖22 =
∑
i∈I
|(Xy)i|2 =

∑
i∈I

∣∣∣∑
j∈J

xijyj

∣∣∣2 ≤∑
i∈I

(∑
j∈J
|xij |2

)(∑
j∈J
|yj |2

)
=
∑
i∈I

∑
j∈J
|xij |2‖y‖22 = ‖X‖2F ‖y‖22.

For the equation (4.8c), we find

‖QX‖2F =
∑
k∈K

∑
j∈J
|(QX)kj |2 =

∑
k∈K

∑
j∈J

(QX)kj(QX)kj

=
∑
k∈K

∑
j∈J

(∑
i∈I

q̄kix̄ij

)(∑
`∈I

qk`x`j

)
=
∑
j∈J

∑
i∈I

∑
`∈I

x̄ijx`j
∑
k∈K

q̄kiqk`

=
∑
j∈J

∑
i∈I

∑
`∈I

x̄ijx`j(Q
∗Q)i` =

∑
j∈J

∑
i∈I

x̄ijxij =
∑
j∈J

∑
i∈I
|xij |2 = ‖X‖2F .

Combining (4.8a) and (4.8c), we obtain

‖XQ∗‖F = ‖(XQ∗)∗‖F = ‖QX∗‖F = ‖X∗‖F = ‖X‖F ,

and this is the final equation (4.8d).

We can turn the space of matrices into a Hilbert space by introducing an inner product
corresponding to the Frobenius norm.

Lemma 4.22 (Frobenius product) The Frobenius product is defined by

〈X,Y 〉F :=
∑
i∈I

∑
j∈J

x̄ijyij for all X,Y ∈ KI×J .

We have

‖X‖F =
√
〈X,X〉F for all X ∈ KI×J , (4.9a)

〈X,Y 〉F = 〈X∗, Y ∗〉F for all X,Y ∈ KI×J , (4.9b)

〈X,Y Z〉F = 〈Y ∗X,Z〉F for all X ∈ KI×K, Y ∈ KI×J , Z ∈ KJ×K, (4.9c)

〈X,Y Z〉F = 〈XZ∗, Y 〉F for all X ∈ KI×K, Y ∈ KI×J , Z ∈ KJ×K. (4.9d)

Proof. Let X,Y ∈ KI×J . We have

‖X‖2F =
∑
i∈I

∑
j∈J
|xij |2 =

∑
i∈I

∑
j∈J

x̄ijxij = 〈X,X〉F ,

〈X,Y 〉F =
∑
i∈I

∑
j∈J

x̄ijyij =
∑
i∈I

∑
j∈J

xij ȳij =
∑
j∈J

∑
i∈I

xij ȳij = 〈X∗, Y ∗〉F .
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4.2 Low-rank approximation

Let X ∈ KI×K, Y ∈ KI×J , and Z ∈ KJ×K. We have

〈X,Y Z〉F =
∑
i∈I

∑
k∈K

x̄ik(Y Z)ik =
∑
i∈I

∑
k∈K

x̄ik
∑
j∈J

yijzjk =
∑
j∈J

∑
k∈K

∑
i∈I

yij x̄ikzjk

=
∑
j∈J

∑
k∈K

(Y ∗X)jkzjk = 〈Y ∗X,Z〉F .

Combining (4.9b) and (4.9c) yields

〈X,Y Z〉F = 〈X∗, (Y Z)∗〉F = 〈X∗, Z∗Y ∗〉F = 〈ZX∗, Y ∗〉F = 〈XZ∗, Y 〉F ,

completing the proof.

While the Frobenius norm is frequently a convenient tool for obtaining estimates for
the approximation error, the bound (4.8b) can be very pessimistic. Therefore we consider
the spectral norm, which makes this bound as sharp as possible

Definition 4.23 (Spectral norm) The spectral norm of a matrix X ∈ KI×J is given
by

‖X‖2 := max{‖Xy‖2 : y ∈ KJ with ‖y‖2 = 1}.

Since the unit sphere {y ∈ KJ : ‖y‖2 = 1} is a compact set and y 7→ ‖Xy‖2 is a
continuous function, the maximum exists and the norm is well-defined.

Lemma 4.24 (Spectral norm) Let X ∈ KI×J . We have

‖Xy‖2 ≤ ‖X‖2‖y‖2 for all y ∈ KI , (4.10a)

‖X‖2 = sup

{
|z∗Xy|
‖z‖2‖y‖2

: y ∈ KJ \ {0}, z ∈ KI \ {0}
}
, (4.10b)

‖X‖2 = ‖X∗‖2, (4.10c)

‖QX‖2 = ‖X‖2 for all isometric Q ∈ KK×I , (4.10d)

‖XQ∗‖2 = ‖X‖2 for all isometric Q ∈ KK×J , (4.10e)

‖D‖2 = max{|dii| : i ∈ I} for all diagonal D ∈ KI×I . (4.10f)

Proof. Let y ∈ KJ . If y = 0, we have Xy = 0, and ‖Xy‖2 = 0 ≤ ‖X‖2‖y‖2 holds.
If y 6= 0, we have ‖y‖2 6= 0 and can define ŷ := y/‖y‖2, ensuring ‖ŷ‖2 = 1. Applying
Definition 4.23, we obtain

‖Xy‖2 = ‖Xŷ‖2‖y‖2 ≤ ‖X‖2‖y‖2

and have proven (4.10a).

To prove (4.10b), we let

α := sup

{
|z∗Xy|
‖z‖2‖y‖2

: y ∈ KJ \ {0}, z ∈ KI \ {0}
}
≥ 0.
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4 Low-rank matrices

By the Cauchy-Schwarz inequality and (4.10a), we have

|z∗Xy| ≤ ‖z‖2‖Xy‖2 ≤ ‖z‖2‖X‖2‖y‖2 for all y ∈ KJ , z ∈ KI

and conclude α ≤ ‖X‖2.
If ‖X‖2 = 0, we immediately find ‖X‖2 ≤ α. Otherwise, we choose y ∈ KJ with
‖y‖2 = 1 and ‖Xy‖2 = ‖X‖2. Due to ‖X‖2 > 0, the vector z := Xy is not zero, and we
get

α ≥ |z∗Xy|
‖z‖2‖y‖2

=
|(Xy)∗(Xy)|
‖Xy‖2‖y‖2

=
‖Xy‖22
‖Xy‖2‖y‖2

= ‖Xy‖2 = ‖X‖2.

This proves α = ‖X‖2, i.e., (4.10b).
Using this equation and the identity |a∗b| = |b∗a| for a, b ∈ KJ , we immediately find

‖X‖2 = sup

{
|z∗Xy|
‖z‖2‖y‖2

: y ∈ KJ \ {0}, z ∈ KI \ {0}
}

= sup

{
|(X∗z)∗y|
‖z‖2‖y‖2

: y ∈ KJ \ {0}, z ∈ KI \ {0}
}

= sup

{
|y∗X∗z|
‖y‖2‖z‖2

: z ∈ KI \ {0}, y ∈ KJ \ {0}
}

= ‖X∗‖2

and have proven (4.10c).
Let now Q ∈ KK×I be isometric. Due to (4.4b), we have

‖X‖2 = max{‖Xy‖2 : y ∈ KJ with ‖y‖2 = 1}
= max{‖QXy‖2 : y ∈ KJ with ‖y‖2 = 1} = ‖QX‖2,

which proves (4.10d).
Let Q ∈ KK×J be isometric. Combining (4.10c) with (4.10d) yields

‖XQ∗‖2 = ‖(XQ∗)∗‖2 = ‖QX∗‖2 = ‖X∗‖2 = ‖X‖2.

Now let D ∈ KI×I be a diagonal matrix, and let µ := max{|dii| : i ∈ I}. We have

‖Dy‖22 =
∑
i∈I
|diiyi|2 =

∑
i∈I
|dii|2|yi|2 ≤ µ2

∑
i∈I
|yi|2 = µ2‖y‖22

for all y ∈ KI , and Definition 4.23 yields ‖D‖2 ≤ µ. We can find j ∈ I with µ = |djj |.
Let δj ∈ KI denote the j-th canonical unit vector with

(δj)i =

{
1 if i = j,

0 otherwise
for all i ∈ I.

We have
‖Dδj‖22 =

∑
i∈I
|dii(δj)i|2 = |djj |2 = µ2

and use Definition 4.23 to conclude ‖D‖2 ≥ ‖Dδj‖2 = µ, .e., ‖D‖2 = µ.
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4.2 Low-rank approximation

Lemma 4.25 (Approximation error) Let X ∈ KI×J , let p := rank(X), let k ∈
[0, . . . , p− 1], and let X̃ be constructed as in (4.7). Then we have

‖X − X̃‖F =
( p∑
ν=k+1

σ2ν

)1/2
, ‖X − X̃‖2 = σk+1.

Proof. Let (U,Σ, V ) be a singular value decomposition of X. We define

Σ̃ :=



σ1
. . .

σk
0

. . .

0


and observe

X̃ = U Σ̃V ∗.

Using (4.8c), (4.8d), (4.10d) and (4.10e), we obtain

‖X − X̃‖F = ‖UΣV ∗ − U Σ̃V ∗‖F = ‖U(Σ− Σ̃)V ∗‖F = ‖Σ− Σ̃‖F ,

‖X − X̃‖2 = ‖UΣV ∗ − U Σ̃V ∗‖2 = ‖U(Σ− Σ̃)V ∗‖2 = ‖Σ− Σ̃‖2.

Due to

E := Σ− Σ̃ =



0
. . .

0
σk+1

. . .

σp


,

we immediately find

‖X − X̃‖F = ‖Σ− Σ̃‖F = ‖E‖F =
( p∑
ν=k+1

σ2ν

)1/2
.

Using (4.10f), we obtain

‖X − X̃‖2 = ‖Σ− Σ̃‖2 = ‖E‖2 = max{σν : ν ∈ [k + 1 : p]} = σk+1.

This result allows us to control the approximation error: once the singular values have
been computed, we can choose the rank k adaptively to guarantee a prescribed accuracy:
to ensure the spectral norm estimate ‖X − X̃‖2 ≤ ε, we let

k :=

{
min{` ∈ [0 : p− 1] : σ`+1 ≤ ε} if σp ≤ ε,
p otherwise,
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4 Low-rank matrices

while the Frobenius norm estimate ‖X − X̃‖F ≤ ε is ensured by choosing

k := min

{
` ∈ [0 : p] :

p∑
ν=`+1

σ2ν ≤ ε2
}
.

It is frequently a good idea to ensure relative error bounds like ‖X − X̃‖2 ≤ ε̂‖X‖2 or
‖X − X̃‖F ≤ ε̂‖X‖F . Applying Lemma 4.25 to k = 0 yields

‖X‖2 = σ1, ‖X‖F =

(
p∑

ν=1

σ2ν

)1/2

.

Once the singular values have been computed, we can therefore let ε := ε̂‖X‖2 or ε :=
ε̂‖X‖F , respectively, and again choose the rank adaptively.

Remark 4.26 (Low-rank projection) Let (U,Σ, V ) be a singular value decomposi-
tion of a rank-p matrix X ∈ KI×J . Let k ∈ [0 : p] and let X̃ be defined as in (4.7).

Let P̂ ∈ Kp×k be given by

p̂νµ :=

{
1 if ν = µ,

0 otherwise
for all ν ∈ [1 : p], µ ∈ [1 : k].

This matrix is isometric and has rank k. Since U is isometric, so is P := UP̂ ∈ KI×k,
the matrix consisting of the first k columns of U .

Using Ik ∈ Kk×k to denote the k-dimensional identity matrix, we have

P̂ P̂ ∗ =

(
Ik

0

)
,

and P̂ P̂ ∗ is an orthogonal projection into the subspace Kk × {0} ⊆ Kp.
The matrix PP ∗ ∈ KI×I is an orthogonal projection into the subspace range(P )

spanned by these first k columns, and we have

PP ∗X = UP̂ P̂ ∗U∗UΣV ∗ = UP̂ P̂ ∗ΣV ∗ = U



σ1
. . .

σk
0

. . .

0


V ∗ = X̃,

i.e., we can see X̃ as the result of an orthogonal rank-k projection applied to X.
This representation is frequently useful, e.g., if we use and algorithm that constructs

only U and Σ, but not V . In this case, X̃ = PP ∗X = P (X∗P )∗ directly yields a rank-k
approximation without the need for Σ or V .
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4.2 Low-rank approximation

The matrix X̃ defined in (4.7) is not only a low-rank approximation of X, it is the
best approximation with respect to both the spectral and the Frobenius norm. This
is a useful property for theoretical investigations, since it allows us to investigate the
existence of an approximation separately from its algorithmic construction.

Lemma 4.27 (Lower bound) Let X ∈ KI×J be a matrix of rank p, and let σ1 ≥
σ2 ≥ . . . ≥ σp > 0 be its singular values.

Let R ∈ KI×J be a matrix with k := rank(R) < p. There is a vector z ∈ KJ with
‖z‖2 = 1, Rz = 0 and ‖Xz‖2 ≥ σk+1.

Proof. (cf. [18, Theorem 2.5.3]) Let (U,Σ, V ) be a singular value decomposition of X
with

U =
(
u1 . . . up

)
, Σ =

σ1 . . .

σp

 , V =
(
v1 . . . vp

)
.

We denote the dimension of KJ by n := |J |. Let N := {z ∈ KJ : Rz = 0} de-
note the null space of R. Due to Lemma 4.19, we have dim(N) ≥ n − k. Let W :=
span{v1, . . . , vk+1}. Since {v1, . . . , vp} is an orthonormal basis, we have dim(W ) = k+1.

Since both N and W are subspaces of the n-dimensional space KJ , their intersection
cannot be trivial, i.e., we find a vector z ∈ N ∩W with z 6= 0. By scaling the vector
appropriately, we can ensure ‖z‖2 = 1.

Due to z ∈ N , we have Rz = 0.
Due to z ∈W , we can find γ1, . . . , γk+1 ∈ K such that

z = γ1v1 + . . .+ γk+1vk+1

holds. Since {v1, . . . , vp} is an orthonormal basis, we have

v∗νz = v∗ν(γ1v1 + . . .+ γk+1vk+1) = γ1v
∗
νv1 + . . .+ γk+1v

∗
νvk+1

=

{
γν if ν ≤ k + 1,

0 otherwise
for all ν ∈ [1 : p]

and

1 = ‖z‖22 = (γ1v1 + . . .+ γk+1vk+1)
∗z = γ̄1v

∗
1z + . . .+ γ̄k+1v

∗
k+1z

= γ̄1γ1 + . . .+ γ̄k+1γk+1 = |γ1|2 + . . .+ |γk+1|2.

Since U is isometric, we can apply (4.10d) to obtain

‖Xz‖22 = ‖UΣV ∗z‖22 = ‖ΣV ∗z‖22 =

p∑
ν=1

σ2ν |v∗νz|2 =

k+1∑
ν=1

σ2ν |γν |2 ≥ σ2k+1

k+1∑
ν=1

|γν |2 = σ2k+1.
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4 Low-rank matrices

A closer look reveals that this estimate already provides us with the desired result for
the spectral norm.

To prove a similar result for the Frobenius norm, we will use the vector z provided by
Lemma 4.27 in a rank-one update. We require an estimate for the Frobenius norm of
this update.

Lemma 4.28 (Frobenius norm, projection error) Let Y ∈ KI×J be a matrix and
let Q ∈ KI×K be isometric. We have

‖Y −QR‖2F = ‖Q(Q∗Y −R)‖2F + ‖Y −QQ∗Y ‖2F for all R ∈ KK×J .

We can see that the right-hand side takes its minimum for R = Q∗Y .
Applying this equation to R = 0 and Q with only one column, we obtain

‖Y ‖2F = ‖zz∗Y ‖2F + ‖Y − zz∗Y ‖2F for all z ∈ KI with ‖z‖2 = 1,

‖Y ‖2F = ‖Y zz∗‖2F + ‖Y − Y zz∗‖2F for all z ∈ KJ with ‖z‖2 = 1.

Proof. Let R ∈ KK×J . The first result is a consequence of (4.9c), since we find

‖Y −QR‖2F = ‖Y −QQ∗Y +QQ∗Y −QR‖2F
= 〈(Y −QQ∗Y ) +Q(Q∗Y −R), (Y −QQ∗Y ) +Q(Q∗Y −R)〉F
= 〈Y −QQ∗Y, Y −QQ∗Y 〉F + 〈Y −QQ∗Y,Q(Q∗Y −R)〉F

+ 〈Q(Q∗Y −R), Y −QQ∗Y 〉F + 〈Q(Q∗Y −R), Q(Q∗Y −R)〉F
= ‖Y −QQ∗Y ‖2F + 〈Q∗(Y −QQ∗Y ), Q∗Y −R〉F

+ 〈Q∗Y −R,Q∗(Y −QQ∗Y )〉F + ‖Q(Q∗Y −R)‖2F
= ‖Y −QQ∗Y ‖2F + 〈Q∗Y −Q∗QQ∗Y,Q∗Y −R〉F

+ 〈Q∗Y −R,Q∗Y −Q∗QQ∗Y 〉F + ‖Q(Q∗Y −R)‖2F .

Since Q is isometric, we have Q∗Q = I and conclude

‖Y −QR‖2F = ‖Y −QQ∗Y ‖2F + 〈Q∗Y −Q∗Y,Q∗Y −R〉F
+ 〈Q∗Y −R,Q∗Y −Q∗Y 〉F + ‖Q(Q∗Y −R)‖2F

= ‖Y −QQ∗Y ‖2F + ‖Q(Q∗Y −R)‖2F .

Let now z ∈ KI with ‖z‖2 = 1. This implies z∗z = ‖z‖22 = 1, so z can be interpreted as
an isometric matrix due to Notation 4.3. Applying the first equation with R = 0 yields

‖Y ‖2F = ‖zz∗Y ‖2F + ‖Y − zz∗Y ‖2F .

For z ∈ KJ with ‖z‖2 = 1, we can apply this equation in combination with (4.8a) to
obtain

‖Y ‖2F = ‖Y ∗‖2F = ‖zz∗Y ∗‖2F + ‖Y ∗ − zz∗Y ∗‖2F = ‖Y zz∗‖2F + ‖Y − Y zz∗‖2F ,

i.e., our final result.
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4.2 Low-rank approximation

Theorem 4.29 (Best approximation) Let X ∈ KI×J be a matrix of rank p with
singular values σ1 ≥ σ2 ≥ . . . ≥ σp > 0. Let R ∈ RI×J be a matrix of rank k ≤ p. Then
we have

‖X −R‖2 ≥

{
σk+1 if k < p,

0 otherwise,
‖X −R‖F ≥

(
p∑

ν=k+1

σ2ν

)1/2

.

Proof. (cf. [16, 28]) For the spectral norm, we use Lemma 4.27 to obtain a vector z ∈ KJ
with ‖z‖2 = 1, Rz = 0 and ‖Xz‖2 ≥ σk+1. The definition of the spectral norm implies

‖X −R‖2 ≥ ‖(X −R)z‖2 = ‖Xz −Rz‖2 = ‖Xz‖2 ≥ σk+1.

For the Frobenius norm, we prove

‖X −R‖2F ≥
p∑

ν=p−`+1

σ2ν for all R ∈ KI×J with rank(R) ≤ p− ` (4.11)

by induction over ` ∈ N0 and note that applying it to ` := p− rank(R) will give us the
desired result.

If ` = 0 holds, the estimate’s right-hand side equals zero.

Let now ` ∈ N0 be such that (4.11) holds. Let R ∈ KI×J be a matrix with k :=
rank(R) ≤ p − (` + 1). In particular we have k < p and can apply Lemma 4.27 to find
z ∈ KJ with ‖z‖2 = 1, Rz = 0 and ‖Xz‖2 ≥ σk+1.

Applying Lemma 4.28 to Y := X −R, we get

‖X −R−Xzz∗‖2F = ‖(X −R)− (X −R)zz∗‖2F = ‖Y − Y zz∗‖2F = ‖Y ‖2F − ‖Y zz∗‖2F
= ‖X −R‖2F − ‖(X −R)zz∗‖2F = ‖X −R‖2F − ‖Xzz∗‖2F .

Due to 1 = ‖z‖22 = z∗z, we can apply (4.8d) and k ≤ p − ` − 1 to get ‖Xzz∗‖2F =
‖Xz‖2F ≥ σ2k+1 ≥ σ2p−` and conclude

‖X −R‖2F = ‖X −R−Xzz∗‖2F + ‖Xzz∗‖2F ≥ ‖X −R−Xzz∗‖2F + σ2p−`.

In order to apply the induction assumption, we introduce

R̃ := R+Xzz∗.

We have k̃ := rank(R̃) ≤ k + 1 ≤ p− (`+ 1)− 1 = p− ` and find

‖X −R‖2F ≥ ‖X − R̃‖2F + σ2p−` ≥
p∑

ν=p−`+1

σ2ν + σ2p−` =

p∑
ν=p−`

σ2ν .
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Exercise 4.30 (Isometric factorization) Let A ∈ KI×k and B ∈ KJ×k be matrices
with k ≤ |I|, |J |.

Prove that there are isometric matrices QA ∈ KI×k and QB ∈ KJ×k and an upper
triangular matrix R ∈ Kk×k with AB∗ = QARQ

∗
B, Q∗AQA = I, and Q∗BQB = I.

Hint: A sequence of Householder reflections can be used to transform any matrix into
upper triangular form.

Exercise 4.31 (Norm) Since we frequently use rank-k matrices to approximate other
matrices, we are interested in computing the corresponding errors.

(a) Let A ∈ KI×k and B ∈ KJ×k with k ≤ |I|, |J |.

Find an algorithm that takes not more than O(k2(|I|+|J |)) operations to construct
a matrix R ∈ Kk×k with ‖AB∗‖2 = ‖R‖2 and ‖AB∗‖F = ‖R‖F .

(b) Let A1 ∈ KI×k1 and B1 ∈ KJ×k1. Let A2 ∈ KI×k2 and B2 ∈ KJ×k2.

Assuming k1 + k2 ≤ |I|, |J |, find an algorithm that takes not more than
O(k2(|I| + |J |)) operations to construct a matrix R ∈ K(k1+k2)×(k1+k2) with
‖A1B

∗
1 −A2B

∗
2‖2 = ‖R‖2 and ‖A1B

∗
1 −A2B

∗
2‖F = ‖R‖F .

Exercise 4.32 (Block-diagonal matrix) Let I1, I2 be disjoint sets with I = I1∪̇I2
and let J1,J2 be disjoint sets with J = J1∪̇J2. Let X1 ∈ KI1×J1 and X2 ∈ KI2×J2. Let

X :=

(
X1 0
0 X2

)
∈ KI×J .

Prove

‖X‖F =
√
‖X1‖2F + ‖X2‖2F , ‖X‖2 = max{‖X1‖2, ‖X2‖2}.

Exercise 4.33 (Projection) Let X ∈ KI×J be a matrix of rank p ∈ N. Following the
proof of Theorem 4.6, we construct vectors a1, . . . , ap ∈ KI , c1, . . . , cp ∈ KI and matrices
X0, . . . , Xp ∈ KI×J as follows: let X0 := X. For k ∈ [1 : p], choose ak, ck ∈ KI with
ak ∈ range(Xk−1) and c∗kak = 1. Let Xk := Xk−1 − akc∗kXk−1.

(a) Prove range(Xk) ⊆ range(Xk−1) for all k ∈ [1 : p].

(b) Prove c∗kx = 0 for all x ∈ range(Xk) and k ∈ [1 : p].

(c) Prove that Lk := C∗kAk is a left lower triangular matrix with unit normal, where

Ak :=
(
a1 · · · ak

)
, Ck :=

(
c1 . . . ck

)
, k ∈ [1 : p].

(d) Prove Xk = X − ΠkX for all k ∈ [1 : p], where Πk := AkL
−1
k C∗k is a projection,

i.e., Π2
k = Πk.
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4.3 Rank-revealing QR factorization

4.3 Rank-revealing QR factorization

The singular value decomposition allows us to obtain the optimal low-rank approxima-
tion of a given matrix X ∈ KI×J , but finding this decomposition is computationally
expensive: standard algorithms [17] first reduce X to a bidiagonal matrix and then apply
an iterative eigenvalue solver to obtain the required diagonal form. Already the first step
requires computational work on the order of nInJ min{nI , nJ } operations for a general
matrix X, where we use again nI := |I| and nJ := |J | to denote the cardinalities of the
index sets I and J .

If we no longer insist on finding the best possible low-rank approximation, we can
consider alternative and less computationally expensive alternatives.

Our first approach is based on a QR factorization. In order to be able to use the
standard definitions of triangular matrices, we assume I = [1 : n] and J = [1 : m] with
n,m ∈ N. Any matrix X ∈ Kn×m can be factorized as

X = QR

with a unitary matrix Q ∈ Kn×n and an upper triangular matrix R ∈ Kn×m. Let
p := min{n,m}. Given k ∈ [1 : p], splitting the factors into

Q =
(
Qk Q∗

)
, Qk ∈ Kn×k, Q∗ ∈ Kn×(n−k),

R =

(
Rk
R∗

)
, Rk ∈ Kk×m, R∗ ∈ K(n−k)×m

yields

X = QR =
(
Qk Q∗

)(Rk
R∗

)
= QkRk +Q∗R∗,

and since Qk has only k columns, QkRk can be considered a rank-k approximation of
the matrix X.

Due to the identity(
Ik 0
0 In−k

)
= In = Q∗Q =

(
Q∗k
Q∗∗

)(
Qk Q∗

)
=

(
Q∗kQk Q∗kQ∗
Q∗∗Qk Q∗∗Q∗

)
,

both the matrices Qk and Q∗ are isometric, and we can use (4.4b) to compute the error
of the approximation via

‖X −QkRk‖2 = ‖Q∗R∗‖2 = ‖R∗‖2, ‖X −QkRk‖F = ‖Q∗R∗‖F = ‖R∗‖F .

If we construct the QR factorization by Householder reflections, we can reduce the com-
plexity by stopping early: if we denote the first k Householder reflections by H1, . . . ,Hk,
we have

Hk · · ·H1X =

(
Rkk Rk∗

R∗∗

)
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4 Low-rank matrices

with Rkk ∈ Kk×k, Rk∗ ∈ Kk×(m−k), and R∗∗ ∈ K(n−k)×(m−k). If R∗∗ is sufficiently small,
we can approximate it by zero and find the rank-k factorization

Hk · · ·H1X ≈
(
Rkk Rk∗

0

)
, X ≈ H∗1 · · ·H∗k

(
Rkk Rk∗

0

)
.

Since the Householder reflections are orthogonal, we have∥∥∥∥X −H∗1 · · ·Hk

(
Rkk Rk∗

0

)∥∥∥∥
2

=

∥∥∥∥Hk · · ·H1X −
(
Rkk Rk∗

0

)∥∥∥∥
2

=

∥∥∥∥(0 0
R∗∗

)∥∥∥∥
2

,

and the same holds for the Frobenius norm. If we keep track of R∗∗, we can stop applying
Householder reflections as soon as the remaining error is small enough. If k steps are
sufficient, the number of operations is reduced from O(nmp) to O(nmk).

Of course we would like the error to decrease as rapidly as possible. A pivoting strategy
can help us achieve this goal: as long as the norm of the remainder matrix R∗∗ is not
small enough, we choose a column with maximal norm, swap it to the first position in
the remainder, and use a Householder reflection to eliminate it. This means that this
column will not contribute anything to the next remainder matrix, and we can hope
that the error norms will decay rapidly.

Let us return our attention to the general case. We can enumerate the row indices
i1, i2, . . . , in in any order, since the order of the indices does not matter to the House-
holder reflections we are going to apply. In the first step, we choose a column index
j1 ∈ J such that the norm ‖X|I×{j1}‖2 of the corresponding column is as large as pos-

sible. We apply a Householder reflection H1 ∈ KI×I that eliminates all entries in this
column except for the i1-th.

The remainder matrix is now

(H1X)|(I\{i1})×(J\{j1}),

and if it is not yet small enough, we repeat the procedure: we choose a column index
j2 ∈ J \ {j1} such that ‖(H1X)|(I\{i1})×{j2}‖2 is as large as possible and apply the next
Householder reflection.

After k steps, we have sets τk := {i1, . . . , ik} and σk := {j1, . . . , jk} of row and column
indices and Householder reflections H1, . . . ,Hk, and the remainder matrix is

(Hk · · ·H1X)(I\τk)×(J\σk).

Once the remainder is small enough, we can replace it by zero to obtain the right factor
B of our low-rank representation and accumulate the Householder reflections to obtain
the left factor A. This leads to the algorithm summarized in Figure 4.1.

The algorithm overwrites the matrixX successively with the results of the Householder
reflections. X|τk×σk corresponds to the matrix Rkk of our derivation, X|τk×(J\σk) to the
matrix Rk∗, and X|(I\τk)×(J\σk) is the remainder matrix R∗∗. Once the remainder is
small enough, we replace it by zero and have

X =

(
X|τk×σk X|τk×(J\σk)

X|(I\τk)×(J\σk)

)
≈
(
X|τk×σk X|τk×(J\σk)

0

)
=

(
Iτk
0

)
X|τk×J ,
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4.4 Rank-revealing LR factorization and cross approximation

procedure rrqr(X, var A, B);
τ0 ← ∅; σ0 ← ∅; k ← 0;
while ‖X|(I\τk)×(J\σk)‖ is too large do begin

Choose an arbitrary ik+1 ∈ I \ τk;
Choose jk+1 ∈ J \ σk such that ‖X|(I\τk)×{jk+1}‖2 is maximal;

τk+1 ← τk ∪ {ik+1}; σk+1 ← σk ∪ {jk+1};
Find a Householder reflection Hk+1 ∈ K(I\τk)×(I\τk) such that

(Hk+1X|(I\τk)×{jk+1})|I\(τk+1) = 0;

X|(I\τk)×(J\σk) ← Hk+1X|(I\τk)×(J\σk);
k ← k + 1

end;

B ← X|∗τk×J ; A←
(
Iτk
0

)
∈ KI×τk ;

for ν = k downto 1 do
A|(I\τν)×τk ← H∗νA|(I\τν)×τk

end

Figure 4.1: Rank-revealing QR factorization

where Iτk ∈ Kτk×τk denotes the identity matrix, and we only have to apply the House-
holder reflections to the left factor to obtain the rank-k approximation AB∗ = QkRk.

4.4 Rank-revealing LR factorization and cross approximation

The rank-revealing QR factorization can be significantly faster than the singular value
decomposition, but since applying even the first reflection requires at least |I| |J | oper-
ations, we cannot hope to get less than quadratic complexity.

Sacrificing some of the stability provided by the unitary transformations, we can fur-
ther reduce the computational work: instead of a QR factorization, we employ an LR
factorization.

We start by considering a matrix X ∈ Kn×n that has an LR factorization

X = LR

with a lower triangular matrix L ∈ Kn×n and an upper triangular matrix R ∈ Kn×n.
Given k ∈ [1 : n], we can split the factors into

L =

(
Lkk
L∗k L∗∗

)
, Lkk ∈ Kk×k, L∗k ∈ K(n−k)×k, L∗∗ ∈ K(n−k)×(n−k),

R =

(
Rkk Rk∗

R∗∗

)
, Rkk ∈ Kk×k, Rk∗ ∈ Kk×(n−k), R∗∗ ∈ K(n−k)×(n−k).
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4 Low-rank matrices

As in the case of the QR factorization, we use the first k columns of L and the first k
rows of R for our approximation, i.e.,

X ≈ X̃ :=

(
Lkk
L∗k

)(
Rkk Rk∗

)
=

(
LkkRkk LkkRk∗
L∗kRkk L∗kRk∗

)
.

Splitting X accordingly, i.e., into

X =

(
Xkk Xk∗
X∗k X∗∗

)
, Xkk ∈ Kk×k, Xk∗ ∈ Kk×(n−k),

X∗k ∈ K(n−k)×k, X∗∗ ∈ K(n−k)×(n−k),

we find (
Xkk Xk∗
X∗k X∗∗

)
= X = LR =

(
Lkk
L∗k L∗∗

)(
Rkk Rk∗

R∗∗

)
=

(
LkkRkk LkkRk∗
L∗kRkk L∗kRk∗ + L∗∗R∗∗

)
, (4.12)

i.e., the approximation error is given by

X − X̃ =

(
0 0
0 L∗∗R∗∗

)
. (4.13)

We also obtain the equations

LkkRkk = Xkk, LkkRk∗ = Xk∗, L∗kRkk = X∗k,

i.e., we can compute the approximation X̃ using only the first k rows and columns of X.

Finding the LR factorization of Xkk takes not more than k3 operations, solving
LkkRk∗ = Xk∗ by forward substitution takes not more than k2(n− k) operations, while
solving L∗kRkk = X∗k by forward substitution (it is equivalent to R∗kkL

∗
∗k = X∗∗k with

the lower triangular matrix R∗kk) also takes not more than k2(n − k) operations, so a

total of less than 2k2n operations are sufficient to obtain X̃.

Remark 4.34 (Comparison with rank-revealing QR) To compare the rank-revea-
ling LR factorization with the rank-revealing QR factorization, we assume that the first
k columns of X are sufficient to approximate the entire matrix.

In this case, we can construct the first k Householder reflections in O(nk2) operations,
since we only have to apply them to the first k columns. This gives us the factor Q of
the QR factorization. So far, rank-revealing QR and LR are comparable.

Unfortunately, computing the remaining n − k columns of the factor R = Q∗X re-
quires O(n(n − k)k) operations, i.e., the rank-revealing QR factorization has quadratic
complexity with respect to n, even under these particularly convenient conditions.
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4.4 Rank-revealing LR factorization and cross approximation

As in the case of the QR factorization, we can construct the LR factorization induc-
tively by increasing the rank: applying (4.12) to k = 1, we find

L11R11 = X11, L11R1∗ = X1∗, L∗1R11 = X∗1, L∗1R1∗ + L∗∗R∗∗ = X∗∗.

As long as X11 6= 0 holds, we can satisfy the first equation by choosing L11 = 1,
R11 = X11 and obtaining R1∗ = X1∗, L∗1 = X∗1/X11, and

L∗∗R∗∗ = X∗∗ − L∗1R1∗.

We have found the first row and column of L and R and can proceed by looking for the
LR factorization of the Schur complement

X∗∗ − L∗1R1∗ = X∗∗ −X∗1X−111 X1∗

to construct as many rows and columns as we need.
The construction breaks down if we encounter X11 = 0, but as long as X 6= 0 holds,

we can fix this issue by applying row and column permutations that move one of the
non-zero coefficients into the first row and column.

Now we have to consider the generalization of our approach to general matrices X ∈
KI×J . This leads to a class of algorithms known as cross approximation methods [32,
19, 33, 1, 4].

We construct sets of row pivot indices τk := {i1, . . . , ik} ⊆ I and column pivot indices
σk := {j1, . . . , jk} ⊆ J and apply the standard LR factorization to the matrix X̂ ∈
Kk×k with x̂νµ = xiν ,jµ . The pivot indices are constructed during the LR factorization
algorithm in order to avoid encountering a zero on the diagonal.

We denote the ν-th column of L by `(ν) ∈ KI and the ν-th row of R by r(ν) ∈ KJ .
We start by choosing indices i1 ∈ I and j1 ∈ J such that xi1,j1 6= 0 holds. The first

column of L and the first row of R are given by

r
(1)
j = x̄i1,j , `

(1)
i =

xi,j1
xi1,j1

for all i ∈ I, j ∈ J .

To proceed, we construct the remainder, i.e., the first Schur complement

X(1) = X − `(1)(r(1))∗

and look to approximate its LR factorization. The resulting algorithm is shown in
Figure 4.2.

It constructs matrices

L =
(
`(1) · · · `(k)

)
∈ KI×[1:k], R :=

(r(1))∗

...

(r(k))∗

 ∈ K[1:k]×J

such that
X = LR+X(k)
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4 Low-rank matrices

procedure aca(X, var L, R);

τ0 ← ∅; σ0 ← ∅; X(0) ← X; k ← 0;

while ‖X(k)‖ is too large do begin

Choose ik+1 ∈ I \ τk and jk+1 ∈ J \ σk with x
(k)
ik+1,jk+1

6= 0;

for j ∈ J do r
(k+1)
j ← x̄

(k)
ik+1,j

;

for i ∈ I do `
(k+1)
i ← x

(k)
i,jk+1

/r̄
(k+1)
jk+1

;

X(k+1) ← X(k) − `(k+1)(r(k+1))∗;
τk+1 ← τk ∪ {ik+1}; σk+1 ← σk ∪ {jk+1};
k ← k + 1

end
end

Figure 4.2: Adaptive cross approximation

holds, and the algorithm stops as soon as the error X(k) = X −LR is sufficiently small,
i.e., we can use

X̃ := LR =
k∑
ν=1

`(ν)(r(ν))∗

as a rank-k approximation of X.

Remark 4.35 (Rank reduction) This construction follows the pattern of Lemma 4.4:
a := `(1) is a vector in range(X). Let b ∈ KI be the canonical unit vector equal to one

in the i1-th component and equal to zero everywhere else. We have b∗a = `
(1)
i1

= 1, and
we can apply Lemma 4.4 to find that the rank of

X − ab∗X = X − `(1)(r(1))∗ = X(1)

is one smaller than the rank of X.

Lemma 4.36 (Cross approximation) We have

X(ν)|τν×J = 0, X(ν)|I×σν = 0 for all ν ∈ [0 : k]

and

`
(ν)
iν

= 1, `
(ν)
iµ

= 0 for all ν ∈ [1 : k], µ ∈ [1 : ν − 1]

r
(ν)
jν
6= 0, r

(ν)
jµ

= 0 for all ν ∈ [1 : k], µ ∈ [1 : ν − 1].

Proof. We prove the first claim by induction.

For ν = 0, we have τ0 = ∅ and σν = ∅, so there is nothing to prove.

Let now ν ∈ [0 : k − 1] be given with X(ν)|τν×J = 0 and X(ν)|I×σν = 0.
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4.4 Rank-revealing LR factorization and cross approximation

Since `(ν+1) and r(ν+1) are just a scaled column and row of X(ν), our assumption
immediately yields

`(ν+1)|τν = 0, r(ν+1)|σν = 0 (4.14)

and thus

X(ν+1)|τν×J = X(ν)|τν×J − `(ν+1)|τν (r(ν+1))∗ = 0,

X(ν+1)|I×σν = X(ν)|I×σν − `(ν+1)(r(ν+1)|σν )∗ = 0.

Due to τν+1 = τν ∪ {iν+1} and σν+1 = σν ∪ {jν+1}, we only have to observe

x
(ν+1)
i,jν+1

= x
(ν)
i,jν+1

− `(ν+1)
i r

(ν+1)
jν+1

= x
(ν)
i,jν+1

−
x
(ν)
i,jν+1

x
(ν)
iν+1,jν+1

x
(ν)
iν+1,jν+1

= 0 for all i ∈ I,

x
(ν+1)
iν+1,j

= x
(ν)
iν+1,j

− `(ν+1)
iν+1

r
(ν+1)
j = x

(ν)
iν+1,j

−
x
(ν)
iν+1,jν+1

x
(ν)
iν+1,jν+1

x
(ν)
iν+1,j

= 0 for all j ∈ J ,

to complete the induction.
The second claim follows from (4.14) and

`
(ν)
iν

=
x
(ν)
iν ,jν

x
(ν)
iν ,jν

= 1, r
(ν)
jν

= x
(ν)
iν ,jν
6= 0 for all ν ∈ [1 : k].

We define matrices L̂, R̂ ∈ Kk×k via

ˆ̀
νµ = `

(µ)
iν

= `iν ,µ, r̂νµ = r
(ν)
jµ

= rν,jµ for all ν, µ ∈ [1 : k].

Lemma 4.36 implies that L̂ is a lower triangular matrix with unit diagonal, while R̂ is an
upper triangular matrix with non-zero diagonal, i.e., both are invertible, and therefore
so are L|τk×[1:k] and R|[1:k]×σk .

Lemma 4.37 (Factorized representation) The matrix X|τk×σk is invertible and the

approximation X̃ can be represented as

X̃ = LR = X|I×σkX|
−1
τk×σkX|τk×J .

Proof. (see also [3, Lemma 5.1]) Due to Lemma 4.36, we have

X|τk×J = X(k)|τk×J + L|τk×[1:k]R|[1:k]×J = L|τk×[1:k]R, (4.15a)

X|I×σk = X(k)|I×σk + L|I×[1:k]R|[1:k]×σk = LR|[1:k]×σk . (4.15b)

Restricting the first equation (4.15a) to columns in σk yields

X|τk×σk = L|τk×[1:k]R|[1:k]×σk .
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4 Low-rank matrices

Since L|τk×[1:k] and R|[1:k]×σk are invertible, the same holds for their product X|τk×σk .

Multiplying (4.15a) by L|−1τk×[1:k] from the left and (4.15b) by R|−1[1:k]×σk from the right
gives us

LR = X|I×σkR|
−1
[1:k]×σkL|

−1
τk×[1:k]X|τk×J

= X|I×σk(L|τk×[1:k]R|[1:k]×σk)−1X|τk×J = X|I×σkX|
−1
τk×σkX|τk×J .

This is the equation we need.

Remark 4.38 (Partial evaluation) In a practical implementation, we would like to
compute only the coefficients of X that are required to obtain L and R. This means that
we cannot compute the entire matrices X(ν) for all ν ∈ [0 : k].

Our algorithm ensures

X(ν) = X − L|I×[1:ν]R|[1:ν]×J ,

so we have

X(ν)|I×{j} = X|I×{j} − L|I×[1:ν]R|[1:ν]×{j}

= X|I×{j} −
ν∑

µ=1

`(µ) r̄
(µ)
j for all ν ∈ [0 : k], j ∈ J ,

X(ν)|{i}×J = X|{i}×J − L|{i}×[1:ν]R|[1:ν]×J

= X|{i}×J −
ν∑

µ=1

`
(µ)
i (r(µ))∗ for all ν ∈ [0 : k], i ∈ I,

and this allows us to construct the required rows and columns of X(ν) based only on the
corresponding rows and columns of the original matrix X and the previously computed
rows and columns of L and R. A typical implementation of the adaptive cross approx-
imation algorithm requires only a way to obtain single rows and columns of the matrix
that has to be approximated.

In a practical implementation, we have to address two aspects of the cross approxi-
mation that have not been discussed so far: we have to specify a stopping criterion, and
we have to describe how the pivot elements i1, . . . , ik and j1, . . . , jk are chosen.

Remark 4.39 (Stopping criterion) If we construct the full matrices X(k), we can
simply use the Frobenius or spectral norm to determine when to stop the algorithm.
Finding a reliable stopping criterion becomes significantly more challenging if we follow
the partial evalution approach described in Remark 4.38: since we cannot check the entire
matrix, we run the risk of missing large entries in the remainder matrix that are outside
of the rows and columns we have chosen so far.
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4.4 Rank-revealing LR factorization and cross approximation

Remark 4.40 (Pivot strategy) The strategy employed to choose the pivot indices
i1, . . . , ik and j1, . . . , jk is of particular importance if the partial evaluation approach
of Remark 4.38 is employed: the algorithm only “sees” a very small part of the matrix
and still has to choose suitable pivot elements that yield fast convergence and ensure that
the stopping criterion is not triggered prematurely.

Simple pivoting strategies may lead to completely inaccurate approximations [7, Ex-
ample 2.2]. It is possible to prove the cross approximation algorithm will produce good
results if the pivot indices are chosen correctly [19], but the corresponding strategy is com-
putationally expensive. There are attempts [3] to derive efficient and reliable pivoting
strategies, but so far they rely on additional stability assumptions.

Example 4.41 (Rank-one matrix) Let n ∈ N. We consider the funktion

g : R2 × R2 → R, (x, y) 7→

{
sin(x1) sin(y1)
‖x−y‖2 if x 6= y,

0 otherwise.

We can see that the function is analytic as long as we stay away from the diagonal x = y,
and the techniques of Section 3.8 can be used to prove that interpolation converges.

Let i0, j0 ∈ [1 : n]. We consider the points

xi :=

{
(π/2, i/n) if i = i0,

(0, i/n) otherwise
for all i ∈ [1 : n],

yj :=

{
(3π/2, j/n) if j = j0,

(2π, j/n) otherwise
for all j ∈ [1 : n].

The matrix G ∈ Rn×n defined by

gij = g(xi, yj) for all i, j ∈ [1 : n]

satisfies

gij =

{
−1/‖xi − yj‖2 if i = i0 and j = j0,

0 otherwise
for all i, j ∈ [1 : n],

i.e., only one coefficient in the entire matrix differs from zero, and we can choose its
position arbitrarily. It is hard to imagine a pivot strategy that is able to reliably find this
one coefficient without checking the entire matrix.

Remark 4.42 (Error analysis) The error analysis of the adaptive cross approxima-
tion algorithm is discussed in [4] for boundary element matrices resulting from collocation
methods and in [3] for Galerkin methods.

The results in [1], however, should be approached with care, since they appear to be
based on circular reasoning1. The book [2] presents improved pivot strategies.
1The polynomials pk appearing in the proof of [1, Lemma 4] can only be defined if the Lagrange

interpolation problem can be solved, and this is what has to be proven.
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4 Low-rank matrices

Remark 4.43 (Interpolation) The result of Lemma 4.37 can be interpreted as the
result of “algebraic interpolation”: we define the matrix

V := X|I×σkX|
−1
τk×σk

and denote its columns by v(ν) for ν ∈ τk. Due to

V |τk×τk = X|τk×σkX|
−1
τk×σk = I,

we have

v(ν)µ = vµν =

{
1 if ν = µ,

0 otherwise
for all ν, µ ∈ τ,

so we can interprete the vectors vν as a “Lagrange basis” of the range of V corresponding
to the “interpolation points” ν. The algebraic interpolation operator for this basis and
these points is given by

I : KI → KI , x 7→
∑
ν∈τk

v(ν)xν = V x|τk .

We have
IX = V X|τk×J = X|I×σkX|

−1
τk×σkX|τk×I = X̃,

i.e., the cross approximation matrix X̃ is the result of algebraic interpolation.
For any vector x ∈ KI we have

I2x = V (V x|τk)|τk = V X|τk×σkX|
−1
τk×σkx|τk = V x|τk = Ix,

therefore I is a projection into the range of V . In general, it is not an orthogonal
projection, and its stability, i.e., whether ‖I‖ is bounded, depends crucially on the pivot
strategy.

If all elements in the remainder matrix are checked and the one with the maximal
value is chosen, a simple estimate for ‖I‖ can be found in [3, Lemma 5.3].

4.5 Hybrid cross approximation

In order to avoid the dubious reliability of partial cross approximation techniques, we
can combine it with a reliable compression scheme that leads to a matrix that is small
enough to apply adaptive cross approximation without partial evaluation, so that we can
use a full pivot search and obtain guaranteed error bounds.

The hybrid cross approximation method (HCA, cf. [7]) relies on interpolation: we
once more consider a matrix G ∈ KI×J given by

gij = g(xi, yj) for all i ∈ I, j ∈ J

with a suitable kernel function g and points (xi)i∈I and (yj)j∈J in Rd.
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4.5 Hybrid cross approximation

Given an admissible pair (t, s) of clusters t ∈ TI , s ∈ TJ , we choose interpolation
points (ξt,ν)ν∈M in t and and (ξs,µ)µ∈M in s with corresponding Lagrange polynomials
(`t,ν)ν∈M and (`s,µ)µ∈M . In a first step, we approximate g by interpolation to obtain

g̃(x, y) =
∑
ν∈M

∑
µ∈M

`t,ν(x) g(ξt,ν , ξs,µ) `s,µ(y) for all x ∈ t, y ∈ s. (4.16)

The matrix S ∈ KM×M given by

sνµ := g(ξt,ν , ξs,µ) for all ν, µ ∈M

is sufficiently small to allow us to approximate it by adaptive cross approximation, i.e.,
to find k ∈ N and A ∈ KM×[1:k], B ∈ K[1:k]×M such that

S ≈ AB.

Replacing sνµ by this approximation in (4.16) yields

g(x, y) ≈ g̃(x, y) =
∑
ν∈M

∑
µ∈M

`t,ν(x) sνµ `s,µ(y)

≈
∑
ν∈M

∑
µ∈M

`t,ν(x)

(
k∑

λ=1

aνλbλµ

)
`s,µ(y)

=
k∑

λ=1

(∑
ν∈M

aνλ `t,ν(x)

)∑
µ∈M

bλµ `s,µ(y)

 for all x ∈ t, y ∈ s.

This is a degenerate approximation of g that consists only of k terms instead of |M |,
and in certain applications k can be significantly smaller than |M |.

Still, having to evaluate the Lagrange polynomials `t,ν and `s,µ for all ν, µ ∈M makes
working with this approximation a little cumbersome. We can use Lemma 4.37 to add
a third approximation step that significantly reduces the complexity: we have

S ≈ AB = S|M×σkS|
−1
τk×σkS|τk×M

for the chosen sets τk, σk ⊆M of row and column pivots.

Introducing C := S|−1τk×σk , we find

g(x, y) ≈ g̃(x, y) =
∑
ν∈M

∑
µ∈M

`t,ν(x)sνµ`s,µ(y)

≈
∑
ν∈M

∑
µ∈M

`t,ν(x)(S|M×σk C S|τk×M )νµ`s,µ(y)

=
∑
ν∈M

∑
µ∈M

`t,ν(x)

∑
λ∈σk

∑
κ∈τk

sνλ cλκ sκµ

 `s,µ(y)
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4 Low-rank matrices

=
∑
λ∈σk

∑
κ∈τk

(∑
ν∈M

sνλ `t,ν(x)

)
cλκ

∑
µ∈M

sκµ `s,µ(y)


=
∑
λ∈σk

∑
κ∈τk

(∑
ν∈M

g(ξt,ν , ξs,λ)`t,ν(x)

)
cλκ

∑
µ∈M

g(ξt,κ, ξs,µ)`s,µ(y)

 .

We can see that the sums over ν and µ represent interpolating polynomials correspond-
ing to g(·, ξs,λ) and g(ξt,κ, ·), respectively, and we can “reverse” the interpolation by
substituting the kernel functions, i.e.,∑

ν∈M
g(ξt,ν , ξs,λ)`t,ν(x) ≈ g(x, ξs,λ) for all x ∈ t, λ ∈ σk,∑

µ∈M
g(ξt,κ, ξs,µ)`s,µ(y) ≈ g(ξt,κ, y) for all y ∈ s, κ ∈ τk.

This approach gives rise to the final degenerate approximation

g(x, y) ≈ g̃hca(x, y) :=
∑
λ∈σk

∑
κ∈τk

g(x, ξs,λ) cλκ g(ξt,κ, y) for all x ∈ Bt, y ∈ Bs

that can be evaluated without the need for Lagrange polynomials. Since the cross ap-
proximation algorithm provides us with an LR factorization of S|τk×σk , the multiplication
with C = S|−1τk×σk can be handled by standard forward and backward substitution.

Remark 4.44 (Cross approximation) We have seen in Lemma 4.36 that the stan-
dard cross approximation algorithm matches the pivot row and columns of the original
matrix exactly. The hybrid cross approximation does the same for the pivot interpolation
points and the original kernel function: for all ν ∈ τk and y ∈ s, we have

g̃hca(ξt,ν , y) =
∑
λ∈σk

∑
κ∈τk

g(ξt,ν , ξs,λ) cλk g(ξt,κ, y) =
∑
λ∈σk

∑
κ∈τk

sνλ cλκ g(ξt,κ, y)

=
∑
κ∈τk

(S|τk×σkC)νκ g(ξt,κ, y) =
∑
κ∈τk

Iνκ g(ξt,κ, y) = g(ξt,ν , y),

and we can also prove g̃hca(x, ξs,µ) = g(x, ξs,µ) for all µ ∈ σk and x ∈ t.

4.6 Global norm estimates

We have seen that we can control the error resulting from the low-rank approximation
of a matrix. In a hierarchical matrix, we use low-rank approximations in all admissible
blocks, and we have to ensure that error estimates for these blocks lead to reliable error
estimates for the entire matrix.

Let TI×J be a block tree, let LI×J denote the set of its leaves.
If we can bound a norm of a matrix X ∈ KI×J in terms of the norms of X|t̂×ŝ,

b = (t, s) ∈ LI×J , we can apply this bound to the error matrix to control the global
error. For the Frobenius norm, this bound is particularly easy to find.
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Lemma 4.45 (Global Frobenius norm) Let X ∈ KI×J . We have

‖X‖F =

 ∑
b=(t,s)∈LI×J

‖X|t̂×ŝ‖
2
F

1/2

.

Proof. Due to Corollary 3.23, we have

‖X‖2F =
∑
i∈I

∑
j∈J
|xij |2 =

∑
b=(t,s)∈LI×J

∑
i∈t̂

∑
j∈ŝ
|xij |2 =

∑
b=(t,s)∈LI×J

‖X|t̂×ŝ‖
2
F ,

and taking the square root yields the equation.

If we compute low-rank approximations via the singular value decomposition or the
rank-revealing QR or LR decomposition, we have the Frobenius norm of the error at our
disposal and can apply Lemma 4.45 directly.

If the error results from an orthogonal projection, i.e., if we have

G|t̂×ŝ −QtsQ
∗
tsG|t̂×ŝ

with an isometric matrix Qts, we can use Lemma 4.28 to obtain

‖G|t̂×ŝ −QtsQ
∗
tsG|t̂×ŝ‖

2
F = ‖G|t̂×ŝ‖

2
F − ‖QtsQ∗tsG|t̂×ŝ‖

2
F = ‖G|t̂×ŝ‖

2
F − ‖Q∗tsG|t̂×ŝ‖

2
F .

This local error equation can now be combined with Lemma 4.45. If the error is small,
we should keep in mind that the right-hand side of this equation may be very susceptible
to rounding errors.

If we can write the approximations of submatrices in terms of orthogonal projections
with respect to the Frobenius inner product, i.e., if we have a family (Pts)b=(t,s)∈LI×J of
linear matrix-valued operators

Pts : Kt̂×ŝ → Kt̂×ŝ for all b = (t, s) ∈ LI×J
with

P 2
ts = Pts, 〈Pts[Y ], Z〉F = 〈Y, Pts[Z]〉F for all b = (t, s) ∈ LI×J , Y, Z ∈ Kt̂×ŝ,

we can use Corollary 3.23 to define a global orthogonal projection

P : KI×J → KI×J

via the equations

P [Y ]|t̂×ŝ := Pts[Y |t̂×ŝ] for all b = (t, s) ∈ LI×J , Y ∈ KI×J .

Pythagoras’ identity yields ‖Y −P [Y ]‖2F = ‖Y ‖2F −‖P [Y ]‖2F . Again, if the error is small,
the right-hand side may suffer from rounding errors.

Handling the spectral norm of a matrix is considerably more challenging, since it is
defined via a maximum, and the element maximizing the norm may differ from subma-
trix to submatrix. The estimate (4.8b) yields ‖X‖2 ≤ ‖X‖F , but this may be fairly
inaccurate and requires us to have Frobenius norm estimates for all blocks.

If we only have spectral norm estimates, we can still find an upper bound similar to
the one provided by Lemma 4.45:
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4 Low-rank matrices

Lemma 4.46 (Global spectral norm) Let X ∈ KI×J . We have

‖X‖2 ≤

 ∑
b=(t,s)∈LI×J

‖X|t̂×ŝ‖
2
2

1/2

.

Proof. Let y ∈ KI and z ∈ KJ . Using again Corollary 3.23, we obtain

y∗Xz =
∑
i∈I

∑
j∈J

ȳixijzj =
∑

b=(t,s)∈LI×J

∑
i∈t̂

∑
j∈ŝ

ȳixijzj =
∑

b=(t,s)∈LI×J

y|∗
t̂
X|t̂×ŝz|ŝ.

For every block b = (t, s) ∈ LI×J , we can use the Cauchy-Schwarz inequality and (4.10a)
to get

| y|∗
t̂
X|t̂×ŝz|ŝ | ≤ ‖y|t̂‖2 ‖X|t̂×ŝz|ŝ‖2 ≤ ‖y|t̂‖2 ‖X|t̂×ŝ‖2 ‖z|ŝ‖2.

The triangle inequality and the Cauchy-Schwarz inequality applied to the block sum
yield

|y∗Xz| ≤
∑

b=(t,s)∈LI×J

| y|∗
t̂
X|t̂×ŝz|ŝ | ≤

∑
b=(t,s)∈LI×J

‖y|t̂‖2 ‖X|t̂×ŝ‖2 ‖z|ŝ‖2

≤

 ∑
b=(t,s)∈LI×J

‖X|t̂×ŝ‖
2
2

1/2 ∑
b=(t,s)∈LI×J

‖y|t̂‖
2
2‖z|ŝ‖22

1/2

.

Corollary 3.23 allows us to rewrite the right-hand term as∑
b=(t,s)∈LI×J

‖y|t̂‖
2
2‖z|ŝ‖22 =

∑
b=(t,s)∈LI×J

∑
i∈t̂

∑
j∈ŝ
|yi|2|zj |2 =

∑
i∈I

∑
j∈J
|yi|2|zj |2 = ‖y‖22‖z‖22,

and we conclude

|y∗Xz| ≤

 ∑
b=(t,s)∈LI×J

‖X|t̂×ŝ‖
2
2

1/2

‖y‖2‖z‖2.

Now we can apply equation (4.10b) of Lemma 4.24 to complete the proof.

Although the estimate provided by Lemma 4.46 is quite convenient, it is far from
optimal: if we consider the identity matrix X = I, the spectral norm is equal to one, but
the estimate of Lemma 4.46 would be the square root of the number of diagonal blocks,
which may be considerably larger.

We can get a far better estimate if we follow the approach of [20, Satz 6.2] and take
advantage of the sparsity of the block tree.

Theorem 4.47 (Global spectral norm) Let TI×J be Csp-sparse, let X ∈ KI×J .
If there are families (εI,`)

∞
`=0 and (εJ ,`)

∞
`= in R≥0 satisfying

‖X|t̂×ŝ‖2 ≤ ε
1/2
I,level(t) ε

1/2
J ,level(s) for all b = (t, s) ∈ LI×J , (4.17)
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4.6 Global norm estimates

we have

‖X‖2 ≤ Csp

( ∞∑
`=0

εI,`

)1/2( ∞∑
`=0

εJ ,`

)1/2

.

Proof. Let (εI,`)
∞
`=0 and (εJ ,`)

∞
`=0 be families in R≥0 satisfying (4.17).

Let y ∈ KI and z ∈ KJ . As in the previous proof, we use Corollary 3.23, the triangle
inequality, the Cauchy-Schwarz inequality and (4.10a) to obtain

|y∗Xz| =
∣∣∣ ∑
b=(t,s)∈LI×J

y|∗
t̂
X|t̂×ŝ z|ŝ

∣∣∣ ≤ ∑
b=(t,s)∈LI×J

| y|∗
t̂
X|t̂×ŝ z|ŝ |

≤
∑

b=(t,s)∈LI×J

‖y|t̂‖2 ‖X|t̂×s‖2 ‖z|ŝ‖2.

Now we use (4.17) and apply the Cauchy-Schwarz inequality to the sum to get

|y∗Xz| ≤
∑

b=(t,s)∈LI×J

‖y|t̂‖2 ε
1/2
I,level(t)ε

1/2
J ,level(s)‖z|ŝ‖2

≤

 ∑
b=(t,s)∈LI×J

‖y|t̂‖
2
2 εI,level(t)

1/2 ∑
b=(t,s)∈LI×J

‖z|ŝ‖22 εJ ,level(s)

1/2

.

For the first term, we can take advantage of the block tree’s sparsity and Lemma 3.18
to get∑
b=(t,s)∈LI×J

εI,level(t) ‖y|t̂‖
2
2 =

∑
t∈TI

∑
s∈row(t)

εI,level(t) ‖y|t̂‖
2
2 ≤ Csp

∑
t∈TI

εI,level(t) ‖y|t̂‖
2
2

= Csp

∞∑
`=0

∑
t∈TI

level(t)=`

εI,` ‖y|t̂‖
2
2 = Csp

∞∑
`=0

εI,`
∑
t∈TI

level(t)=`

∑
i∈t̂

|yi|2

≤ Csp

∞∑
`=0

εI,`
∑
i∈I
|yi|2 ≤ Csp

∞∑
`=0

εI,` ‖y‖22.

By the same arguments, we also find∑
b=(t,s)∈LI×J

εJ ,level(s) ‖z|ŝ‖22 ≤ Csp

∞∑
`=0

εJ ,`‖z‖22,

and combining both estimates yields

|y∗Xz| ≤ Csp

( ∞∑
`=0

εI,`

)1/2( ∞∑
`=0

εJ ,`

)1/2

‖y‖2 ‖z‖2,

and equation (4.10b) of Lemma 4.24 can again be used to complete the proof.

If we have a level-consistent block tree, i.e., if the levels of blocks and their row and
column clusters coincide, this result can be made a little more accessible.
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4 Low-rank matrices

Corollary 4.48 (Global spectral norm) Let TI×J be Csp-sparse with

level(b) = level(t) = level(s) for all b = (t, s) ∈ LI×J . (4.18)

Let X ∈ KI×J . We have

‖X‖2 ≤ Csp

∞∑
`=0

max{‖X|t̂×ŝ‖2 : b = (t, s) ∈ TI×J , level(b) = `}.

Proof. We simply let

εI,` = εJ ,` := max{‖X|t̂×ŝ‖2 : b = (t, s) ∈ TI×J , level(b) = `} for all ` ∈ N0.

Due to (4.18), the condition (4.17) of Theorem 4.47 is fulfilled and we get

‖X‖2 ≤ Csp

∞∑
`=0

εI,`.

This is already the desired result.
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5 Arithmetic operations

The discretization of integral or partial differential equations typically leads to large
ill-conditioned linear systems that require efficient solvers. Hierarchical matrices offer
an elegant approach to this challenge: we can formulate efficient algorithms that ap-
proximate the inverse or the factorization of hierarchical matrices by simply replacing
standard arithmetic operations by truncated operations that reduce the rank of suitable
submatrices after each step. This approach ensures that all intermediate results can be
handled efficiently.

5.1 Matrix-vector multiplication

Let G ∈ KI×J be an H-matrix corresponding to an admissible block tree TI×J for
cluster trees TI and TJ , and let (A,B,N) be an H-matrix representation of G.

We are interested in evaluating the matrix-vector product Gy for a vector y ∈ KJ .
Since we will frequently have to apply this operation to multiple vectors y at once, we
combine multiple vectors into the columns of a matrix Y ∈ KJ×M and consider the
computation of GY ∈ KI×M. Since we will frequently require the restriction to a subset
of the rows of the matrix, we introduce the notation

X|t̂′ := X|t̂′×M for all X ∈ Kt̂×M, t̂′ ⊆ t̂, (5.1)

where M is an arbitrary finite index set. In order to obtain a flexible algorithm, we
focus on the update operation

X ← X + αG|t̂×ŝY (5.2)

for a block b = (t, s) ∈ TI×J with a result matrix X ∈ Kt̂×M, an input matrix Y ∈
Kŝ×M, and a scaling factor α ∈ K.

In order to find an efficient algorithm for performing this operation, we distinguish
three types of blocks: if chil(b) 6= ∅, the block can be subdivided into blocks corresponding
to its children. If chil(b) = ∅, the block can be either an admissible or an inadmissible
leaf of the block tree.

In the first case, i.e., if chil(b) 6= ∅, we have

chil(b) = chil+(t)× chil+(s).

By Definition 3.20, we obtain

(G|t̂×ŝY )|t̂′ = G|t̂′×ŝY =
∑

s′∈chil+(s)

G|t̂′×ŝ′Y |ŝ′ for all t′ ∈ chil+(t).
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5 Arithmetic operations

procedure addeval hmatrix (α, G, b = (t, s), Y , var X);
if b ∈ L−I×J then

X ← X + αNbY
else if b ∈ L+I×J then

Ŷ ← αB∗bY ;

X ← X +AbŶ
else for b′ = (t′, s′) ∈ chil(b) do
addeval hmatrix (α, G, b′, Y |ŝ′ , X|t̂′)

end

Figure 5.1: Matrix-vector multiplication X ← X + αG|t̂×ŝY

Lemma 3.21 states that the sets {t̂′ : t′ ∈ chil+(t)} are a disjoint partition of t̂, so we
may conclude that (5.2) is equivalent with the operations

X|t̂′ ← X|t̂′ + αG|t̂′×ŝ′Y |ŝ′ for all b′ = (t′, s′) ∈ chil(b),

i.e., it suffices to perform updates for all children of b. We can repeat this procedure
recursively until we arrive of the leaves of the block tree.

If b = (t, s) ∈ LI×J is an admissible leaf, theH-matrix representation yields Ab ∈ Kt̂×k

and Bb ∈ Kŝ×k with G|t̂×ŝ = AbB
∗
b . Due to

G|t̂×ŝY = AbB
∗
bY,

we can compute

Ŷ := αB∗bY, X + αG|t̂×ŝŶ = X +AbŶ .

If b = (t, s) ∈ LI×J is an inadmissible leaf, the H-matrix representation gives us Nb ∈
Kt̂×ŝ with G|t̂×ŝ = Nb, and the product

X + αG|t̂×ŝY = X + αNbY

can be evaluated directly. The resulting algorithm is summarized in Figure 5.1.
Occasionally we also require an algorithm for computing matrix-vector products with

the adjoint matrix, i.e.,
X ← X + αG∗Y (5.3)

with X ∈ Kŝ×` and Y ∈ Kt̂×`. We can treat the admissible leaves b = (t, s) ∈ L+I×J by
computing

Ŷ := αA∗bY, G|∗
t̂×ŝY = BbŶ ,

while the inadmissible leaves b = (t, s) ∈ L−I×J can be handled directly.
Recursively following the structure of the block tree leads to the algorithm summarized

in Figure 5.2.
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procedure addevaltrans hmatrix (α, G, b = (t, s), Y , var X);
if b ∈ L−I×J then

X ← X + αN∗b Y
else if b ∈ L+I×J then

Ŷ ← αA∗bY ;

X ← X +BbŶ
else for b′ = (t′, s′) ∈ chil(b) do
addevaltrans hmatrix (α, G, b′, Y |t̂′ , X|ŝ′)

end

Figure 5.2: Adjoint matrix-vector multiplication X ← X + αG|∗
t̂×ŝY

Remark 5.1 (Auxiliary vector) It is possible to avoid the auxiliary vectors Ŷ by
treating AbB

∗
b as a sequence of k rank-one updates. As in Theorem 4.6, we let

Ab =
(
a1 a2 . . . ak

)
, Bb =

(
b1 b2 . . . bk

)
and find

AbB
∗
bY =

k∑
ν=1

aνb
∗
νY.

The individual rank-one updates require us to store only the intermediate results b∗νY
instead of the entire vector Ŷ , and these intermediate results can be computed and used
component by component, reducing the auxiliary storage requirements to O(1).

5.2 Complexity of the matrix-vector multiplication

Now we consider the amount of computational work required to perform a matrix-
vector multiplication by the algorithms addeval hmatrix and addevaltrans hmatrix

presented in Figure 5.1 and Figure 5.2. Since most of the work is done in the leaves of
the block tree, it is convenient to use their ranks to bound the overall work.

Lemma 5.2 (Maximal rank) Let rI and rJ denote the resolutions of the cluster trees
TI and TJ , and let k denote the local rank of G. The maximal rank of G is given by

k̂ := max{k, rI , rJ }. (5.4)

We have

rank(G|t̂×ŝ) ≤ k̂ for all leaves b = (t, s) ∈ LI×J .

Proof. Let b = (t, s) ∈ LI×J . If b is an admissible leaf, Definition 3.26 implies that the
rank of G|t̂×ŝ is bounded by k. If b is an inadmissible leaf, Definition 3.28 implies that
t or s has to be a leaf, so the rank of G|t̂×ŝ is bounded by rI or rJ .
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5 Arithmetic operations

Since the algorithms only consider blocks and their descendants, the computational
work should only depend on these blocks. To express this property, we introduce subtrees
of cluster and block trees.

Lemma 5.3 (Subtree) Let T = (V, r, E) be a tree, and let r′ ∈ V . Let V ′ ⊆ V be the
minimal subset satisfying

• r′ ∈ V ′ and

• chil(v) ⊆ V ′ for all v ∈ V ′.

Let E′ := E ∩ (V ′ × V ′). Then T ′ := (V ′, r′, E′) is a tree, and we call it the subtree of
T for the root r′.

We have V ′ = desc(r′), i.e., the nodes of the subtree are the descendants of its root r′.

Proof. Let v ∈ V ′. Since T is a tree, there is exactly one sequence v0, . . . , v` ∈ V , ` ∈ N0,
such that

(vi−1, vi) ∈ E for all i ∈ [1 : `],

and v0 = r, v` = v. Let λ := min{i ∈ [0 : `] : vi ∈ V ′}. Due to the minimality of λ, vλ
is not a child of an element in V ′. Due to the minimality of V ′, it therefore has to be r′.
We conclude that vλ, . . . , v` is a sequence in V ′ connecting r′ = vλ to v = v`.

If we have two sequences connecting r′ to v, we can extend them to sequences con-
necting r to v. Since these sequences are unique by definition of the tree T , so are the
sequences in the subtree T ′. We may conclude that T ′ is indeed a tree.

The definition of V ′ compared to Definition 3.17 immediately implies desc(r′) ⊆ V ′.
On the other hand, we have already proven that every v ∈ v′ is a descendant of r′.

Notation 5.4 (Subtrees) We introduce the following abbreviations:

For every t ∈ TI , we denote the subtree of TI with the root t by Tt.
For every s ∈ TJ , we denote the subtree of TJ with the root s by Ts.
For every b ∈ TI×J , we denote the subtree of TI×J with the root b by Tb.
The cardinality of the set of nodes of a tree T = (V, r, E) is denoted by |T | := |V |.

In order to obtain a bound for the number of operations required by the matrix-vector
multiplication, we use three steps: first we derive a recursive estimate that closely follows
the structure of the algorithm. This estimate can be used to express the work as a sum
of the numbers of operations in all blocks. Finally we use properties like sparsity to
translate the second estimate into an explicit upper bound.

This approach provides us with auxiliary results that are very useful for more sophis-
ticated algorithms like the H-matrix inversion or the H-matrix multiplication that use
the matrix-vector multiplication of submatrices in intermediate steps.
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Lemma 5.5 (Computational work) We define

Wmv(t, s,M) :=

{
2k̂ |M| (|t̂|+ |ŝ|) if (t, s) ∈ LI×J ,∑

(t′,s′)∈chil(t,s)Wmv(t
′, s′,M) otherwise

for all b = (t, s) ∈ TI×J and finite sets M.
If we call the algorithm addeval hmatrix for a block b = (t, s) ∈ TI×J with matrices

X ∈ Kt̂×M and Y ∈ Kŝ×M or the algorithm addevaltrans hmatrix for a block b =
(t, s) ∈ TI×J with matrices X ∈ Kŝ×M and Y ∈ Kt̂×M, it performs not more than
Wmv(t, s,M) operations.

Proof. We consider only addeval hmatrix, since addevaltrans hmatrix performs the
same number of operations, just exchanging the roles of Ab and Bb for admissible leaves
and using the adjoint in inadmissible leaves.

By induction on |Tb| = |desc(b)|.
Let b = (t, s) ∈ TI×J with |Tb| = 1. Then we have chil(b) = ∅, i.e., b ∈ LI×J .
If b is admissible, the algorithm computes

Ŷ ← αB∗bY, X ← X +AbŶ .

The multiplication with B∗b takes k |M| (2 |ŝ| − 1) operations, scaling the result takes
k |M| operations, the multiplication with Ab takes |t̂| |M| (2k−1) operations, and adding
the result to X|t̂ takes |t̂| |M|. In total, the algorithm addeval hmatrix requires not
more than

2k |M| (|t̂|+ |ŝ|) ≤ 2k̂ |M| (|t̂|+ |ŝ|) operations.

If b is inadmissible, we have to distinguish to cases: if |t̂| ≤ |ŝ|, we compute

X + αG|t̂×ŝY = X + α(NbY )

using |t̂| |M| (2|ŝ| − 1) operations for the matrix multiplication, |t̂| |M| operations for
scaling with α, and finally |t̂| |M| operations to add the result to X. Due to |t̂| ≤ |ŝ|,
the total number of operations is bounded by

2|t̂| |M| |ŝ|+ |M| |t̂| ≤ 2|t̂| |M| |ŝ|+ |M| min{|t̂|, |ŝ|}.

If, on the other hand |t̂| > |ŝ|, we compute

X + αG|t̂×ŝY = X +Nb(αY ).

Scaling Y takes |M| |ŝ| operations, multiplying by Nb takes |t̂| |M| (2|ŝ|−1), and adding
to X|t̂ takes |t̂| |M|. Due to |t̂| > |ŝ|, the total number of operations is bounded by

2|t̂| |M| |ŝ|+ |M| |ŝ| ≤ 2|t̂| |M| |ŝ|+ |M| min{|t̂|, |ŝ|}.

Since TI×J is an admissible block tree, either t or s has to be a leaf. In the first case,
we obtain the bound

2|t̂| |M| |ŝ|+ |M| min{|t̂|, |ŝ|} ≤ 2rI |M| |ŝ|+ |M| |t̂| ≤ 2k̂ |M|(|t̂|+ |ŝ|).
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5 Arithmetic operations

In the second case, we find

2|ŝ| |M| |t̂| + |M| min{|t̂|, |ŝ|} ≤ 2rJ |M| |t̂|+ |M| |ŝ| ≤ 2k̂ |M| (|t̂|+ |ŝ|).

Combining our three estimates, we conclude that the algorithm requires not more than

2k̂ |M|(|t̂|+ |ŝ|) = Wmv(t, s,M) operations

if b = (t, s) is a leaf block.
Let now m ∈ N be given such that our claim holds for all b = (t, s) ∈ TI×J with
|Tb| ≤ m.

Let b = (t, s) ∈ TI×J with |Tb| = m+ 1. Then we have chil(b) 6= ∅ and the algorithm
addeval hmatrix calls itself recursively for all b′ = (t′, s′) ∈ chil(b). Due to |Tb| ≤ m,
we can apply the induction assumption to find that each of these recursive calls requires
not more than Wmv(t′, s′,M) operations, so the total is bounded by∑

(t′,s′)∈chil(t,s)

Wmv(t′, s′,M) = Wmv(t, s,M).

The induction is complete.

Theorem 5.6 (Complexity) Let M be a finite set. Calling addeval hmatrix or
addevaltrans hmatrix with b = (t, s) ∈ TI×J requires not more than

Wmv(t, s,M) ≤ 2k̂ |M|
∑

b′=(t′,s′)∈Tb

(|t̂′|+ |ŝ′|) operations. (5.5a)

If TI×J is Csp-sparse, we find

Wmv(t, s) ≤ 2Cspk̂ |M|(pI×J + 1)(|t̂|+ |ŝ|). (5.5b)

Proof. We prove (5.5a) by induction on |Tb| = | desc(b)|.
Let b = (t, s) ∈ TI×J with |Tb| = 1. Then b is a leaf and the estimate follows directly

from Lemma 5.5.
Let now m ∈ N be given such that (5.5a) holds for all b = (t, s) ∈ TI×J with |Tb| ≤ m.
Let b = (t, s) ∈ TI×J with |Tb| = m+ 1. According to Lemma 5.5, we have

Wmv(t, s,M) =
∑

(t′,s′)∈chil(t,s)

Wmv(t′, s′,M),

and due to |Tb′ | ≤ m for all b′ = (t′, s′) ∈ chil(b), we can apply the induction assumption
to obtain

Wmv(t, s,M) ≤
∑

b′=chil(b)

∑
b′′=(t′′,s′′)∈Tb′

2k̂ |M| (|t̂′′|+ |ŝ′′|)

≤ 2k̂ |M|
∑
b′∈Tb

(|t̂′|+ |ŝ′|).

Combining (5.5a) with Lemma 3.34 yields (5.5b).

112



5.3 Truncation

5.3 Truncation

In order to approximate the results of arithmetic operations, we require an algorithm
that keeps the rank of the resulting matrices as low as possible. The truncation strategy
based on the singular value decomposition discussed in Section 4.2 yields the best possible
result (cf. Theorem 4.29), but computing the decomposition “from scratch” would lead
to a very high computational complexity. Fortunately, we can arrange a number of
important arithmetic operations in a way that yields R(k)-matrix representations of
submatrices, where k may be higher than necessary, but not too high. Taking advantage
of the factorized form, we can obtain the singular value decomposition by an efficient
algorithm.

We assume that a matrix X ∈ KI×J is given in R(k)-matrix representation, i.e., that
there are matrices A ∈ KI×k and B ∈ KJ×k such that

X = AB∗

holds. Instead of multiplying A and B∗ to form X, we first compute a thin QR factor-
ization of A, i.e., we find an isometric matrix Q ∈ KI×k and an upper (according to an
arbitrary ordering of indices) triangular matrix R ∈ Kk×k satisfying

A = QR.

We find
X = AB∗ = QRB∗

and introducing
X̂ := RB∗ ∈ Kk×J

this equation takes the form
X = QX̂.

Assuming that k is not too large, we can afford to compute its singular value decompo-
sition

X̂ = ÛΣV ∗

and obtain
X = QÛΣV ∗ = UΣV ∗

with U := QÛ .
We can, of course, interchange the roles of A and B: we can also compute the QR

factorization B = QR with an isometric matrix Q ∈ KJ×k and an upper triangular
matrix R ∈ Kk×k, set up X̂ := AR∗, compute the SVD X̂ = UΣV̂ ∗, and obtain

X = X̂Q∗ = UΣV̂ ∗Q∗ = UΣV ∗

with V := QV̂ . Depending on the implementation of the QR factorization and the
singular value decomposition and on the cardinalities |I| and |J |, one of the two versions
may be more efficient than the other.
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procedure trunc rkmatrix (ε, var A, B);
Compute QR factorization A = QR with Q ∈ KI×k, R ∈ Kk×k;

X̂ ← RB∗;

Compute singular value decomposition X̂ = ÛΣV ∗;

U ← QÛ ;

Choose rank k̃ ∈ [0 : k];
A← U |I×k̃Σ|k̃×k̃; B ← V |J×k̃

end

Figure 5.3: R(k)-matrix truncation, X is overwritten by an approximation.

Given the SVD, computing a rank-k̃ approximation for a given k̃ ∈ [0 : k] consists
of merely copying the appropriate columns of U and V and scaling one of them by the
singular values. The resulting algorithm is presented in Figure 5.3.

Assumption 5.7 (QR and SVD) We assume that there is a constant Cqr such that
the QR factorization of a matrix X ∈ KI×J can be computed in not more than

Cqr|I| |J | min{|I|, |J |} operations

and that applying Q or Q∗ to a matrix Y ∈ KI×K takes not more than

Cqr|I| |K| min{|I|, |J |} operations.

We also assume that there is a constant Csvd such that the singular value decomposition
of X can be computed in not more than

Csvd|I| |J | min{|I|, |J |} operations.

In practice, we of course only refer to computations with error tolerances reasonably
close to machine accuracy.

Lemma 5.8 (Complexity of R(k)-SVDs) Our algorithm computes the singular va-
lue decomposition of a matrix X ∈ KI×J given in R(k)-matrix representation in not
more than

Crksvdk
2(|I|+ |J |) operations,

where Crksvd := max{2Cqr, Csvd + 2}.

Proof. By Assumption 5.7, the construction of the QR factorization takes not more than
Cqrk

2 |I| operations, the product X̂ = RB∗ can be computed in not more than 2k2 |J |
operations, its singular value decomposition takes not more than Csvdk

2 |J | operations,
and finally the product U = QÛ can be obtained in Cqrk

2 |I| operations.
Adding the contributions yields

2Cqrk
2 |I|+ (Csvd + 2)k2 |J | ≤ Crksvdk

2(|I|+ |J |).
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procedure add rkmatrix (ε, α, A, B, var AX , BX);
AX ←

(
AX A

)
; BX ←

(
BX ᾱB

)
trunc rkmatrix(ε, AX , BX)

end

Figure 5.4: R(k)-matrix addition, X is overwritten by an approximation of X + αY .

Corollary 5.9 (Complexity of R(k)-truncations) For any k̃ ∈ [0 : k], our algo-
rithm trunc rkmatrix computes a rank-k̃ approximation of X in not more than

Ctrk
2(|I|+ |J |) operations,

where Ctr := Crksvd + 1.

Proof. We compute the R(k)-SVD and let

Ã := U |I×k̃Σ|k̃×k̃, B̃ := V |J×k̃.

The multiplication by the diagonal matrix requires not more than

k̃ |I| ≤ k2 |I| operations,

and adding the estimate of Lemma 5.8 yields the required bound.

5.4 Low-rank updates

We consider the addition of two matrices X,Y ∈ KI×J , i.e., the computation of Z =
X + αY with α ∈ K.

IfX and Y are given inR(k)-matrix representation, i.e., if there are matricesAX , AY ∈
KI×k and BX , BY ∈ KJ×k such that

X = AXB
∗
X , Y = AYB

∗
Y ,

we immediately obtain an R(2k)-matrix representation

X + αY = AXB
∗
X + αAYB

∗
Y =

(
AX AY

)( B∗X
αB∗Y

)
=
(
AX AY

)︸ ︷︷ ︸
=:AZ

(
BX ᾱBY

)︸ ︷︷ ︸
=:BZ

∗
= AZB

∗
Z

of the sum X+Y and can apply the truncation algorithm to compute an approximation
of reduced rank.
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Corollary 5.10 (Complexity of R(k)-addition) Let X,Y ∈ KI×J be given in R(k)-
matrix representation X = AXB

∗
X and Y = AYB

∗
Y . For any k̃ ∈ [0 : 2k], the function

add rkmatrix computes a rank-k̃ approximation of X + αY in not more than

Caddk
2(|I|+ |J |) operations,

where Cadd := 4Crksvd + 2.

Proof. Constructing AZ and BZ requires k |J | multiplications for scaling BY . According
to Lemma 5.8, we can obtain the singular value decomposition UΣV ∗ = AZB

∗
Z in not

more than
Crksvd(2k)2(|I|+ |J |) = 4Crksvdk

2(|I|+ |J |)

operations. Finally multiplying U |I×k̃ and Σ|k̃×k̃ takes not more than 2k |I| multiplica-

tions, since Σ is a diagonal matrix and k̃ ≤ 2k.
The total number of operations is bounded by

k |J |+ 4Crksvdk
2(|I|+ |J |) + 2k |I| ≤ 4Crksvdk

2(|I|+ |J |) + 2k2(|I|+ |J |)
= Caddk

2(|I|+ |J |).

In order to approximate the matrix-matrix multiplication, we have to be able to add
a low-rank matrix to a hierarchical matrix, i.e., we require an efficient algorithm for
performing low-rank updates to hierarchical matrices. The restriction of a low-rank
matrix Y ∈ KI×J to a block b = (t, s) is again of low rank: if Y = AB∗ is an R(k)-
matrix representation, we have

Y |t̂×ŝ = (AB∗)|t̂×ŝ = A|t̂×kB|
∗
ŝ×k,

so an R(k)-matrix representation of Y |t̂×ŝ is readily available to us, and we can split Y
into submatrices that fit the block structure of a hierarchical matrix X.

As in the case of the matrix-vector multiplication algorithm, we can use a recursive
strategy to distribute the low-rank matrix Y among all leaves of a hierarchical matrix
X. For inadmissible leaves, we simply multiply A and B∗ and add the result to the
corresponding nearfield matrix. For admissible leaves, we use the function add rkmatrix.
The resulting algorithm is given in Figure 5.5.

Lemma 5.11 (Complexity of low-rank updates) Let b = (t, s) ∈ TI×J . A call to
the function add rkmatrix hmatrix for this block requires not more than

Wup(t, s) := Cupk k̂
∑

b′=(t′,s′)∈Tb

|t̂′|+ |ŝ′|

operations, where Cup := max{2, Cadd}.
If TI×J is Csp-sparse, we find

Wup(t, s) ≤ CupCspk̂
2(pI×J + 1)(|t̂|+ |ŝ|).
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procedure add rkmatrix hmatrix (b = (t, s), ε, α, A, B, var X);
{ H-matrix representation (AX , BX , NX) of X }
if b ∈ L−I×J then

NX,b ← NX,b + αAB∗

else if b ∈ L+I×J then

add rkmatrix(ε, α, A, B, AX,b, BX,b)
else for all b′ = (t′, s′) ∈ chil(b) do begin

Â← A|t̂′×k; B̂ ← B|ŝ′×k;
add rkmatrix hmatrix(b′, ε, α, Â, B̂, X)

end
end

Figure 5.5: R(k)-matrix update, X is overwritten by an approximation of X + αY .

Proof. We prove the estimate by induction on |Tb|, i.e., the cardinality of the subtree
with root b = (t, s).

Let b = (t, s) ∈ TI×J with |Tb = 1|. Then b is be a leaf of the block tree TI×J .
If b is an inadmissible leaf, we add αAYB

∗
Y to NX,b. If |t̂| ≤ |ŝ|, we first apply the

scaling factor α to AY and then add the product (αAY )B∗Y to NX,b. Otherwise we apply
the scaling factor to BY and add the product AY (ᾱBY )∗ to NX,b. This takes not more
than 2k |t̂| |ŝ| + kmin{|t̂|, |ŝ|} operations. Since TI×J is admissible, either t or s has to
be a leaf. If t is a leaf, we have

2k |t̂| |ŝ|+ kmin{|t̂|, |ŝ|} ≤ rI2k |ŝ|+ k |t̂| ≤ Cupk k̂(|t̂|+ |ŝ|).

If s is a leaf, we have

2k |t̂| |ŝ|+ kmin{|t̂|, |ŝ|} ≤ rJ 2k |t̂|+ k |ŝ| ≤ Cupk k̂(|t̂|+ |ŝ|).

If b is an admissible leaf, we use the function add rkmatrix. Due to Corollary 5.10, this
requires not more than

Caddk
2(|t̂|+ |ŝ|) ≤ Cupk k̂(|t̂|+ |ŝ|) operations.

Now let n ∈ N be given such that the estimate holds for all blocks b = (t, s) ∈ TI×J
with |Tb| ≤ n.

Let b ∈ TI×J with |Tb| = n + 1. The block b cannot be a leaf, so the function will
call itself for all children b′ of b. Due to |Tb′ | ≤ n for all b′ ∈ chil(b), we can apply the
induction assumption and obtain

Wup(t, s) =
∑

(t′,s′)∈chil(t,s)

Wup(t′, s′) ≤ Cupk k̂
∑

b′∈chil(b)

∑
b′′=(t′′,s′′)∈Tb′

|t̂′′|+ |ŝ′′|

≤ Cupk k̂
∑

b′′=(t′′,s′′)∈Tb

|t̂′′|+ |ŝ′′|.

Applying Lemma 3.34 yields the final estimate.
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5.5 Merging

The low-rank update requires us to split a low-rank matrix into submatrices. There are
also algorithms that require us to merge several low-rank submatrices into a larger low-
rank matrix, e.g., if intermediate results have been computed and have to be combined
to form the final result. Let X1 ∈ KI×J1 , . . . Xσ ∈ KI×Jσ be low-rank matrices with
σ ≥ 1 and disjoint index sets J1, . . . ,Jσ. We are looking for a low-rank approximation
of the matrix

Z :=
(
X1 . . . Xσ

)
∈ KI×J , J := J1 ∪ . . . ∪ Jσ.

We assume that the Xι are given in R(k)-matrix representation, i.e., that there are
Aι ∈ KI×k, Bι ∈ KJι×k such that

Xι = AιB
∗
ι for all ι ∈ [1 : σ].

As in the truncation algorithm, we can make use of QR factorizations to reduce the
computational work: we compute isometric matrices Qι ∈ KJι×k and triangular matrices
Rι ∈ Kk×k such that

Bι = QιRι for all ι ∈ [1 : σ]

and rewrite Z in the form

Z =
(
X1 . . . Xσ

)
=
(
A1B

∗
1 . . . AσB

∗
σ

)
=
(
A1(Q1R1)

∗ . . . Aσ(QσRσ)∗
)

=
(
A1R

∗
1Q
∗
1 . . . AσR

∗
σQ
∗
σ

)
=
(
A1R

∗
1 . . . AσR

∗
σ

)Q
∗
1

. . .

Q∗σ

 .

We define

Ẑ :=
(
A1R

∗
1 . . . AσR

∗
σ

)
∈ KI×(σk), Q :=

Q1

. . .

Qσ

 ∈ KJ×(σk)

and write the equation in the short form

Z = ẐQ∗.

Now we can proceed as before: we find a singular value decomposition Ẑ = UΣV̂ ∗ of Ẑ
and see that

Z = ẐQ∗ = UΣV̂ ∗Q∗ = UΣ(QV̂ )∗ = UΣV ∗

holds with the isometric matrix V := QV̂ .
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procedure rowmerge rkmatrix (X1,. . . ,Xσ, var Y );
{ R(k)-representations Xι = AιB

∗
ι for all ι ∈ [1 : σ] }

{ R(k)-representation Y = AYB
∗
Y for the result }

for ι ∈ [1 : σ] do
Compute QR factorization Bι = QιRι with Qι ∈ KJι×k, Rι ∈ Kk×k;

Ẑ ←
(
A1R

∗
1 A2R

∗
2 . . . AσR

∗
σ

)
∈ KI×(σk)

Compute singular value decomposition Ẑ = UΣV̂ ∗, rank p ≤ σk;

Choose rank k̃;
for ι ∈ [1 : σ] do

V |Jι×k̃ ← Qι(V̂ι)|k×k̃;
AY ← U |I×k̃Σ|k̃×k̃; BY ← V |J×k̃

end

Figure 5.6: Merging R(k)-matrices in a row, Y is overwritten by a rank-k̃ approximation
of Z.

Since Q is a block-diagonal matrix, we can apply it efficiently to V̂ ∈ K(σk)×p by
splitting

V̂ =

V̂1...
V̂σ

 with V̂ι ∈ Kk×p for all ι ∈ [1 : σ]

and using

V =

Q1V̂1
...

QσV̂σ

 ∈ KJ×p.

Obtaining an optimal low-rank approximation is now straightforward, the resulting al-
gorithm is summarized in Figure 5.6.

We also need an algorithm for merging column matrices. Let X1 ∈ KI1×J , X2 ∈
KI2×J , . . . , Xσ ∈ KIσ×J be low-rank matrices with σ ≥ 1 and disjoint index sets
I1, . . . , Iσ. We are looking for a low-rank approximation of

Z :=

X1
...
Xσ

 ∈ KI×J , I := I1 ∪ I2 ∪ . . . ∪ Iσ.

Applying the same procedure as before to Z∗ instead of Z yields the algorithm summa-
rized in Figure 5.7: we use QR factorizations QιRι = Aι, construct Ẑ ∈ KJ×(σk), and
obtain a singular value decomposition of Z∗ instead of Z.

Essentially we only have to switch the roles of the low-rank factors A and B in both
the input matrices and the result in order to merge rows instead of columns.
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procedure colmerge rkmatrix (X1,. . . ,Xσ, var Y );
{ R(k)-representations Xι = AιB

∗
ι for all ι ∈ [1 : σ] }

{ R(k)-representation Y = AYB
∗
Y for the result }

for ι ∈ [1 : σ] do
Compute QR factorization Aι = QιRι with Qι ∈ KIι×k, Rι ∈ Kk×k;

Ẑ ←
(
B1R

∗
1 · · · BσR

∗
σ

)
∈ KJ×(σk)

Compute singular value decomposition Ẑ = UΣV̂ ∗, rank p ≤ σk;

Choose rank k̃;
for ι ∈ [1 : σ] do

V |Iι×k̃ ← Qι(V̂ι)|k×k̃;
B ← U |J×k̃; A← V |I×k̃Σ|k̃×k̃

end

Figure 5.7: Merging R(k)-matrices in a column, Y is overwritten by a rank-k̃ approxi-
mation of Z.

Lemma 5.12 (Complexity of merging matrices) Let σ ∈ N, and let X1 ∈ KI×J1,
. . . , Xσ ∈ KI×Jσ be rank-k matrices in R(k)-matrix representation, let k̃ ∈ [0 : σk].
The algorithm rowmerge rkmatrix computes an R(k̃)-matrix approximation of

Z =
(
X1 . . . Xσ

)
∈ KI×J , J := J1 ∪ . . . ∪ Jσ,

in not more than
Cmgσ

2k2(|I|+ |J |) operations

with Cmg := max{2Cqr, 3 + Csvd}.
Let X1 ∈ KI1×J , X2 ∈ KI2×J , . . . , Xσ ∈ KIσ×J be rank-k-matrices in R(k)-matrix

representation, let k̃ ∈ [0 : σk]. The algorithm colmerge rkmatrix computes an R(k̃)-
matrix approximation of

Z =

X1
...
Xσ

 ∈ KI×J , I := I1 ∪ . . . ∪ Iσ

in not more than
Cmgσ

2k2(|I|+ |J |) operations.

Proof. Due to Assumption 5.7, the QR factorizations Bι = QιRι can be constructed in
not more than

σ∑
ι=1

Cqr|Jι| k2 = Cqrk
2 |J | operations.

The matrix
Ẑ =

(
A1R

∗
1 A2R

∗
2 . . . AσR

∗
σ

)
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can be computed by multiplying I × k and k × k matrices in

σ∑
ι=1

2k2 |I| = 2σk2 |I| ≤ 2σ2k2 |I| operations,

and its singular value decomposition can be found in not more than

Csvd|I| (σk)2 = Csvdσ
2k2 |I| operations.

Applying the matrices Qι to V̂ι|k×k̃ requires not more than

σ∑
ι=1

Cqr|Jι| k k̃ = Cqr|J | k k̃ ≤ Cqrσk
2 |J | operations

due to k̃ ≤ σk, and the product of U |I×k̃ and Σ|k̃×k̃ can be computed in

|I| k̃ ≤ |I| (σk) ≤ σ2k2 |I| operations.

Adding these estimates yields the required bound.
The same arguments can be applied to colmerge rkmatrix.

Remark 5.13 (Inductive merge) Typical cluster strategies lead to clusters with two
or three children, i.e., we will have σ ∈ {2, 3}, and the quadratic dependence of the
computational work on σ does not matter too much.

If we want to merge a larger number of submatrices, we may consider merging them
step by step: we first compute the singular value decomposition(

A1R
∗
1 A2R

∗
2

)
= U12Σ12V̂

∗
12.

Now we truncate to Σ̃12 ∈ Kk̃×k̃ and Ṽ12 ∈ K(2k)×k̃.
In the next step, we have(
A1R

∗
1 A2R

∗
2 A3R

∗
3

)
≈
(
U1,2Σ̃1,2Ṽ

∗
1,2 A3R

∗
3

)
=
(
U1,2Σ̃1,2 A3R

∗
3

)(
Ṽ1,2

I

)∗
We have U1,2Σ̃1,2 ∈ KI×k̃ and A3R

∗
3 ∈ KI×k, so the singular value decomposition(

U1,2Σ̃1,2 A3R
∗
3

)
= U1,3Σ1,3V̂

∗
1,3

can be computed in not more than Csvd(k+ k̃)2 |I| operations. Again we can truncate to

Σ̃1,3 ∈ Kk̃×k̃ and Ṽ1,3 ∈ K(k+k̃)×k̃ and find

(
A1R

∗
1 A2R

∗
2 A3R

∗
3

)
≈ U1,3Σ̃1,3Ṽ

∗
1,3

(
Ṽ1,2

I

)∗
.

If we keep repeating the procedure, we only require O(σ(k + k̃)2(|I| + |J |)) operations,
the computational work only grows linearly with σ, but the intermediate truncation steps
influence the accuracy and we will not always compute the best low-rank approximation.
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5.6 Matrix multiplication

With efficient algorithms for matrix-vector multiplications, low-rank updates, and merg-
ing submatrices at our disposal, we can face the challenge of finding an efficient algorithm
for approximating the product of two H-matrices.

We assume that X ∈ KI×J , Y ∈ KJ×K, and Z ∈ KI×K are H-matrices of local rank
k for the admissible block trees TI×J , TJ×K and TI×K, respectively. Let (AX , BX , NX),
(AY , BY , NY ) and (AZ , BZ , NZ) be H-matrix representations of X, Y , and Z.

We let α ∈ K and consider the update operation

Z ← Z + αXY.

As in the case of the matrix-vector multiplication, we split the matrices into suitable
submatrices and develop an algorithm for performing the update

Z|t̂×r̂ ← Z|t̂×r̂ + αX|t̂×ŝY |ŝ×r̂ (5.6)

for suitable clusters t ∈ TI , s ∈ TJ and r ∈ TK such that (t, s) ∈ TI×J and (s, r) ∈ TJ×K.

Case 1: (s, r) is a leaf. If b = (s, r) is a leaf, the rank of Y |ŝ×r̂ is bounded, either
because b is admissible, i.e., Y |ŝ×r̂ = AY,bB

∗
Y,b, or because either s or r is a leaf, cf.

Definition 3.28, and therefore |ŝ| or |r̂| are small.

Case 1a: (s, r) is an admissible leaf. If b = (s, r) is an admissible leaf, we have

Y |ŝ×r̂ = AY,bB
∗
Y,b

and therefore

X|t̂×ŝY |ŝ×r̂ = X|t̂×ŝAY,bB
∗
Y,b.

We can compute

Â := X|t̂×ŝAY,b

by applying the algorithm addeval hmatrix (cf. Figure 5.1) to the matrix AY,b. The
update (5.6) takes the form

Z|t̂×r̂ ← Z|t̂×r̂ + αÂB∗Y,b

of a low-rank update that can be handled by the algorithm add rkmatrix hmatrix (cf.
Figure 5.5).

Case 1b: (s, r) is an inadmissible leaf. If b = (s, r) is an inadmissible leaf, either s or
r has to be a leaf cluster due to Definition 3.28.

If s is a leaf, we have |ŝ| ≤ rJ and the product

X|t̂×ŝY |ŝ×r̂ = X|t̂×ŝNY,b

122



5.6 Matrix multiplication

is already a factorized low-rank representation. We only have to convert the H-matrix
into a standard matrix, e.g., by applying addeval hmatrix to the identity matrix Iŝ ∈
Kŝ×ŝ to get

Â← X|t̂×ŝIŝ ∈ Kt̂×ŝ.

Once we have Â and NY,b at our disposal, the R(ŝ)-matrix

X|t̂×ŝY |ŝ×r̂ = ÂNY,b = Â(N∗Y,b)
∗

with |ŝ| ≤ rJ can be added to Z|t̂×r̂ using the function add rkmatrix hmatrix.

If r is a leaf, we have |r̂| ≤ rK and compute

Â := X|t̂×ŝY |ŝ×r̂ = αX|t̂×ŝNY,b

by applying addeval hmatrix to the matrix NY,b. Now

X|t̂×ŝY |ŝ×r̂ = ÂI∗r̂

is a factorized low-rank representation of rank not larger than |r̂| ≤ rK. and we can
perform the required update again by using add rkmatrix hmatrix.

Case 2: (t, s) is a leaf. If b = (t, s) is a leaf, the rank of X|t̂×ŝ is bounded, again either
because b is admissible or because the number of rows or columns is small.

Case 2a: (t, s) is an admissible leaf. If b = (t, s) is an admissible leaf, we have

X|t̂×ŝ = AX,bB
∗
X,b

and therefore

X|t̂×ŝY |ŝ×r̂ = AX,bB
∗
X,bY |ŝ×r̂ = AX,b(Y |∗ŝ×r̂BX,b)∗.

We can compute

B̂ := Y |∗ŝ×r̂BX,b

by applying the algorithm addevaltrans hmatrix (cf. Figure 5.2) to the matrix BX,b.
The update (5.6) takes the form

Z|t̂×r̂ ← Z|t̂×r̂ + αAX,bB̂
∗

of a low-rank update that can be handled by the algorithm add rkmatrix hmatrix (cf.
Figure 5.5).
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Case 2b: (t, s) is an inadmissible leaf. If b = (t, s) is an inadmissible leaf, either t or
s has to be a leaf cluster due to Definition 3.28.

If s is a leaf, we have |ŝ| ≤ rJ and the product is already a factorized low-rank
representation. We convert the H-matrix Y |ŝ×r̂ into a standard matrix, e.g., by applying
addevaltrans hmatrix to the identity matrix Iŝ ∈ Kŝ×ŝ, and obtain

B̂ := Y |∗ŝ×r̂Iŝ

such that
X|t̂×ŝY |ŝ×r̂ = NX,bB̂

∗.

Once again we can use the algorithm add rkmatrix hmatrix (cf. Figure 5.5) to add this
low-rank matrix to Z|t̂×r̂.

If t is a leaf, we have |t̂| ≤ rI . In this case, we compute

B̂ := (X|t̂×ŝY |ŝ×r̂)
∗ = Y |∗ŝ×r̂N∗X,b

by applying addevaltrans hmatrix (cf. Figure 5.2) to the matrix N∗X,b. Now

X|t̂×ŝY |ŝ×r̂ = It̂B̂
∗

is a factorized low-rank representation of the product, with a rank bounded by |t̂| ≤ rI ,
and we can perform the required update again by using add rkmatrix hmatrix.

Case 3: (t, s) and (s, r) are not leaves. We can handle this case be recursion: with
the notations of Lemma 3.21, we have

chil(t, s) = chil+(t)× chil+(s), chil(s, r) = chil+(s)× chil+(r),

and can replace (5.6) by the updates

Z|t̂′×r̂′ ← Z|t̂′×r̂′ + αX|t̂′×ŝ′Y |ŝ′×r̂′ for all t′ ∈ chil+(t), s′ ∈ chil+(s), r′ ∈ chil+(r).

If (t, r) is not a leaf, we have

chil(t, r) = chil+(t)× chil+(r)

and can apply recursion directly.
Otherwise, i.e., if (t, r) is a leaf, we have to split Z|t̂×r̂ into auxiliary submatrices

Z|t̂′×r̂′ for all t′ ∈ chil+(t) and r′ ∈ chil+(s), treat these submatrices by recursion, and
the merge them again.

If (t, r) is an inadmissible leaf, splitting means copying submatrices, and merging
means combining them again into the final result. An alternative is to work directly
with submatrices of NZ,(t,r) and avoid copy operations.

If (t, r) is an admissible leaf, we have Z|t̂×r̂ = AZ,(t,r)B
∗
Z,(t,r) and find

Z|t̂′×r̂′ = AZ,(t,r)|t̂′×kBZ,(t,r)|
∗
r̂′×k for all t′ ∈ chil+(t), s′ ∈ chil+(s),

we can use rowmerge rkmatrix (cf. Figure 5.6) and colmerge rkmatrix (cf. Figure 5.7)
to merge the submatrices.
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procedure addmul hmatrix(t, s, r, α, X, Y , var Z);
{ H-matrix representations (AX , BX , NX), (AY , BY , NY ),

and (AZ , BZ , NZ) of X, Y , and Z }
if (s, r) ∈ L+J×K then begin

Â← 0 ∈ Kt̂×k; addeval hmatrix(1, X, (t, s), AY,(s,r), Â);

add rkmatrix hmatrix((t, r), α, Â, BY,(s,r), Z)

end else if (s, r) ∈ L−J×K then begin

if |ŝ| ≤ |r̂| then begin

Â← 0 ∈ Kt̂×ŝ; addeval hmatrix(1, X, (t, s), Iŝ, Â); B̂ ← N∗Y,(s,r)
end else begin

Â← 0 ∈ Kt̂×r̂; addeval hmatrix(1, X, (t, s), NY,(s,r), Â); B̂ ← Ir̂
end;

add rkmatrix hmatrix((t, r), α, Â, B̂, Z)
end else if (t, s) ∈ L+I×J then begin

B̂ ← 0 ∈ Kŝ×k; addevaltrans hmatrix(1, Y , (s, r), BX,(t,s), B̂);

add rkmatrix hmatrix((t, r), α, AX,(t,s), B̂, Z)

end else if (t, s) ∈ L−I×J then

if |ŝ| ≤ |t̂| then begin

B̂ ← 0 ∈ Kr̂×ŝ; addevaltrans hmatrix(1, Y , (s, r), Iŝ, B̂); Â← NX,(t,s)

end else begin

B̂ ← 0 ∈ Kr̂×t̂; addevaltrans hmatrix(1, Y , (s, r), N∗X,(t,s), B̂); Â← It̂
end;

add rkmatrix hmatrix((t, r), α, Â, B̂, Z)
end else

if (t, r) 6∈ TI×K \ LI×K then begin
Split Z|t̂×r̂ into submatrices;
for t′ ∈ chil+(t), s′ ∈ chil+(s), r′ ∈ chil+(r) do
addmul hmatrix(t′, s′, r′, α, X, Y , Z);

Merge submatrices into Z|t̂×r̂
end else

for t′ ∈ chil+(t), s′ ∈ chil+(s), r′ ∈ chil+(r) do
addmul hmatrix(t′, s′, r′, α, X, Y , Z)

end

Figure 5.8: H-matrix multiplication, Z|t̂×r̂ is overwritten by an H-matrix approximation

of Z|t̂×r̂ + αX|t̂×ŝY |ŝ×r̂.

Remark 5.14 (Conversion) In a practical implementation, it is advisable to treat in-
admissible leaves by separate algorithms: converting an H-matrix directly to a standard
matrix is simpler than using addeval hmatrix, and approximating a standard matrix
using the singular value decomposition is simpler than using add rkmatrix hmatrix.
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5.7 Complexity of the matrix multiplication

In order to analyze the complexity of the multiplication algorithm given in Figure 5.8,
we require a number of fairly straightforward assumptions and definitions.

• Assume that the block trees TI×J , TJ×K, and TI×K are admissible and Csp-sparse.

• Let pI , pJ , and pK denote the depths of the cluster trees TI , TJ , and TK, and
define the maximal depth by

p̂ := max{pI , pJ , pK}. (5.7)

Lemma 3.33 states that p̂ is also an upper bound for the depths of the block trees
TI×J , TJ×K, and TI×K.

• Let rI , rJ and rK denote the resolutions of the cluster trees TI , TJ , TK. Then the
rank of both admissible and inadmissible leaf blocks of TI×J , TJ×K, and TI×K is
bounded by

k̂ := max{k, rI , rJ , rK}. (5.8)

• Let σ denote an upper bound for the number of children of clusters in TI and TK,
i.e., assume

| chil(t)| ≤ σ, | chil(r)| ≤ σ for all t ∈ TI , r ∈ TK. (5.9)

In order to find a bound for the computational work involved in the approximate H-
matrix multiplication function addmul hmatrix, we consider the triples (t, s, r) that
appear as its parameters. Following the recursive calls yields a new tree structure: our
algorithm stops the recursion only if either (t, s) or (s, r) is a leaf.

Definition 5.15 (Product tree) A tree TI×J×K = (V, %,E) is called a product tree
for TI×J and TJ×K if

• the nodes are triples of clusters, i.e.,

V ⊆ TI × TJ × TK, (5.10a)

• the root consists of the roots of TI , TJ and TK, i.e.,

root(TI×J×K) = (root(TI), root(TJ ), root(TK)), and (5.10b)

• the children of p = (t, s, r) ∈ TI×J×K are given by

chil(p) =

{
chil+(t)× chil+(s)× chil+(r) if (t, s) 6∈ LI×J ∧ (s, r) 6∈ LJ×K,
∅ otherwise.

(5.10c)
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Lemma 5.16 (Relation to block trees) We have (t, s, r) ∈ TI×J×K if and only if
(t, s) ∈ TI×J , (s, r) ∈ TJ×K and level(t, s) = level(s, r) hold.

Proof. We first prove

(t, s, r) ∈ TI×J×K =⇒ ((t, s) ∈ TI×J ∧ (s, r) ∈ TJ×K ∧ level(t, s) = level(s, r)) (5.11)

by induction on level(t, s, r).
If level(t, s, r) = 0, we have t = root(TI), s = root(TJ ) and r = root(TK), and (3.13a)

implies (t, s) = root(TI×J ), (s, r) = root(TJ×K), and level(t, s) = 0 = level(s, r).
Let now n ∈ N0 be given such that (5.11) holds for all (t, s, r) ∈ TI×J×K with

level(t, s, r) = n.
Let (t, s, r) ∈ TI×J×K with level(t, s, r) = n + 1. Then there has to be a parent

(t+, s+, r+) ∈ TI×J×K with level(t+, s+, r+) = n. By the induction assumption, we have
(t+, s+) ∈ TI×J , (s+, r+) ∈ TJ×K, and level(t+, s+) = level(s+, r+).

Due to (5.10c), we have t ∈ chil+(t+), s ∈ chil+(s+) and r ∈ chil+(r+), and
(3.13b) yields (t, s) ∈ chil(t+, s+) ⊆ TI×J and (s, r) ∈ chil(s+, r+) ⊆ TJ×K. Due to
level(t+, s+) = level(s+, r+), this implies also level(t, s) = level(s, r).

Now we prove

((t, s) ∈ TI×J ∧ (s, r) ∈ TJ×K ∧ level(t, s) = level(s, r)) =⇒ (t, s, r) ∈ TI×J×K (5.12)

by induction on level(t, s).
If level(t, s) = 0, level(t, s) = level(s, r) yields level(s, r) = 0, and (3.13a) implies

t = root(TI), s = root(TJ ) and r = root(TK). Due to (5.10b), we have (t, s, r) ∈ TI×J×K.
Let now n ∈ N0 be given such that (5.12) holds for all (t, s) ∈ TI×J with level(t, s) = n.
Let (t, s) ∈ TI×J and (s, r) ∈ TJ×K with level(t, s) = level(s, r) = n + 1. Then

there have to be parents (t+, s+) ∈ TI×J and (s+, r+) ∈ TJ×K of (t, s) and (s, r) with
level(t+, s+) = n and level(s+, r+) = n. We can apply the induction assumption to
obtain (t+, s+, r+) ∈ TI×J×K.

Due to (t, s) ∈ chil(t+, s+) and (s, r) ∈ chil(s+, r+), both (t+, s+) and (s+, r+) cannot
be leaves, and (5.10c) yields chil(t+, s+, r+) = chil+(t+) × chil+(s+) × chil+(r+). With
(3.13b), we find t ∈ chil+(t+), s ∈ chil+(s+) and r ∈ chil+(r+), and conclude (t, s, r) ∈
chil(t+, s+, r+) ⊆ TI×J×K.

The product tree TI×J×K describes our algorithm’s recursive structure. In order to
derive a bound for the complexity, we have to investigate how many operations are
performed for each of its nodes. In order to keep the notation short, we introduce the
abbreviation

BI×J (t, s) :=

{∑
(t′,s′)∈T(t,s) |t̂

′|+ |ŝ′| if (t, s) ∈ TI×J ,
|t̂|+ |ŝ| otherwise

for all t ∈ TI , s ∈ TJ ,

(5.13)

where the case (t, s) 6∈ TI×J is required to handle the special case of temporarily created
auxiliary matrices appearing in Case 3 of the algorithm. Theorem 5.6 and Lemma 5.11

127



5 Arithmetic operations

can be written in the short form

Wmv(t, s,M) ≤ 2k̂ |M|BI×J (t, s) for all (t, s) ∈ TI×J and finite sets M,

Wup(t, s) ≤ Cupk̂
2BI×J (t, s) for all (t, s) ∈ TI×J .

We define BJ×K and BI×K in the same way for the block trees TJ×K and TI×K.

Lemma 5.17 (Leaves) Let (t, s, r) ∈ TI×J×K be a leaf of the product tree TI×J×K. If
the function addmul hmatrix is called with the parameters t, s and r, it performs not
more than

Cmmlk̂
2 (BI×J (t, s) +BJ×K(s, r) +BI×K(t, r)) operations

with Cmml := max{Cup, 2}.

Proof. Since (t, s, r) is a leaf, we have (t, s) ∈ LI×J or (s, r) ∈ LJ×K.

Case 1a: If b := (s, r) ∈ L+J×K, we compute Â = X|t̂×ŝAY,b by using the function
addeval hmatrix for the matrix AY,b with k columns. Theorem 5.6 yields that this
takes not more than

Wmv(t, s, [1 : k]) ≤ 2k̂2BI×J (t, s) operations.

If (t, r) ∈ TI×K, Lemma 5.11 states that adding αÂBY,b to Z|t̂×r̂ takes

Wup(t, r) ≤ Cupk̂
2BI×K(t, r) operations,

giving us a total of not more than

Cmmlk̂
2 (BI×J (t, s) +BI×K(t, r)) operations.

If (t, r) 6∈ TI×K, the low-rank matrix is added to an auxiliary low-rank matrix. Due to
Corollary 5.10 and the special case in the definition (5.13), this takes not more than

Cupk̂
2(|t̂|+ |r̂|) ≤ Cmmlk̂

2BI×K(t, r) operations,

and we obtain the same estimate as before.

Case 1b: If b := (s, r) ∈ L−J×K, the admissibility of the block tree implies s ∈ LJ or

r ∈ LK. In the first case, we have |ŝ| ≤ rJ ≤ k̂, in the second case |r̂| ≤ rK ≤ k̂, so we
can conclude min{|ŝ|, |r̂|} ≤ k̂.

If now |ŝ| ≤ |r̂| holds, Theorem 5.6 states that the call to addeval hmatrix requires
not more than

Wmv(t, s, ŝ) ≤ 2k̂2BI×J (t, s) operations.

Otherwise, the call requires not more than

Wmv(t, s, r̂) ≤ 2k̂2BI×J (t, s) operations.
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In both cases, we obtain a factorized low-rank representation with a rank bounded
by min{|ŝ|, |r̂|} ≤ k̂, and Corollary 5.10 and Lemma 5.11 yield that the call to
add rkmatrix hmatrix requires not more than

Wup(t, r) ≤ Cupk̂
2BI×K(t, r) operations,

which brings the total to not more than

Cmmlk̂
2 (BI×J (t, s) +BI×K(t, r)) operations.

Case 2a: If b = (t, s) ∈ L+I×J , we compute B̂ = Y |∗ŝ×r̂BX,(t,s) by using the function
addevaltrans hmatrix for the matrix BX,(t,s) with k columns. Theorem 5.6 yields that
this takes not more than

Wmv(s, r, [1 : k]) ≤ 2k̂2BJ×K(s, r) operations.

As in Case 1a, we can use Corollary 5.10 and Lemma 5.11 to see that adding the resulting
low-rank matrix to Z|t̂×r̂ requires not more than

Cupk̂
2BI×K(t, r) operations,

for a total of

2k̂2BJ×K(s, r) + Cupk̂
2BI×K(t, r) ≤ Cmmlk̂

2(BJ×K(s, r) +BI×K(t, r)).

Case 2b: If b = (t, s) ∈ L−I×J , the admissibility of the block tree implies t ∈ LI or

s ∈ LJ , and as in Case 1b we obtain min{|t̂|, |ŝ|} ≤ k̂.

If |ŝ| ≤ |t̂|, Theorem 5.6 states that the call to addevaltrans hmatrix takes not more
than

Wmv(s, r, ŝ) ≤ 2k̂2BJ×K(s, r) operations.

Otherwise, the call requires not more than

Wmv(s, r, t̂) ≤ 2k̂2BJ×K(s, r) operations.

In both cases, the rank of the resulting low-rank representation is bounded by
min{|t̂|, |ŝ|} ≤ k̂, and Corollary 5.10 and Lemma 5.11 yield that the call to the
function add rkmatrix hmatrix requires not more than

Cupk̂
2BI×K(t, r) operations,

for a total of

2k̂2BJ×K(s, r) + Cupk̂
2BI×K(t, r) ≤ Cmmlk̂

2(BJ×K(s, r) +BI×K(t, r)).

This covers all leaf cases and the proof is complete.
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Theorem 5.18 (Complexity) For all (t, s, r) ∈ TI×J×K, we define

Wmm(t, s, r) :=

Cmmlk̂
2(BI×J (t, s) +BJ×K(s, r) +BI×K(t, r)) if chil(t, s, r) = ∅,

2Cmgk̂
2σ3(|t̂|+ |r̂|) +

∑
(t′,s′,r′)∈chil(t,s,r)

Wmm(t′, s′, r′) otherwise.

If we call the algorithm addmul hmatrix with (t, s, r) ∈ TI×J×K, it requires not more
than Wmm(t, s, r) operations.

We have

Wmm(t, s, r) ≤ CmmC
2
spk̂

2(p̂+ 1)2(|t̂|+ |ŝ|+ |r̂|) for all (t, s, r) ∈ TI×J×K

with Cmm := 3 max{Cmml, 2Cmgσ
3}.

Proof. We denote the subtree of TI×J×K for the root (t, s, r) (cf. Lemma 5.3) by T(t,s,r)
and prove the first part by induction over |T(t,s,r)|.

If we have |T(t,s,r)| = 1, (t, s, r) has to be a leaf of the product tree TI×J×K, and
Lemma 5.17 yields the required bound.

Let now n ∈ N be such that the complexity bound holds for all (t, s, r) ∈ TI×J×K
with |T(t,s,r)| ≤ n.

Let (t, s, r) ∈ TI×J×K with |T(t,s,r)| = n + 1. The triple (t, s, r) cannot be a leaf
of TI×J×K, so the algorithm addmul hmatrix calls itself recursively for all (t′, s′, r′) ∈
chil(t, s, r). For each of these triples (t′, s′, r′) ∈ chil(t, s, r), we have |T(t′,s′,r′)| ≤ n and
can apply the induction assumption to find that the recursive call requires not more
than Wmm(t′, s′, r′) operations.

If we have (t, r) ∈ TI×K \ LI×K, no additional operations are required. If (t, r) 6∈
TI×K \ LI×K, the auxiliary submatrices created by our algorithm have to be merged
using rowmerge rkmatrix and colmerge rkmatrix. According to Lemma 5.12, this
takes not more than

Cmgσ
2k̂2(|t̂|+ |r̂|) +

∑
t′∈chil+(t)

Cmgσ
2k̂2(|t̂′|+ |r̂|)

≤ Cmgσ
2k̂2(|t̂|+ |r̂|) + Cmgσ

2k̂2|t̂|+ Cmgσ
3k̂2|r̂|

≤ 2Cmgσ
3k̂2(|t̂|+ |r̂|)

operations if we merge the rows (corresponding to the children of t) first, followed by
the columns. This completes the proof of the first part.

To prove the second part, we introduce Ĉmm := max{Cmml, 2Cmgσ
3}. A straightfor-

ward induction using

|t̂|+ |r̂| ≤ BI×K(t, r) for all (t, s, r) ∈ TI×J×K

yields the estimate

Wmm(t, s, r) ≤ Ĉmmk̂
2

∑
(t′,s′,r′)∈T(t,s,r)

BI×J (t′, s′) +BJ×K(s′, r′) +BI×K(t′, r′)
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for all (t, s, r) ∈ TI×J×K.
Let (t, s, r) ∈ TI×J×K. Due to Lemma 5.16, we have∑

(t′,s′,r′)∈T(t,s,r)

BI×J (t′, s′) ≤
∑

(t′,s′)∈T(t,s)

∑
r′∈TK

(s′,r′)∈T(s,r)

BI×J (t′, s′)

≤ Csp

∑
(t′,s′)∈T(t,s)

BI×J (t′, s′)

= Csp

∑
(t′,s′)∈T(t,s)

∑
(t′′,s′′)∈T(t′,s′)

|t̂′′|+ |ŝ′′|

≤ Csp

∑
(t′′,s′′)∈T(t,s)

∑
(t′,s′)∈pred(t′′,s′′)

|t̂′′|+ |ŝ′′|

≤ Csp(pI×J + 1)
∑

(t′′,s′′)∈T(t,s)

|t̂′′|+ |ŝ′′|.

Now we can apply Lemma 3.34 to conclude∑
(t′,s′,r′)∈T(t,s,r)

BI×J (t′, s′) ≤ C2
sp(pI×J + 1)2(|t̂|+ |ŝ|). (5.14a)

We can use the same arguments to find∑
(t′,s′,r′)∈T(t,s,r)

BJ×K(s′, r′) ≤ C2
sp(pJ×K + 1)2(|ŝ|+ |r̂|). (5.14b)

For the third term, we have to distinguish between the triples (t′, s′, r′) ∈ T(t,s,r) with
(t′, r′) ∈ TI×K and the remainder. Using Lemma 5.16, we obtain∑

(t′,s′,r′)∈T(t,s,r)
(t′,r′)∈TI×K

BI×K(t′, r′) ≤
∑

(t′,r′)∈TI×K

∑
s′∈TJ

(t′,s′)∈TI×J

BI×K(t′, r′)

≤ Csp

∑
(t′,r′)∈TI×K

BI×K(t′, r′)

and can proceed as before to get∑
(t′,s′,r′)∈T(t,s,r)
(t′,r′)∈TI×K

BI×K(t′, r′) ≤ C2
sp(pI×K + 1)2(|t̂|+ |r̂|). (5.14c)

If we have (t′, s′, r′) ∈ T(t,s,r) with (t′, r′) 6∈ TI×K, our definition implies BI×K(t′, r′) =

|t̂′|+ |r̂′| and we can use Lemma 5.16 again to find∑
(t′,s′,r′)∈T(t,s,r)
(t′,r′)6∈TI×K

BI×K(t′, r′) =
∑

(t′,s′,r′)∈T(t,s,r)
(t′,r′)6∈TI×K

|t̂′|+ |r̂′|
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≤
∑

(t′,s′)∈T(t,s)

∑
r′∈TK

(s′,r′)∈T(s,r)

|t̂′|+
∑

(s′,r′)∈T(s,r)

∑
t′∈TI

(t′,s′)∈T(t,s)

|r̂′|

≤ Csp

∑
(t′,s′)∈T(t,s)

|t̂′|+ Csp

∑
(s′,r′)∈T(s,r)

|r̂′|.

Once again we can use Lemma 3.34 to obtain∑
(t′,s′,r′)∈T(t,s,r)
(t′,r′)6∈TI×K

BI×K(t′, r′) ≤ C2
sp(pI×J + 1)|t̂|+ C2

sp(pJ×K + 1)|r̂|

≤ C2
sp(p̂+ 1)(|t̂|+ |r̂|). (5.14d)

Accumulating the estimates (5.14a), (5.14b), (5.14c) and (5.14d) yields

Wmm(t, s, r) ≤ Ĉmm

∑
(t′,s′,r′)∈T(t,s,r)

BI×J (t′, s′) +BJ×K(s′, r′) +BI×K(t′, r′)

≤ ĈmmC
2
sp(p̂+ 1)2(|t̂|+ |ŝ|+ |ŝ|+ |r̂|+ |t̂|+ |r̂|+ |t̂|+ |r̂|)

≤ 3ĈmmC
2
sp(p̂+ 1)2(|t̂|+ |ŝ|+ |r̂|).

Due to Cmm = 3Ĉmm, this is the required result.

Exercise 5.19 (Adjoint matrices) Develop algorithms for efficiently performing the
updates

Z|t̂×r̂ ← Z|t̂×r̂ + αX|∗
ŝ×t̂Y |ŝ×r̂,

Z|t̂×r̂ ← Z|t̂×r̂ + αX|t̂×ŝY |
∗
r̂×ŝ,

Z|t̂×r̂ ← Z|t̂×r̂ + αX|∗
ŝ×t̂Y |

∗
r̂×ŝ

for (t, s, r) ∈ TI×J×K and approximating the results by H-matrices.
In the first and third case, X is an H-matrix for the adjoint block tree T ∗I×J constructed

from TI×J by swapping row and column clusters.
In the second and third case, Y is an H-matrix for the adjoint block tree T ∗J×K con-

structed from TJ×K by swapping row and column clusters.

Exercise 5.20 (Cluster tree) Prove that the product tree TI×J×K is a cluster tree for
the index set I × J ×K.

Exercise 5.21 (Sparsity) Assuming that TI×J and TJ×K are Csp-sparse, prove

|{(s, r) ∈ TJ × TK : (t, s, r) ∈ TI×J×K}| ≤ C2
sp for all t ∈ TI ,

|{(t, r) ∈ TJ × TK : (t, s, r) ∈ TI×J×K}| ≤ C2
sp for all s ∈ TJ ,

|{(t, s) ∈ TJ × TK : (t, s, r) ∈ TI×J×K}| ≤ C2
sp for all r ∈ TK.
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5.8 Inversion

With an efficient algorithm for the approximation of the product of two matrices at
our disposal, we can consider another important algebraic operation: the inversion of a
matrix, i.e., the construction of G−1 for a given H-matrix G.

As in the case of the multiplication, we consider the more general problem of inverting
a square submatrix G|t̂×t̂, since this allows us to formulate a recursive algorithm.

In this chapter and the next, we assume

• that G ∈ KI×I is an H-matrix for the Csp-sparse admissible block tree TI×I ,

• that G|M×M is invertible for all subsets M⊆ I, and

• that for any t ∈ LI , we have (t, t) ∈ L−I×I .

The third condition is required to ensure that we can compute the inverse of small
diagonal blocks by the usual algorithms.

Case 1: t is a leaf. In this case (t, t) has to be an inadmissible leaf of TI×I , i.e., we have
G|t̂×t̂ = Nb for b = (t, t) ∈ LI×I . We enumerate the indices, i.e., we have t̂ = {i1, . . . , in}
with n := |t̂|, and define

gνµ := Giν ,iµ for all ν, µ ∈ [1 : n]

so that we can write the matrix in the usual form

G|t̂×t̂ =

g11 . . . g1n
...

. . .
...

gn1 . . . gnn

 .

In order to construct the inverse by recursion, we have to be able to reduce the dimension.
We introduce

G1∗ :=
(
g12 . . . g1n

)
, G∗1 :=

g21...
gn1

 , G∗∗ :=

g22 . . . g2n
...

. . .
...

gn2 . . . gnn


and find

G|t̂×t̂ =

(
g11 G1∗
G∗1 G∗∗

)
.

Assuming g11 6= 0, a partial LR factorization is given by

G|t̂×t̂ =

(
1

G∗1g
−1
11 I

)(
g11 G1∗

G∗∗ −G∗1g−111 G1∗

)
.

The inverse can be obtained by inverting both triangular factors and multiplying them
in reversed order. For the lower triangular factor, we have(

1

G∗1g
−1
11 I

)−1
=

(
1

−G∗1g−111 I

)
.
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Introducing the Schur complement S := G∗∗ −G∗1g−111 G1∗, we find(
g11 G1∗

S

)−1
=

(
g−111 −g−111 G1∗S

−1

S−1

)
,

and the inverse is given by

G|−1
t̂×t̂ =

(
g11 G1∗

S

)−1(
1

G∗1g
−1
11 I

)−1
=

(
g−111 −g−111 G1∗S

−1

S−1

)(
1

−G∗1g−111 I

)
=

(
g−111 + g−111 G1∗S

−1G∗1g
−1
11 −g11G1∗S

−1

−S−1G∗1g−111 S−1

)
.

The entire computation can be split into eight steps:

1. Invert g11.

2. Compute H∗1 := G∗1g
−1
11 .

3. Compute H1∗ := g−111 G1∗.

4. Compute S := G∗∗ −G∗1g−111 G1∗ = G∗∗ −H∗1G1∗.

5. Invert S, and let Z∗∗ := S−1.

6. Compute Z∗1 := −S−1G∗1g−111 = −S−1H∗1.

7. Compute Z1∗ := −g−111 G1∗S
−1 = −H1∗S

−1.

8. Compute z11 := g−111 + g−111 G1∗S
−1G∗1g

−1
11 = g−111 −H1∗Z∗1.

The inverse is then given by

G|−1
t̂×t̂ =

(
z11 Z1∗
Z∗1 Z∗∗

)
We can see that all steps except for the first and the fifth require only multiplications
of submatrices, while the first and fifth step require us to invert submatrices. The first
step is trivial, the fifth can be handled by recursion.

Since the submatrices G∗∗, S and S−1 appearing in this approach are always of the
form gkk . . . gkn

...
. . .

...
gnk . . . gnn

 ,

we can avoid using an explicit recursion by using a loop that runs over k = 1, 2, . . . , n
and performs the steps 1 to 4 for the corresponding submatrices, and a second loop that
runs over k = n, n − 1, . . . , 1 and performs the steps 5 to 8, computing the inverses of
the lower right submatrices.

The resulting algorithm is given in Figure 5.9.
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procedure invert amatrix(var G, H);
for k = 1 to n do begin

gkk ← g−1kk ;
for i ∈ [k + 1 : n] do hik ← gikgkk;
for i ∈ [k + 1 : n] do hki ← gkkgki;
for i, j ∈ [k + 1 : n] do gij ← gij − hikgkj

end;
for k = n downto 1 do begin

for i ∈ [k + 1 : n] do begin
gik ← 0;
for j ∈ [k + 1 : n] do gik ← gik − gijhjk;
gki ← 0;
for j ∈ [k + 1 : n] do gki ← gki − hkjgji

end;
for i ∈ [k + 1 : n] do gkk ← gkk − hkigik

end

Figure 5.9: Inversion of a matrix in standard array representation.

Lemma 5.22 (Complexity) The algorithm invert amatrix takes 2n3−n2 operations
to compute the inverse of an n× n matrix.

Proof. The algorithm takes

n∑
k=1

1 + 4(n− k) + 6(n− k)2 = n+ 4

n−1∑
`=0

`+ 6

n−1∑
`=0

`2

= n+ 4
n(n− 1)

2
+ 6

n(n− 1)(2n− 1)

6
= n+ 2n(n− 1) + n(n− 1)(2n− 1)

= n+ n(n− 1)(2n+ 1)

= n+ 2n2(n− 1) + n(n− 1) = 2n2(n− 1) + n2

= 2n3 − n2 operations.

We note that the inversion takes exactly the same number of operations as the straight-
forward computation of G|2

t̂×t̂, although in practice divisions take far longer than multi-
plications on modern processors.

Case 2: t is not a leaf. In this case, G|t̂×t̂ has to be subdivided, i.e., we have chil(b) =
chil(t)× chil(t). We proceed as in the first case, but replace individual indices by child
clusters: we let {t1, . . . , tn} := chil(t) with n := | chil(t)| and define submatrices

Gνµ := G|t̂ν×t̂µ for all ν, µ ∈ [1 : n],

135



5 Arithmetic operations

so that we have the block matrix representation

G|t̂×t̂ =

G11 . . . G1n
...

. . .
...

Gn1 . . . Gnn

 .

We define submatrices

G1∗ :=
(
G12 . . . G1n

)
, G∗1 :=

G21
...

Gn1

 , G∗∗ :=

G22 . . . G2n
...

. . .
...

Gn2 . . . Gnn

 ,

assume that G11 is invertible to introduce the partial block LR factorization

G|t̂×t̂ =

(
I

G∗1G
−1
11 I

)(
G11 G1∗

S

)
, S := G∗∗ −G∗1G−111 G1∗,

and obtain the representation

G|−1
t̂×t̂ =

(
G11 G1∗

S

)−1(
I

G∗1G
−1
11 I

)−1
=

(
G−111 −G−111 G1∗S

−1

S−1

)(
I

−G∗1G−111 I

)
=

(
G−111 +G−111 G1∗S

−1G∗1G
−1
11 −G−111 G1∗S

−1

−S−1G∗1G−111 S−1

)
for the inverse of G|t̂×t̂. We can compute this matrix by exactly the same procedure as
before, as long as we replace individual coefficients by submatrices and multiplication
and inversion of submatrices by the corresponding approximative H-matrix operations.
The resulting algorithm is given in Figure 5.10.

Our goal is now to obtain an upper bound for the number of operations requires by
invert hmatrix. We can follow the same approach as for the matrix multiplication,
i.e., we can start with an inductively defined bound inspired by the recursive structure
of the algorithm.

Lemma 5.23 (Complexity bound) Let t ∈ TI . The number of operations required
by the function invert hmatrix to approximate the inverse is bounded by

Winv(t) :=

2|t̂|3 − |t̂|2 if chil(t) = ∅,∑
t′∈chil(t)Winv(t

′) +
∑

t′,s′,r′∈chil(t)
t′ 6=s′∨t′ 6=r′

Wmm(t′, s′, r′) otherwise,

for all t ∈ TI .

Proof. Let t ∈ TI . If chil(t) = ∅, the call to invert amatrix requires

2|t̂|3 − |t̂|2 = Winv(t) operations

according to Lemma 5.22.
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procedure invert hmatrix(t, var G, H);
if chil(t) = ∅ then
invert amatrix(t, NG,(t,t), NH,(t,t));

else begin
n← | chil(t)|; {t1, . . . , tn} ← chil(t);
for k = 1 to n do begin
invert hmatrix(tk, G, H);
for i ∈ [k + 1 : n] do
zero hmatrix(ti, tk, H); addmul hmatrix(ti, tk, tk, 1, G, G, H);

for i ∈ [k + 1 : n] do
zero hmatrix(tk, ti, H); addmul hmatrix(tk, tk, ti, 1, G, G, H);

for i, j ∈ [k + 1 : n] do addmul hmatrix(ti, tk, tj , −1, H, G, G)
end;
for k = n downto 1 do begin

for i ∈ [k + 1 : n] do begin
zero hmatrix(ti, tk, G);
for j ∈ [k + 1 : n] do addmul hmatrix(ti, tj , tk, -1, G, H, G);
zero hmatrix(tk, ti, G);
for j ∈ [k + 1 : n] do addmul hmatrix(tk, tj , ti, -1, H, G, G)

end;
for j ∈ [k + 1 : n] do addmul hmatrix(tk, tj , tk, -1, H, G, G)

end
end

Figure 5.10: Approximative inversion of an H-matrix.

If chil(t) 6= ∅, we let n := | chil(t)| and {t1, . . . , tn} := chil(t). We call the function
invert hmatrix recursively for tk with k ∈ [1 : n], and this takes

n∑
k=1

Winv(tk) =
∑

t′∈chil(t)

Winv(t′) operations.

The calls to addmul hmatrix require

n∑
k=1

n∑
i=k+1

Wmm(ti, tk, tk) +
n∑
k=1

n∑
i=k+1

Wmm(tk, tk, ti)

+

n∑
k=1

n∑
i=k+1

n∑
j=k+1

Wmm(ti, tk, tj) +

n∑
k=1

n∑
i=k+1

n∑
j=k+1

Wmm(ti, tj , tk)

+

n∑
k=1

n∑
i=k+1

n∑
j=k+1

Wmm(tk, tj , ti) +

n∑
k=1

n∑
i=k+1

Wmm(tk, ti, tk) operations.
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The corresponding index sets are given by

S1 := {(i, j, k) : i, j, k ∈ [1 : n], j = k = min{i, j, k}, i > j},
S2 := {(i, j, k) : i, j, k ∈ [1 : n], i = j = min{i, j, k}, k > i},
S3 := {(i, j, k) : i, j, k ∈ [1 : n], j = min{i, j, k}, i, k > j},
S4 := {(i, j, k) : i, j, k ∈ [1 : n], k = min{i, j, k}, i, j > k},
S5 := {(i, j, k) : i, j, k ∈ [1 : n], i = min{i, j, k}, j, k > i},
S6 := {(i, j, k) : i, j, k ∈ [1 : n], i = k = min{i, j, k}, j > i},

and they are disjoint due to the different positions the minimal index takes in the triples.
In the sets S1, S2 and S6, exactly two indices equal the minimum, in the sets S3, S4
and S5, exactly one index equals the minimum, so the only missing combinations are
the ones where all three indices equal the minimum This observation implies

S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 = {(i, j, k) : i, j, k ∈ [1 : n], i 6= j ∨ i 6= k},

and we conclude

Winv(t) =
∑

t′∈chil(t)

Winv(t′) +
∑

t′,s′,r′∈chil(t)
t′ 6=s′∨t′ 6=r′

Wmm(t′, s′, r′).

Theorem 5.24 (Complexity) We have

Winv(t) ≤Wmm(t, t, t) for all t ∈ TI .

Proof. By induction on |Tt|.
Let t ∈ TI with |Tt| = 1. Then we have chil(t) = ∅ and

Winv(t) = 2|t̂|3 − |t̂|2 < 2|t̂|3 ≤ Cmmlk̂
2|t̂| ≤Wmm(t, t, t).

Let now m ∈ N be such that the inequality holds for all t ∈ TI with |Tt| ≤ m. Let t ∈ TI
with |Tt| = m+ 1. Then we have chil(t) 6= ∅ and

Winv(t) =
∑

t′∈chil(t)

Winv(t′) +
∑

t′,s′,r′∈chil(t)
s′ 6=t′∨r′ 6=t′

Wmm(t′, s′, r′) operations.

For all t′ ∈ chil(t), t 6∈ Tt′ implies |Tt′ | ≤ m, so we can apply the induction assumption
to find

Winv(t′) ≤Wmm(t′, t′, t′) for all t′ ∈ chil(t).

This yields

Winv(t) ≤
∑

t′,s′,r′∈chil(t)

Wmm(t′, s′, r′) ≤Wmm(t, t, t).
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Corollary 5.25 (Complexity) The approximate inversion of an H-matrix requires
not more than

6C2
spCmmk̂

2(p̂+ 1)2|I| operations.

Proof. Combine Theorem 5.24 with Theorem 5.18.

5.9 Triangular factorizations

Frequently, computing the inverse of a matrix is not really necessary, since a factorization
can be used instead. We consider the LR factorization as a typical example, i.e., the
factorization of a matrix G = LR into a left lower triangular matrix L and a right upper
triangular matrix R.

Before we consider the construction of a factorization, let us first investigate the
corresponding procedure for solving a linear system Gx = b. If we have the lower and
upper triangular matrices L and R with G = LR at our disposal, we can introduce an
auxiliary vector y and obtain

Ly = b, Rx = y,

so we only have to be able to solve triangular systems. The well-known forward and
backward substitution algorithms handle this task very efficiently.

We have to assume that the index set I is totally ordered, since otherwise there is no
useful way to even define triangular matrices. We also have to assume that the order of
the index set is compatible with the cluster tree.

Definition 5.26 (Compatible order) Let TI be a cluster tree for a totally ordered
index set I. The order of I is compatible with the cluster tree if

(∃i ∈ t̂′, j ∈ ŝ′ : i ≤ j) =⇒ (∀i ∈ t̂′, j ∈ ŝ′ : i ≤ j) for all t ∈ TI , t′, s′ ∈ chil(t),

with t′ 6= s′,

i.e., if all indices corresponding to one child are either strictly greater or lesser than all
indices corresponding to their siblings.

Remark 5.27 (Compatible order) In practical implementations, a total order on I
is constructed along with the cluster tree: if t is a leaf, we choose a total order for t̂. If
t is not a leaf, we choose a total order for chil(t).

Given i, j ∈ I with i 6= j, we find the cluster t ∈ TI of maximal level such that i, j ∈ t̂.
If t is a leaf, we use the order given for leaf clusters. If t is not a leaf, there are children
t′ and s′ with i ∈ t̂′ and j ∈ ŝ′. Since we have chosen t to have the maximal level, we
have j 6∈ t̂′ and therefore t′ 6= s′. We use the order given for the children: if t′ < s′, we
let i ≤ j, and we let j ≤ i otherwise.
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Unless we are dealing with one-dimensional problems, the “natural” order imposed by
an implementation of the discretization will usually not be compatible with the cluster
tree TI , therefore we have to bear in mind that a triangular H-matrix is triangular
with respect to a compatible order, not necessarily the order used by the underlying
application.

In the following, we assume that the order of I is compatible with TI .

Solving triangular systems

Let now L be a left lower triangular H-matrix. As in the case of the multiplication and
the inversion, we consider the task of solving

L|t̂×t̂x = y (5.15)

for a given cluster t ∈ TI and vectors x, y ∈ Kt̂.

Case 1: t is a leaf. In this case (t, t) has to be an inadmissible leaf of TI×I , i.e., we
have L|t̂×t̂ = Nb for b = (t, t) ∈ LI×I . As in the case of the inversion algorithm, we let

n := |t̂| and t̂ = {i1, . . . , in}. Since we have an order on t̂ at our disposal, we ensure

ν ≤ µ =⇒ iν ≤ iµ for all ν, µ ∈ [1 : n].

Using

`νµ := `iν ,iν , xµ := xiµ , yν := yiν for all ν, µ ∈ [1 : n],

and taking advantage of the fact that L is left lower triangular, we have

L|t̂×t̂ =

`11... . . .

`n1 . . . `nn

 , x =

x1...
xn

 , y =

y1...
yn

 .

The forward substitution algorithm can be interpreted as a recursive procedure: we let

L∗1 :=

`21...
`n1

 , L∗∗ :=

`22... . . .

`n2 . . . `nn

 , x∗ :=

x2...
xn

 , y∗ :=

y2...
yn


and have that (5.15) is equivalent to(

`11
L∗1 L∗∗

)(
x1
x∗

)
=

(
y1
y∗

)
,

i.e., to the two equations

`11x1 = y1, L∗∗x∗ = y∗ − L∗1x1.
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procedure lowersolve amatrix(L, var X);
for k = 1 to n do begin

for j ∈M do xk,j ← xk,j/`kk;
for i ∈ [k + 1 : n], j ∈M do xi,j ← xi,j − `ikxk,j

end

procedure uppersolve amatrix(R, var X);
for k = n downto 1 do begin

for j ∈M do xk,j ← xk,j/rkk;
for i ∈ [1 : k − 1], j ∈M do xi,j ← xi,j − rikxk,j

end

Figure 5.11: Solving triangular systems with a dense matrix.

The first can be solved directly, the second by applying the procedure recursively to the
submatrix starting in the second row and column of L. Using an index k ∈ [1 : n] to keep
track of the current submatrix, we obtain the algorithm given in Figure 5.11. Similar
to addeval hmatrix, it works with multiple right-hand sides represented by matrices
X ∈ Kt̂×M and overwrites the right-hand side by the solution.

Lemma 5.28 (Complexity) The algorithm lowersolve amatrix takes |t̂|2|M| oper-
ations to solve LX = Y .

The algorithm uppersolve amatrix takes |t̂|2|M| operations to solve RX = Y .

Proof. Let j ∈M. For the j-th column, the algorithm lowersolve amatrix requires

n∑
k=1

1 + 2(n− k) = n+

n−1∑
m=0

m = n+ 2
n(n− 1)

2

= n(n− 1) + n = n2 operations.

By the same argument, we find that the algorithm uppersolve amatrix requires

n∑
k=1

1 + 2(k − 1) = n+ 2
n−1∑
m=0

m = n+ n(n− 1) = n2 operations.

Multiplying by the number of columns yields the result.

Case 2: t is not a leaf. In this case (t, t) has to be subdivided, i.e., we have chil(t, t) =
chil(t)×chil(t). As in the case of the inversion algorithm, we want to denote the children
of t by {t1, . . . , tn} with n = | chil(t)|, but we have to preserve the triangular structure.

Lemma 5.29 (Ordered children) Let t ∈ TI and n := | chil(t)|. There are
t1, . . . , tn ∈ TI such that chil(t) = {t1, . . . , tn} and

ν < µ =⇒ ∀i ∈ t̂ν , j ∈ t̂µ : i < j for all ν, µ ∈ [1 : n].
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Proof. We prove for all m ∈ N0 that for all σ ⊆ chil(t) with |σ| = m we can find
t1, . . . , tm ∈ σ such that σ = {t1, . . . , tm} and

ν < µ =⇒ ∀i ∈ t̂ν , j ∈ t̂µ : i < j for all ν, µ ∈ [1 : m] (5.16)

by applying induction to m.
For σ ⊆ chil(t) with |σ| = 0, i.e., σ = ∅, the statement is trivial.
Let now m ∈ N0 be such that our claim holds for all σ ⊆ chil(t) with |σ| = m.
Let σ ⊆ chil(t) with |σ| = m+ 1. Since I is a totally ordered set, we can find

jm+1 := max{j ∈ t̂′ : t′ ∈ σ},

and there exists tm+1 ∈ σ with jm+1 ∈ t̂m+1. We let σ′ := σ \ {tm+1} and observe
|σ′| = |σ| − 1 = m, so we can apply the induction assumption to find t1, . . . , tm ∈ σ′

satisfying (5.16).
By construction, we have {t1, . . . , tm, tm+1} = σ. Let ν, µ ∈ [1 : m+ 1] with ν < µ. If

ν, µ ≤ m, (5.16) yields i < j for all i ∈ t̂ν and j ∈ t̂µ. Otherwise, we have ν < µ = m+1.
Due to the Definition 3.14 of the cluster tree, jm+1 ∈ t̂m+1 implies jm+1 6∈ t̂ν , and since
jm+1 was chosen as a maximum, we have i < jm+1 for all i ∈ t̂ν . Definition 5.26 yields
i < j for all i ∈ t̂ν and all j ∈ t̂µ = tm+1.

Let t1, . . . , tn ∈ chil(t) be as in Lemma 5.29. We define

Lνµ := L|t̂ν×t̂µ , Xµ := X|t̂µ , Yν := Y |t̂ν for all ν, µ ∈ [1 : n]

and observe

ν < µ =⇒ Lνµ = 0 for all ν, µ ∈ [1 : n],

since L is left lower triangular, so we have

L|t̂×t̂ =

L11
...

. . .

Ln1 . . . Lnn

 , X =

X1
...
Xn

 , X =

Y1...
Yn

 .

As in the case of the leaf cluster, we let

L∗1 :=

L21
...

Ln1

 , L∗∗ :=

L22
...

. . .

Ln2 . . . Lnn

 , X∗ :=

X2
...
Xn

 , Y∗ :=

Y2...
Yn


and find (

L11

L∗1 L∗∗

)(
X1

X∗

)
=

(
Y1
Y∗

)
,

which is equivalent to

L11X1 = Y1, L∗∗X∗ = Y∗ − L∗1X1.
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procedure lowersolve hmatrix(L, t, var X);
if chil(t) = ∅ then
lowersolve amatrix(N(t,t), X);

else
for k = 1 to n do begin
lowersolve hmatrix(L, tk, X);
for i ∈ [k + 1 : n] do addeval hmatrix(−1, L, (ti, tk), X, X)

end

procedure uppersolve hmatrix(R, t, var X);
if chil(t) = ∅ then
uppersolve amatrix(N(t,t), X);

else
for k = n downto 1 do begin
uppersolve hmatrix(R, tk, X);
for i ∈ [1 : k − 1] do addeval hmatrix(−1, R, (ti, tk), X, X)

end

Figure 5.12: Solving triangular systems with a hierarchical matrix.

The first equation can be solved by applying the procedure recursively to L11 = L|t̂1×t1 ,
the second equation by applying it recursively to the submatrix L∗∗. The second step
leads to submatrices of the form Lkk... . . .

Lnk . . . Lnn

 ,

so a single index k ∈ [1 : n] is sufficient to keep track ot the submatrix, just as in the
case of the inversion algorithm. The resulting algorithm is summarized in Figure 5.12.

Lemma 5.30 (Complexity) Let t ∈ TI . The number of operations required by the
function lowersolve hmatrix to solve L|t̂×t̂X = Y is bounded by

Wlsv(t,M) :=

|t̂|
2|M| if chil(t) = ∅,∑
t′∈chil(t)Wlsv(t

′,M) +
∑

t′,s′∈chil(t)
t′>s′

Wmv(t
′, s′,M) otherwise.

The number of operations required by the function uppersolve hmatrix to solve
R|t̂×t̂x = y is bounded by

Wrsv(t,M) :=

|t̂|
2|M| if chil(t) = ∅,∑
t′∈chil(t)Wrsv(t

′,M) +
∑

t′,s′∈chil(t)
t′<s′

Wmv(t
′, s′,M) otherwise.
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We have
Wlsv(t,M) +Wrsv(t,M) = Wmv(t, t,M).

Proof. We prove the first claim by induction on |Tt|.
If |Tt| = 1, we have chil(t) = ∅ and the bounds Wlsv(t,M) and Wrsv(t,M) have already

been obtained in Lemma 5.28.
Let now n ∈ N be given such that Wlsv(t,M) and Wrsv(t,M) are bounds for the

computational work of lowersolve hmatrix and uppersolve hmatrix for all t ∈ TI
with |Tt| ≤ n.

Let t ∈ TI with |Tt| = n + 1. This implies chil(t) 6= ∅. Since |Tt′ | ≤ n holds for all
t′ ∈ chil(t), we can use the induction assumption to find that the number of operations
for lowersolve hmatrix is bounded by

n∑
k=1

Wlsv(tk,M) +
n∑

i=k+1

Wmv(ti, tk,M) =
∑

t′∈chil(t)

Wlsv(t′,M) +
∑

t′,s′∈chil(t)
t′>s′

Wmv(t′, s′,M),

and the number of operations for uppersolve hmatrix by

n∑
k=1

Wrsv(tk,M) +
k−1∑
i=1

Wmv(ti, tk,M) =
∑

t′∈chil(t)

Wrsv(t′,M) +
∑

t′,s′∈chil(t)
t′<s′

Wmv(t′, s′,M).

For the second claim, we also use induction on |Tt|.
If |Tt| = 1, we have chil(t) = ∅ and find

Wlsv(t,M) +Wrsv(t,M) = |t̂|2|M|+ |t̂|2|M| = 2 |t̂|2|M| = Wmv(t, t,M).

Let now n ∈ N be given such that Wlsv(t,M) + Wrsv(t,M) = Wmv(t, t) holds for all
t ∈ TI with |Tt| ≤ n.

Let t ∈ TI with |Tt| = n+ 1. This implies chil(t) 6= ∅ and we have

Wlsv(t,M)+Wrsv(t,M) =
∑

t′∈chil(t)

(Wlsv(t′,M)+Wrsv(t′,M))+
∑

t′,s′∈chil(t)
t′ 6=s′

Wmv(t′, s′,M),

and due to |Tt′ | ≤ n, we can use the induction assumption to find Wlsv(t′,M) +
Wrsv(t′,M) = Wmv(t′, t′,M) for all t′ ∈ chil(t) and conclude

Wlsv(t,M) +Wrsv(t,M) =
∑

t′∈chil(t)

Wmv(t′, t′,M) +
∑

t′,s′∈chil(t)
t′ 6=s′

Wmv(t′, s′,M)

=
∑

t′,s′∈chil(t)

Wmv(t′, s′,M) = Wmv(t, t,M).
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Corollary 5.31 (Complexity) Let TI×I be admissible and Csp-sparse. Then calling
lowersolve hmatrix and uppersolve hmatrix to solve GX = LRX = B does not
require more than

4Csp max{k, rI}(pI + 1)|I| |M| operations.

Proof. Combine Lemma 5.30 with Theorem 5.6 and bound the depth of TI×I by pI .

Solving block systems

Now that we have efficient algorithms for solving triangular systems at our disposal, we
can consider the construction of appropriate factorizations. As an intermediate step, we
require an algorithm that solves

LX = Y

with a left lower triangular H-matrix L and an H-matrix Y , where we are looking for
an H-matrix approximation of X. In order to be able to use recursion once more, we
consider the subproblem

L|t̂×t̂X|t̂×ŝ = Y |t̂×ŝ (5.17)

for (t, t) ∈ TI×I and b = (t, s) ∈ TI×J .

Case 1: b = (t, s) is a leaf. If b is an inadmissible leaf, we have Y |t̂×ŝ = NY,b and
X|t̂×ŝ = NX,b and can apply lowersolve hmatrix to NY,b to find NX,b.

If b is an admissible leaf, we have Y |t̂×ŝ = AY,bB
∗
Y,b and can apply lowersolve hmatrix

to AY,b to find AX,b with

L|t̂×t̂AX,(t,s) = AY,(t,s),

and using BX,b := BY,b and X|t̂×ŝ := AX,bB
∗
X,b yields

L|t̂×t̂X|t̂×ŝ = L|t̂×t̂AX,bB
∗
X,b = AY,bB

∗
X,b = AY,bB

∗
Y,b = Y |t̂×ŝ.

Case 2: b = (t, s) is not a leaf. We let n := | chil(t)| and use Lemma 5.29 again to find
t1, . . . , tn ∈ chil(t) with chil(t) = {t1, . . . , tn} and

ν < µ =⇒ ∀i ∈ t̂ν , j ∈ t̂µ : i < j for all ν, µ ∈ [1 : n].

We let m := | chil(s)| and chil(s) = {s1, . . . , sm} and define

Lνµ := L|t̂ν×t̂µ , Xµκ := X|t̂ν×ŝκ , Yµκ := Y |t̂ν×ŝκ for all ν, µ ∈ [1 : n], κ ∈ [1 : m]

and obtain

L|t̂×t̂ =

L11
...

. . .

Ln1 . . . Lnn


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procedure lsolve hmatrix(L, b = (t, s), var X);
if chil(b) = ∅ then begin

if b admissible then
lowersolve hmatrix(L, t, AX,b)

else
lowersolve hmatrix(L, t, NX,b)

end else
for k = 1 to n do

for s′ ∈ chil(s) do begin
lsolve hmatrix(L, (tk, s

′), X);
for i ∈ [k + 1 : n] do addmul hmatrix(ti, tk, s

′, −1, L, X, X)
end

Figure 5.13: Solve L|t̂×t̂X|t̂×ŝ = Y |t̂×ŝ.

as before and

X|t̂×ŝ =

X11 . . . X1m
...

. . .
...

Xn1 . . . Xnm

 , Y |t̂×ŝ =

Y11 . . . Y1m
...

. . .
...

Yn1 . . . Ynm

 .

We can solve the systemL11
...

. . .

Ln1 . . . Lnn


X11 . . . X1m

...
. . .

...
Xn1 . . . Xnm

 = LX = Y =

Y11 . . . Y1m
...

. . .
...

Yn1 . . . Ynm


by applying block forward substitution to the columns of Y and X. In order to obtain
an H-matrix approximation X, we have to replace the exact matrix products by the ap-
proximations provided by addmul hmatrix and arrive at the algorithm lsolve hmatrix

given in Figure 5.13.
We also require an algorithm that solves

XR = Y

with a right upper triangular H-matrix R and an H-matrix Y , where we are looking for
an H-matrix approximation of X. Since we will again use recursion, we consider the
subproblem

X|t̂×ŝR|ŝ×ŝ = Y |t̂×ŝ (5.18)

for b = (t, s) ∈ TI×J and (s, s) ∈ TJ×J .

Case 1: b = (t, s) is a leaf. If b is an inadmissible leaf, we have Y |t̂×ŝ = NY,b and
X|t̂×ŝ = NX,b and are interested in solving

NX,bR|t̂×t̂ = NY,b ⇐⇒ R|∗
t̂×t̂N

∗
X,b = N∗Y,b.
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procedure lowersolvetrans amatrix(R, var X);
for k = 1 to n do begin

for j ∈M do xk,j ← xk,j/r̄kk;
for i ∈ [k + 1 : n], j ∈M do xi,j ← xi,j − r̄kixk,j

end

procedure lowersolvetrans hmatrix(R, t, var X);
if chil(t) = ∅ then
lowersolvetrans amatrix(N(t,t), X);

else
for k = 1 to n do begin
lowersolvetrans hmatrix(R, tk, X);
for i ∈ [k + 1 : n] do addevaltrans hmatrix(−1, R, (tk, ti), X, X)

end

Figure 5.14: Solve adjoint systems R|∗
t̂×t̂X = Y with a right upper triangular hierarchical

matrix R.

Since R|∗
t̂×t̂ is again a left lower triangular matrix, we can use the same approach as

in lowersolve hmatrix, only for the adjoint matrix R|∗
t̂×t̂ instead of L|t̂×t̂. The corre-

sponding algorithms are summarized in Figure 5.14, and applying them to the adjoint
matrix N∗Y,b yields N∗X,b, i.e., NX,b.

If b is an admissible leaf, we have Y |t̂×ŝ = AY,bB
∗
Y,b and can solve

B∗X,bR|t̂×t̂ = B∗Y,b ⇐⇒ R|∗
t̂×t̂BX,b = BY,b

using lowersolvetrans hmatrix and let X|t̂×ŝ = AY,bB
∗
X,b.

Case 2: (t, s) is not a leaf. We let n := | chil(s)| and use Lemma 5.29 to find
s1, . . . , sn ∈ chil(s) such that chil(s) = {s1, . . . , sn} and

ν < µ =⇒ ∀i ∈ t̂ν , j ∈ t̂µ : i < j for all ν, µ ∈ [1 : n].

We let m := | chil(t)| and chil(t) = {t1, . . . , tm}, define

Rνµ := L|ŝν×ŝµ , Xκν := X|t̂κ×ŝν , Yκν := Y |t̂κ×ŝν for all ν, µ ∈ [1 : n], κ ∈ [1 : m]

and obtain

R|t̂×t̂ =

R11 . . . R1n

. . .
...

Rnn


as before and

X|t̂×ŝ =

X11 . . . X1n
...

. . .
...

Xm1 . . . Xmn

 , Y |t̂×ŝ =

Y11 . . . Y1n
...

. . .
...

Ym1 . . . Ymn

 .
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We have to solveX11 . . . X1n
...

. . .
...

Xm1 . . . Xmn


R11 . . . R1n

. . .
...

Rnn

 = XR = Y =

Y11 . . . Y1n
...

. . .
...

Ym1 . . . Ymn

 .

We handle this task again by recursion: we introduce submatrices

R1∗ :=
(
R12 . . . R1n

)
, R∗∗ :=

R22 . . . R2n

. . .
...

Rnn

 ,

X∗1 :=

X11
...

Xm1

 , X∗∗ :=

X12 . . . X1n
...

. . .
...

Xm2 . . . Xmn

 ,

Y∗1 :=

Y11
...

Ym1

 , Y∗∗ :=

Y12 . . . Y1n
...

. . .
...

Ym2 . . . Ymn


and find

R =

(
R11 R1∗

R∗∗

)
, X =

(
X∗1 X∗∗

)
, Y =

(
Y∗1 Y∗∗

)
.

Now we can write our equation in the form

(
X∗1 X∗∗

)(R11 R1∗
R∗∗

)
= XR = Y =

(
Y∗1 Y∗∗

)
,

which is equivalent to

X∗1R11 = Y∗1, X∗∗R∗∗ = Y∗∗ −X∗1R1∗.

Once again we have reduced the original problem to problems for submatrices and can
proceed as before in order to obtain the algorithm given in Figure 5.15.

Lemma 5.32 (Complexity) Let (t, s) ∈ TI×J . The number of operations required by
the function lsolve hmatrix to solve L|t̂×t̂X|t̂×ŝ = Y |t̂×ŝ is bounded by

Wlso(t, s) :=


Wlsv(t, [1 : k]) if (t, s) ∈ L+I×J ,
Wlsv(t, ŝ) if (t, s) ∈ L−I×J ,∑

t′∈chil(t)
s′∈chil(s)

Wlso(t′, s′) +
∑

t′,r′∈chil(t),
s′∈chil(s), r′>t′

Wmm(r′, t′, s′) otherwise.
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procedure rsolve hmatrix(R, t, s, var X);
if chil(t, s) = ∅ then begin

if (t, s) admissible then
lowersolvetrans hmatrix(R, s, BX,b)

else
lowersolvetrans hmatrix(R, s, N∗X,b)

end else
for k = 1 to n do

for t′ ∈ chil(t) do begin
rsolve hmatrix(R, t′, sk, X);
for i ∈ [k + 1 : n] do addmul hmatrix(t′, sk, si, −1, X, R, X)

end

Figure 5.15: Solve X|t̂×ŝR|ŝ×ŝ = Y |t̂×ŝ.

The number of operations required by the function rsolve hmatrix to solve X|t̂×ŝRŝ×ŝ =
Y |t̂×ŝ is bounded by

Wrso(t, s) :=


Wrsv(s, [1 : k]) if (t, s) ∈ L+I×J ,
Wrsv(s, t̂) if (t, s) ∈ L−I×J ,∑

s′∈chil(t),
t′∈chil(t)

Wrso(t′, s′) +
∑

s′,r′∈chil(s),
t′∈chil(t), r′>s′

Wmm(t′, s′, r′) otherwise.

We have

Wlso(t, s) ≤Wmm(t, t, s), Wrso(t, s) ≤Wmm(t, s, s).

Proof. We prove the estimate for lsolve hmatrix by induction on |T(t,s)|.
If |T(t,s)| = 1, we have chil(t, s) = ∅, i.e., b = (t, s) is a leaf. If it is an admissible leaf,

the function lsolve hmatrix calls lowersolve hmatrix for the matrix AX,b, and due
to Lemma 5.30 and Theorem 5.6, we obtain

Wlso(t, s) ≤Wlsv(t, [1 : k]) ≤Wmv(t, t, [1 : k]) ≤ 2k̂2BI×I(t, t) ≤Wmm(t, t, s).

If b is an inadmissible leaf, the function lsolve hmatrix calls lowersolve hmatrix for
the matrix NX,b and we have

Wlso(t, s) ≤Wlsv(t, ŝ) ≤Wmv(t, t, ŝ).

Since TI×J is an admissible block tree, either t or s have to be leaves. If s is a leaf, we
have |ŝ| ≤ k̂ and can use Theorem 5.6 to get

Wlso(t, s) ≤Wmv(t, t, ŝ) ≤ 2k̂2BI×I(t, t) ≤Wmm(t, t, s).

Otherwise, i.e., if t is a leaf, we have |t̂| ≤ k̂ and

Wmv(t, t, ŝ) = 2k̂|ŝ|(|t̂|+ |t̂|) ≤ 4k̂2|ŝ| ≤ 2k̂2(BI×I(t, s) +BI×I(t, s)) ≤Wmm(t, t, s).
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Let now n ∈ N be given such that Wlso(t, s) is a bound for the computational work of
lsolve hmatrix for all (t, s) ∈ TI×J with |T(t,s)| ≤ n. Let (t, s) ∈ TI×J with |T(t,s)| =
n + 1. This implies chil(t, s) 6= ∅. Since |T(t′,s′)| ≤ n holds for all (t′, s′) ∈ chil(t, s), the
induction assumption guarantees that the number of operations for lsolve hmatrix is
bounded by

n∑
k=1

∑
s′∈chil(s)

Wlso(tk, s
′) +

n∑
k=1

n∑
i=k+1

∑
s′∈chil(s)

Wmm(ti, tk, s
′) = Wlso(t, s),

and we find

Wlso(t, s) =
n∑
k=1

∑
s′∈chil(s)

Wlso(tk, s
′) +

n∑
k=1

n∑
i=k+1

∑
s′∈chil(s)

Wmm(ti, tk, s
′)

≤
n∑
k=1

∑
s′∈chil(s)

Wmm(tk, tk, s
′) +

n∑
k=1

n∑
i=k+1

∑
s′∈chil(s)

Wmm(ti, tk, s
′)

=
n∑
k=1

n∑
i=k

∑
s′∈chil(s)

Wmm(ti, tk, s
′)

≤
n∑

i,k=1

∑
s′∈chil(s)

Wmm(ti, tk, s
′)

=
∑

t′,r′∈chil(t)

∑
s′∈chil(s)

Wmm(r′, t′, s′) ≤Wmm(t, t, s).

The result for rsolve hmatrix can be obtained by similar arguments, taking into
account that lsolvetrans hmatrix works with the right upper triangular part of
R|t̂×t̂, therefore the complexity for the leaf cases is bounded by Wrsv(t,M) instead of
Wlsv(t,M).

Finding the LR factorization

Now that we know how to solve linear systems involving triangular matrices, we have
to find a way to find a decomposition of a given H-matrix into triangular factors. We
focus on the LR factorization

LR = G,

bearing in mind that other triangular factorizations, e.g., the Cholesky factorization,
can be constructed by a similar approach. As before, we consider a subproblem

L|t̂×t̂R|t̂×t̂ = G|t̂×t̂ (5.19)

for t ∈ TI , where G|t̂×t̂ is given and we are looking for L|t̂×t̂ and R|t̂×t̂.
Let t ∈ TI . If chil(t) = ∅ holds, we can compute the LR factorization by the well-known

algorithm given in Figure 5.16, where we again enumerate the indices t̂ = {i1, . . . , in}
with n = |t̂| and let gνµ = giν ,iµ .
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procedure lrdecomp amatrix(var G);
for k = 1 to n do begin

for i ∈ [k + 1 : n] do gik ← gik/gkk;
for i, j ∈ [k + 1 : n] do gij ← gij − gikgkj

end

Figure 5.16: Computing the LR factorization LR = G of a matrix in standard array
representation. The upper triangular part of G is overwritten by R, the
strictly lower triangular part by L. All diagonal elements of L are equal to
one and are not stored.

Let now chil(t) 6= ∅. We let n := | chil(t)| and use Lemma 5.29 again to find t1, . . . , tn ∈
chil(t) such that chil(t) = {t1, . . . , tn} and

ν < µ =⇒ ∀i ∈ t̂ν , j ∈ t̂µ : i < j for all ν, µ ∈ [1 : n].

As in the previous sections, we split G, L and R into block matrices by defining

Gνµ := G|t̂ν×t̂µ , Lνµ := L|t̂ν×t̂µ , Rνµ := R|t̂ν×t̂µ for all ν, µ ∈ [1 : n]

and obtain

G|t̂×t̂ =

G11 . . . G1n
...

. . .
...

Gn1 . . . Gnn

 ,

L|t̂×t̂ =

L11
...

. . .

Ln1 . . . Lnn

 , R|t̂×t̂ =

R11 . . . R1n

. . .
...

Rnn

 .

We aim to construct the LR factorization recursively by splitting the matrices into the
first row and column and a smaller remainder. We introduce

G∗1 :=

G21
...

Gn1

 , G1∗ :=
(
G12 . . . G1n

)
, G∗∗ :=

G22 . . . G2n
...

. . .
...

Gn2 . . . Gnn

 ,

L∗1 :=

L21
...

Ln1

 , L∗∗ :=

L22
...

. . .

Ln2 . . . Lnn

 ,

R1∗ :=
(
R12 . . . R1n

)
, R∗∗ :=

R22 . . . R2n

. . .
...

Rnn


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5 Arithmetic operations

procedure lrdecomp hmatrix(t, var G);
if chil(t) = ∅ then
lrdecomp amatrix(NG,(t,t))

else
for k = 1 to n do begin
lrdecomp hmatrix(tk, G);
for j ∈ [k + 1 : n] do lsolve hmatrix(G, tk, tj , G);
for i ∈ [k + 1 : n] do rsolve hmatrix(G, ti, tk, G);
for i, j ∈ [k + 1 : n] do addmul hmatrix(ti, tk, tj , −1, G, G, G)

end

Figure 5.17: Computing the approximate LR factorization LR = G of an H-matrix. The
upper triangular part of G is overwritten by R, the strictly lower triangular
part by L. All diagonal elements of L are equal to one and do not have to
be stored.

and write the equation (5.19) in the compact form(
L11

L∗1 L∗∗

)(
R11 R1∗

R∗∗

)
=

(
G11 G1∗
G∗1 G∗∗

)
.

It is equivalent with the four equations

L11R11 = G11, (5.20a)

L11R1∗ = G1∗, (5.20b)

L∗1R11 = G∗1, (5.20c)

L∗∗R∗∗ = G∗∗ − L∗1R1∗. (5.20d)

The first equation (5.20a) can be solved by applying our algorithm recursively and
yields L11 and R11. The second equation (5.20b) can be handled by the function
lsolve hmatrix introduced in Figure 5.13 and yields R1∗. The third equation (5.20c)
can be treated by the function rsolve hmatrix given in Figure 5.15 and yields L∗1.

For the last equation (5.20d), we can use the multiplication function addmul hmatrix

given in Figure 5.8 to obtain the right-hand side and then apply our procedure recursively
to submatrices of the form Gkk . . . Gkn

...
. . .

...
Gnk . . . Gnn

 ,

so we can keep track of the submatrices using an index k ∈ [1 : n] and arrive at the
algorithm given in Figure 5.17.
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5.9 Triangular factorizations

Theorem 5.33 (Complexity) Let t ∈ TI . The number of operations required by the
function lrdecomp hmatrix to find the approximate LR factorization of G|t̂×t̂ is bounded
by

Wlr(t) :=


2|t̂|3/3 if chil(t) = ∅,∑

t′∈chil(t)Wlr(t
′) +

∑
t′,s′∈chil(t)

s′>t′
(Wlso(t′, s′) +Wrso(s′, t′)) otherwise

+
∑

t′,s′,r′∈chil(t)
s′,r′>t′

Wmm(s′, t′, r′).

We have
Wlr(t) ≤Wmm(t, t, t).

Proof. By induction on |Tt|.
If |Tt = 1|, we have chil(t) = ∅ and the function calls lrdecomp amatrix to compute

the factorization of the matrix NG,(t,t). This takes not more than

2|t̂|3/3 ≤ 2|t̂|3 = Wmm(t, t, t)

operations.
Let now n ∈ N be such that our claims hold for all t ∈ TI with |Tt| ≤ n. Let t ∈ TI

with |Tt| = n + 1. Then we have chil(t) 6= ∅ and the function calls itself recursively for
all t′ ∈ chil(t). For each t′ ∈ chil(t), we have |Tt′ | ≤ n and can apply the induction
assumption to find that the recursive call to lrdecomp hmatrix requires not more than
Wlr(t

′) operations. Combining this estimate with the estimates provided by Lemma 5.32
and Theorem 5.18 yields that the total number of operations is bounded by

n∑
k=1

Wlr(tk) +
n∑
k=1

n∑
i=k+1

(Wlso(tk, ti) +Wrso(ti, tk)) +
n∑
k=1

n∑
i,j=k+1

Wmm(ti, tk, tj) = Wlr(t).

The induction assumption also yields Wlr(t
′) ≤Wmm(t′, t′, t′), and with Lemma 5.32 and

Theorem 5.18 we find

Wlr(t) =
n∑
k=1

Wlr(tk) +
n∑
k=1

n∑
i=k+1

(Wlso(tk, ti) +Wrso(ti, tk)) +

n∑
k=1

n∑
i,j=k+1

Wmm(ti, tk, tj)

≤
n∑
k=1

Wmm(tk, tk, tk) +

n∑
k=1

n∑
i=k+1

(Wmm(tk, tk, ti) +Wmm(ti, tk, tk))

+
n∑
k=1

n∑
i,j=k+1

Wmm(ti, tk, tj)

≤
n∑

i,j,k=1

Wmm(ti, tj , tk) ≤Wmm(t, t, t).

153





6 H2-matrices

The efficiency of H-matrix techniques can be significantly improved if we modify the
low-rank properties used to obtain approximations: instead of handling each admissible
block on its own, we are looking for factorizations of entire collections of blocks.

This approach gives rise to H2-matrices, a variant of H-matrices that requires only
O(nk) units of storage instead of the O(nk log n) units of storage associated with stan-
dard H-matrices. Due to this improved asymptotic behaviour, H2-matrices are particu-
larly attractive for very large matrices.

6.1 Motivation

We consider the one-dimensional model problem introduced in Chapter 2 and are looking
for an improved approximation of the matrix G ∈ RI×I given by

gij =

∫ i/n

(i−1)/n

∫ j/n

(j−1)/n
g(x, y) dy dx for all i, j ∈ I.

We use the cluster tree TI introduced in Chapter 2: a cluster t ∈ TI is an interval
t = [at, bt] such that

[(i− 1)/n, i/n] ⊆ t for all i ∈ t̂.

In order to approximate a submatrix G|t̂×ŝ corresponding to clusters t, s ∈ TI , we con-
sider degenerate approximations of the kernel function g. We denote the Chebyshev
points in the reference interval [−1, 1] by

ξ̂ν := cos

(
π

2ν + 1

2m+ 2

)
for all ν ∈ [0 : m]

and the transformed Chebyshev points in the intervals t = [at, bt] and s = [as, bs] by

ξt,ν :=
bt + at

2
+
bt − at

2
ξ̂ν , ξs,µ :=

bs + as
2

+
bs − as

2
ξ̂µ for all ν, µ ∈ [0 : m].

The corresponding Lagrange polynomials are given by

`t,ν(x) :=
∏
λ=0
λ 6=ν

x− ξt,λ
ξt,ν − ξt,λ

, `s,µ(y) :=
∏
κ=0
κ6=µ

y − ξs,κ
ξs,µ − ξs,κ

for all ν, µ ∈ [0 : m], x, y ∈ R.
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6 H2-matrices

We have constructed H-matrix approximations of G|t̂×ŝ by applying interpolation to the
variable x, i.e., by using

g̃t,s(x, y) :=

m∑
ν=0

`t,ν(x)g(ξt,ν , y) for all x ∈ t, y ∈ s.

Since there is no reason to give x preferential treatment, we could also have used inter-
polation in the variable y, i.e.,

g̃t,s(x, y) :=
m∑
µ=0

g(x, ξs,µ)`s,µ(y) for all x ∈ t, y ∈ s,

and this would also give rise to a low-rank approximation.
The key to H2-matrices is to apply interpolation to both variables simultaneously, i.e.,

to use

g̃t,s(x, y) :=
m∑
ν=0

m∑
µ=0

`t,ν(x)g(ξt,ν , ξs,µ)`s,µ(y) for all x ∈ t, y ∈ s.

This corresponds to two-dimensional tensor interpolation, and Theorem 3.6 states that
the resulting error is only slighly larger than for the simple interpolation.

Discretizing this approximation leads to

g̃ij :=

∫ i/n

(i−1)/n

∫ j/n

(j−1)/n
g̃t,s(x, y) dy dx

=

m∑
ν=0

m∑
µ=0

∫ i/n

(i−1)/n
`t,ν(x) dx g(ξt,ν , ξs,µ)

∫ j/n

(j−1)/n
`s,µ(y) dy

=

m∑
ν=0

m∑
µ=0

vt,iνsb,νµws,jµ = (VtSbW
∗
s )ij for all i ∈ t̂, j ∈ ŝ,

where we introduce Vt ∈ Rt̂×M , Ws ∈ Rŝ×M and Sb ∈ RM×M with M := [0 : m] and

vt,iν :=

∫ i/n

(i−1)/n
`t,ν(x) dx, ws,jµ :=

∫ j/n

(j−1)/n
`s,µ(y) dy,

sb,νµ := g(ξt,ν , ξs,µ) for all i ∈ t̂, j ∈ ŝ, ν, µ ∈M.

We observe that Vt depends only on the row cluster t, but not on the column cluster
s, while Ws depends only on the column cluster s, but not on t. The entire interaction
between both clusters is expressed by the coupling matrix Sb, and this matrix is typically
small, since it has only k := m+ 1 rows and columns.

It is of particular importance that the size of the matrices Sb does not depend on the
level of the block: for H-matrices, admissible blocks are more expensive the closer they
are to the root, while for H2-matrices the storage requirements are constant. Since the
number of blocks grows exponentially with the depth of the cluster tree, this property
allows us to obtain linear complexity with regard to the number of indices.
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6.1 Motivation

Remark 6.1 (Block storage) If we have n = 2q and choose the depth p ∈ [0 : q] of the
cluster tree such that k < 2q−p ≤ 2k, Lemma 2.7 yields that storing Sb for all admissible
blocks requires

p∑
`=0

k2 |A`| = 6k2
p∑
`=1

(2`−1 − 1) = 6k2(2p − 1− p) < 6k2q−p2p = 6k2q = 6kn

units of storage. We already know that storing Nb for all inadmissible blocks requires

(2q−p)2(|Dp|+ |Lp|+ |Rp|) ≤ 2k2q−p(2p + 2p − 1 + 2p − 1) ≤ 6k2q−p2p = 6kn

units of storage. This gives us a total of 12kn units of storage for all coupling and
nearfield matrices: the storage requirements grow linearly with n.

In comparison, the H-matrix approximation constructed in Chapter 2 requires more
than 6k(p− 2)n units of storage and therefore is more expensive for p > 4.

Unfortunately, the storage requirements for the matrices Vt and Ws do not grow
linearly with n: storing Vt for a cluster t on level ` requires 2q−`k units of storage, and
since there are 2` clusters on this level, we obtain a total of

p∑
`=0

∑
t∈TI

level(t)=`

2q−`k =

p∑
`=0

2`2q−`k =

p∑
`=0

2qk = nk(p+ 1).

In order to obtain linear growth of the storage requirements, we have to handle the
families (Vt)t∈TI and (Ws)s∈TI of matrices more efficiently.

The coefficients of Vt are closely connected to the Lagrange polynomials `t,ν , and since
our interpolation operators have the projection property (2.26), we find

`t,ν =

m∑
ν′=0

`t,ν(ξt′,ν′)`t′,ν′ for all t′ ∈ TI , (6.1)

i.e., we can represent any Lagrange polynomial of a given cluster in the Lagrange basis
corresponding to any other cluster.

We can apply this approach to the children of t: if chil(t) 6= ∅, Definition 3.14 yields
that for any i ∈ t̂ there is exactly one child t′ ∈ chil(t) such that i ∈ t̂′. Applying (6.1)
to this child cluster gives us

vt,iν =

∫ i/n

(i−1)/n
`t,ν(x) dx =

m∑
ν′=0

`t,ν(ξt′,ν′)

∫ i/n

(i−1)/n
`t′,ν′(x) dx =

m∑
ν′=0

`t,ν(ξt′,ν′)vt′,iν′ ,

i.e., we can avoid storing vt,iν and store only the k2 transfer coefficients `tν(ξt′,ν′) instead.
Since this works for all i ∈ t̂, the entire matrix Vt can be expressed implicitly via the
transfer coefficients.
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6 H2-matrices

This observation suggests the following approach: the matrices Vt are only stored
explicitly for leaf clusters and expressed implicitly via transfer matrices Et′ ∈ RM×M in
the form

Vt|t̂′ = Vt′Et′ for all t ∈ TI , t′ ∈ chil(t), (6.2)

where we recall the notation (5.1) and the transfer coefficients are given by

et′,ν′ν := `t,ν(ξt′,ν′) for all t ∈ TI , t′ ∈ chil(t), ν, ν ′ ∈M.

In the case of the one-dimensional model problem, we have denoted the children of a
non-leaf cluster t by t1 and t2 and can write (6.2) in the short form

Vt =

(
Vt1Et1
Vt2Et2

)
for all t ∈ TI with chil(t) 6= ∅.

Remark 6.2 (Cluster storage) Following this approach, storing the matrices Vt only
for the leaf clusters on level p takes∑

t∈TI
level(t)=p

2q−pk = 2p2q−pk = nk

units of storage, while storing the transfer matrices Et for all cluster takes

∑
t∈TI

k2 =

p∑
`=0

∑
t∈TI

level(t)=`

k2 =

p∑
`=0

2`k2 = (2p+1 − 1)k2 < 2p+12q−pk = 2q+1k = 2nk

units of storage, where we have again assumed k < 2q−p.

We conclude that transfer matrices allow us to represent the entire family (Vt)t∈TI
using less than 3nk coefficients. The same holds for (Ws)s∈TI .

Since (Vt)t∈TI and (Ws)s∈TI are identical, we only have to store (Vt)t∈TI . The coupling
matrices Sb require not more than 6nk units of storage, the nearfield matrices Nb require
also not more than 6nk units, and the cluster matrices Vt require not more than 3nk
units, so the total storage requirements are bounded by 15nk. We have reached our goal:
the bound grows only linearly with n.

The reduction of the storage requirements comes at a price: given an admissible block
b = (t, s), we cannot directly evaluate G|t̂×ŝ ≈ VtSbW ∗s , since Vt and Ws are only at our
disposal for leaf clusters, but not for any other clusters. Fortunately, we can modify the
corresponding algorithms in a way that not only solves this problem but even reduces
the number of operations, i.e., we not only save storage, but also time.
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6.2 H2-matrices

6.2 H2-matrices

As in the case of H-matrices, we can generalize the results obtained for the one-
dimensional model problem.

Let TI and TJ be cluster trees for index sets I and J , and let TI×J be an admissible
block tree for TI and TJ .

Definition 6.3 (Cluster basis) Let k ∈ N0. A family V = (Vt)t∈TI of matrices is
called a cluster basis of rank k if

• for all t ∈ TI we have Vt ∈ Kt̂×k, and

• for all t ∈ TI and all t′ ∈ chil(t) there is a matrix Et′ ∈ Kk×k satisfying

Vt|t̂′ = Vt′Et′ . (6.3)

In this case, we call the matrices Vt basis matrices and the matrices Et transfer matrices.

Definition 6.4 (Nested representation) Let V = (Vt)t∈TI be a cluster basis of rank
k, and let (Et)t∈TI be a family of transfer matrices satisfying (6.3).

Then we call ((Vt)t∈LI , (Et)t∈TI ) a nested representation of the cluster basis V .

In a nested representation, the matrices Vt are only given explicitly for leaf clusters
t ∈ LI and otherwise implicitly by (6.3).

We can see that (6.3) determines the transfer matrix Et′ only uniquely if Vt′ is injective.
For the root cluster t = root(TI), the transfer matrix Et is never used and only

included in the nested representation for the sake of brevity.

Definition 6.5 (H2-matrix) Let V = (Vt)t∈TI and W = (Ws)s∈TJ be cluster bases of
rank k. A matrix G ∈ KI×J is called an H2-matrix for V , W , and the block tree TI×J
if for each admissible block b = (t, s) ∈ L+I×J there is a matrix Sb ∈ Kk×k such that

G|t̂×ŝ = VtSbW
∗
s . (6.4)

In this case, V is called the row cluster basis, W is called the column cluster basis, and
the matrices Sb are called coupling matrices.

Definition 6.6 (H2-matrix representation) Let G ∈ KI×J be an H2-matrix for the
row cluster basis V , the column cluster basis W , and the block tree TI×J .

Let ((Vt)t∈LI , (Et)t∈TI ) and ((Ws)s∈LJ , (Fs)s∈TJ ) be nested representations of the clus-
ter bases V and W .

Let (Sb)b∈L+I×J
be a family of coupling matrices satisfying (6.4) and let

Nb := G|t̂×ŝ for all b = (t, s) ∈ L−I×J .

Then we call ((Vt)t∈LI , (Et)t∈TI , (Ws)s∈LJ , (Fs)s∈TJ , (Sb)b∈L+I×J
, (Nb)b∈L−I×J

) an H2-

matrix representation of G.

159



6 H2-matrices

Lemma 6.7 (Storage, cluster basis) Let V = (Vt)t∈TI be a cluster basis of rank k.
A nested representation of V requires not more than

k|I|+ k2|TI | units of storage.

Proof. The nested representation stores the basis matrices Vt ∈ Kt̂×k for all leaf clusters
t ∈ LI , and this requires∑

t∈LI

k|t̂| = k
∑
t∈LI

|t̂| = k
∣∣∣ ⋃
t∈LI

t̂
∣∣∣ = k|I| units of storage,

since we have proven in Corollary 3.19 that the index sets of the leaves are a disjoint
partition of I. The nested representation also stores the transfer matrices Et′ ∈ Kk×k

for all t ∈ TI and t′ ∈ chil(t), and this requires∑
t∈TI

∑
t′∈chil(t)

k2 ≤
∑
t′∈TI

k2 = k2|TI | units of storage,

since every cluster has at most one parent.

Lemma 6.8 (Storage, block matrices) Let G ∈ KI×J be an H2-matrix for a row
basis V and a column basis W of rank k. Let the block tree TI×J be Csp-sparse and
strictly admissible (cf. Definition 3.28).

The nearfield matrices (Nb)b∈L−I×J
and the coupling matrices (Sb)b∈L+I×J

or an H2-

matrix representation of G require not more than

Csp min{rJ |I|, rI |J |}+ Cspk
2 min{|TI |, |TJ |} units of storage.

Proof. We first consider the storage for the nearfield matrices. Let b = (t, s) ∈ L−I×J .

The matrix Nb requires |t̂| |ŝ| units of storage. Since TI×J is strictly admissible, we have
t ∈ LI and s ∈ LJ and obtain

|t̂| ≤ rI , |ŝ| ≤ rJ .

The storage for all nearfield matrices is therefore bounded by∑
b=(t,s)∈L−I×J

|t̂| |ŝ| ≤ rJ
∑

b=(t,s)∈L−I×J

|t̂| ≤ rJ
∑
t∈LI

∑
s∈row(t)

|t̂|

≤ CsprJ
∑
t∈LI

|t̂| = CsprJ

∣∣∣ ⋃
t∈LI

t̂
∣∣∣ = CsprJ |I|,

where we use Corollary 3.19 for the last two equations, and, following the same argu-
ments, also by ∑

b=(t,s)∈L−I×J

|t̂| |ŝ| ≤ rI
∑

b=(t,s)∈L−I×J

|ŝ| ≤ CsprI |J |.
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6.2 H2-matrices

Now we investigate the storage requirements of the coupling matrices. Let b = (t, s) ∈
L+I×J . The matrix Sb requires k2 units of storage, and the storage for all coupling
matrices is bounded by∑

b=(t,s)∈L+I×J

k2 ≤
∑
t∈TI

∑
s∈row(t)

k2 ≤ k2
∑
t∈TI

| row(t)| ≤ Cspk
2|TI |,

∑
b=(t,s)∈L+I×J

k2 ≤
∑
s∈TJ

∑
t∈col(s)

k2 ≤ k2
∑
s∈TJ

| col(s)| ≤ Cspk
2|TJ |.

Combining these estimates yields the required upper bound.

Theorem 6.9 (H2-matrix representation) Let G ∈ KI×J be an H2-matrix for a
row basis V and a column basis W of rank k. Let the block tree TI×J be Csp-sparse and
strictly admissible. An H2-matrix representation of G requires not more than

Csp + 2

2
max{k, rI , rJ }(|I|+ |J |) +

Csp + 2

2
k2(|TI |+ |TJ |) units of storage.

Proof. Due to Lemma 6.7, the nested representations of V and W require not more than

k(|I|+ |J |) + k2(|TI |+ |TJ |) units of storage

while Lemma 6.8 guarantees that the nearfield and coupling matrices require not more
than

Csp min{rJ |I|, rI |J |}+ Cspk
2 min{|TI |, |TJ |}

≤ Csp

2
(rJ |I|+ rI |J |) +

Csp

2
k2(|TI |+ |TJ |)

≤ Csp

2
max{rI , rJ }(|I|+ |J |) +

Csp

2
k2(|TI |+ |TJ |) units of storage.

Adding both estimates yields the required upper bound.

Remark 6.10 (Complexity estimate) If we assume that | chil(t)| 6= 1 holds for all
t ∈ TI , i.e., that every cluster has either no children or at least two, a simple induction
yields

|TI | ≤ 2|LI | − 1 ≤ 2|LI |.

Since the index set of every leaf cluster has to contain at least one index, we have
|LI | ≤ |I| and find that the estimate of Theorem 6.9 can be bounded by

Csp + 2

2
max{k, rI , rJ }(|I|+ |J |) + (Csp + 2)k2(|I|+ |J |),

i.e., the storage complexity of the H2-matrix representation is in O(k̂2(nI +nJ )), where
k̂ := max{k, rI , rJ } denotes the maximal rank of leaves and nI := |I| and nJ := |J |.
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6 H2-matrices

If we can guarantee |t̂| ≥ k for all leaf cluster t ∈ LI by stopping the construction of
the cluster tree not too late, we find

k|LI | =
∑
t∈LI

k ≤
∑
t∈LI

|t̂| =
∣∣∣ ⋃
t∈LI

t̂
∣∣∣ = |I|

via Corollary 3.19 and conclude |LI | ≤ |I|/k and therefore |TI | ≤ 2|I|/k. This gives us
the improved estimate

3

2
(Csp + 2) max{k, rI , rJ }(|I|+ |J |),

i.e., the storage complexity is in O(k̂(nI + nJ )).

Requiring that the block tree is strictly admissible is sometimes inconvenient, since it
requires us to handle special cases if not all leaf clusters are on the same level and we
have to divide blocks in only rows or columns, but not both.

If the clusters are not too irregular, we can use a weaker assumption and still obtain
linear complexity.

Lemma 6.11 (Nearfield matrices) Let TI×J be admissible and Csp-sparse, and let
Cnb be a constant such that

|t̂| ≤ Cnb|ŝ| for all b = (t, s) ∈ L−I×J with s ∈ LJ , (6.5a)

|ŝ| ≤ Cnb|t̂| for all b = (t, s) ∈ L−I×J with t ∈ LI . (6.5b)

The nearfield matrices (Nb)b∈L−I×J
require not more than

CspCnb(rI |I|+ rJ |J |) units of storage.

Proof. Let b = (t, s) ∈ L−I×J . Since TI×J is admissible, we have t ∈ LI or s ∈ LJ .

If t ∈ LI holds, we find |t̂| ≤ rI and can use (6.5b) to get |ŝ| ≤ Cnb|t̂| ≤ CnbrI .
If s ∈ LJ holds, we find |ŝ| ≤ rJ and can use (6.5a) to get |t̂| ≤ Cnb|ŝ| ≤ CnbrJ .
The total number of coefficients is bounded by∑

b=(t,s)∈L−I×J

|t̂| |ŝ| ≤
∑

b=(t,s)∈L−I×J
t∈LI

|t̂| |ŝ|+
∑

b=(t,s)∈L−I×J
s∈LJ

|t̂| |ŝ|

≤
∑
t∈LI

∑
s∈row(t)

|t̂| |ŝ|+
∑
s∈LJ

∑
t∈col(s)

|t̂| |ŝ|

≤
∑
t∈LI

∑
s∈row(t)

|t̂|CnbrI +
∑
s∈LJ

∑
t∈col(s)

|ŝ|CnbrJ

≤ CspCnbrI
∑
t∈LI

|t̂|+ CspCnbrJ
∑
s∈LJ

|ŝ|

≤ CspCnbrI |I|+ CspCnbrJ |J |,

where we have again used Corollary 3.19 in the last step.
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6.3 Matrix-vector multiplication

6.3 Matrix-vector multiplication

A nested representation of a cluster basis V = (Vt)t∈TI allows us to significantly reduce
the corresponding storage requirements, but it also means that we can not longer work
with the matrices Vt directly if t is not a leaf.

Given an admissible leaf b = (t, s) ∈ L+I×J , evaluating the corresponding submatrix

G|t̂×ŝ = VtSbW
∗
s

requires algorithms for evaluating W ∗s x|ŝ for a given vector x ∈ KI and for evaluting
Vtŷt for a given vector ŷt ∈ KKt .

Forward transformation. Let W = (Ws)s∈TJ be a cluster basis of rank k, and let and
let (Fs)s∈TJ be a family of corresponding transfer matrices. Let x ∈ KJ . Our task is to
compute the vectors

x̂s := W ∗s x|ŝ for all s ∈ TJ . (6.6)

This is a departure from the procedure applied for H-matrices, where each block can
essentially be treated independently from all orthers. For H2-matrices, the efficiency
can be improved significantly by preparing suitable vectors, and in more sophisticated
algorithms also matrices, in advance and share them among multiple blocks.

Let s ∈ TJ . If s is a leaf, we can compute (6.6) directly. If s is not a leaf, we let
n := | chil(s)| and denote the children of s by chil(s) = {s1, . . . , sn}. Due to (3.12b),
(3.12c) we have ŝ = ŝ1∪̇ . . . ∪̇ŝn, and (6.3) yields

Ws =

Ws1Fs1
...

WsnFsn

 .

Using this equation, we can rewrite (6.6) as

x̂s = W ∗s x =
(
F ∗s1W

∗
s1 . . . F ∗snW

∗
sn

)x|ŝ1...
x|ŝn


=

n∑
i=1

F ∗siW
∗
six|ŝi =

∑
s′∈chil(s)

F ∗s′W
∗
s′x|ŝ′ =

∑
s′∈chil(s)

F ∗s′ x̂s′ .

This means that if we ensure that the vectors x̂s′ corresponding to the children s′ ∈
chil(s) are computed first, the vector x̂s can be computed very efficiently using only
transfer matrices.

Since we need to treat the children before their parent, a recursive algorithm is the
obvious choice. It is given in Figure 6.1, and we call it the forward transformation for
the cluster basis W .
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6 H2-matrices

procedure forward clusterbasis(W , s, x, var x̂);
if chil(s) = ∅ then
x̂s ←W ∗s x|ŝ;

else begin
x̂s ← 0;
for s′ ∈ chil(s) do begin
forward clusterbasis(W , s′, x, x̂);
x̂s ← x̂s + F ∗s′ x̂s′

end
end

Figure 6.1: Forward transformation, x̂r ←W ∗r x|r̂ for all r ∈ Ts

Coupling phase. Once the vectors x̂s = W ∗s x|ŝ are available for all clusters s ∈ TJ , we
can consider the multiplication by Sb for admissible blocks b = (t, s) ∈ L+I×J . Instead
of treating all blocks individually, we can take advantage of∑

s∈TJ
b=(t,s)∈L+I×J

VtSbW
∗
s x|ŝ = Vt

∑
s∈TJ

b=(t,s)∈L+I×J

Sbx̂s for all t ∈ TI

to first compute auxiliary vectors

ŷt :=
∑
s∈TJ

b=(t,s)∈L+I×J

Sbx̂s for all t ∈ TI (6.7)

and then perform the updates

y|t̂ ← y|t̂ + Vtŷt for all t ∈ TI . (6.8)

The first task is straightforward: we initialize the vectors ŷt ← 0 for all t ∈ TI and
then simply pass through all admissible blocks of the H2-matrix representation and
accumulate their contributions. This is called the coupling phase of the H2-matrix-
vector multiplication.

Since this phase requires us to traverse the entire blocktree, we can also handle the
nearfield blocks directly via

y|t̂ ← y|t̂ +G|t̂×ŝx|ŝ = y|t̂ +Nbx|ŝ for all b = (t, s) ∈ L−I×J .

If we traverse the block tree recursively, passing through non-leaf blocks and treating
leaf blocks appropriately, we arrive at the algorithm given in Figure 6.2.

The coupling phase is typically the most time-consuming part of the matrix-vector
multiplication, since on the one hand the number of blocks typically far exceeds the
number of clusters and on the other hand reading the coupling and nearfield matrices
from storage taxes the memory interface of processors.
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procedure fastaddeval h2matrix(α, G, b = (t, s), x, x̂, var y, ŷ);
if b ∈ L+I×J then

ŷt ← ŷt + αSbx̂s;
else if b ∈ L−I×J then

y|t̂ ← y|t̂ + αNbx|ŝ;
else for b′ ∈ chil(b) do
fastaddeval h2matrix(α, G, b′, x, x̂, y, ŷ)

Figure 6.2: Coupling phase, ŷt ← ŷt + αSbx̂s for all admissible leaves b = (t, s) ∈ L+I×J
and y|t̂ ← y|t̂ + αNbx̂|ŝ for all inadmissible leaves b = (t, s) ∈ L−I×J .

Backward transformation. This leaves us only with the task of performing the updates
(6.8) for all t ∈ TI . Let t ∈ TI . If t is a leaf, we can handle (6.8) directly. If t is not
a leaf, we again let n := | chil(t)| and denote the children of t by chil(t) = {t1, . . . , tn}.
(6.3) yields

Vt =

Vt1Et1...
VtnEtn


and we obtain

y|t̂ ← y|t̂ + Vtŷt =

y|t̂1 + Vt1Et1 ŷt
...

y|t̂n + VtnEtn ŷt

 =

y|t̂1 + Vt1 ỹt1
...

y|t̂n + Vtn ỹtn

 , (6.9)

where we let

ỹt′ := Et′ ŷt for all t′ ∈ chil(t).

If we work on t before its children, we can take advantage of

y|t̂′ ← y|t̂′ + Vt′ ŷt′ + Vt′ ỹt′ = y|t̂′ + Vt′(ŷt′ + ỹt′) for all t′ ∈ chil(t)

to simply add ỹt′ to the vectors ŷt′ corresponding to the sons. As long as we have no
further need for the vectors ŷt′ , we can simply update them.

The resulting algorithm is given in Figure 6.3, and we call it the backward transfor-
mation for the cluster basis V .

Both the forward and the backward transformation algorithms take advantage of the
fact that we have to perform operations for all clusters: in the forward transformation,
we can re-use the intermediate results x̂s′ computed for the children s′ ∈ chil(s), while
in the backward transformation we can shift work from the parent t to its children
t′ ∈ chil(t). Even if we wanted to compute only x̂s for one cluster, we still would have
to compute x̂s′ for all its descendants.
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6 H2-matrices

procedure backward clusterbasis(V , t, var ŷ, y);
if chil(t) = ∅ then
y|t̂ ← y|t̂ + Vtŷt;

else
for t′ ∈ chil(t) do begin
ŷt′ ← ŷt′ + Et′ ŷt;
backward clusterbasis(V , t′, ŷ, y);

end
end

Figure 6.3: Backward transformation, y|r̂ ← y|r̂ + Vrŷr for all r ∈ Tt. The coefficients
(ŷr)t∈Tt are overwritten by intermediate results.

procedure addeval h2matrix(α, G, b = (t, s), x, var y);
forward clusterbasis(W , s, x, x̂);
ŷ ← 0;
fastaddeval h2matrix(α, G, b, x, x̂, y, ŷ);
backward clusterbasis(V , t, ŷ, y)

Figure 6.4: H2-matrix-vector multiplication, y|t̂ ← y|t̂ + αG|t̂×ŝx|ŝ.

Using the forward and the backward transformation, we can construct an efficient
algorithm for performing the matrix-vector multiplication y ← y + αGx with an H2-
matrix G in H2-matrix representation. The forward transformation yields the auxiliary
vectors x̂s, the coupling phase prepares the vectors ŷt, and the backward transformation
adds them to the final result. The algorithm is summarized in Figure 6.4.

Remark 6.12 (Adjoint) To perform the adjoint matrix-vector multiplication x← x+
αG∗y, we can apply the forward transformation to the row basis V , switch to the adjoint
matrices S∗b and N∗b in the coupling phase, and apply the backward transformation to the
colum basis W .

Remark 6.13 (Recursion) Using recursive algorithms for the forward and backward
transformation and the coupling phase is convenient, particularly if we expect to apply
the algorithms also to submatrices of an H2-matrix, e.g., in the course of arithmetic
operations like the matrix multiplication or inversion.

If we want to parallelize the algorithms, different approaches may be more appropriate,
e.g., the forward and backward transformation could be performed level by level, such that
all clusters on the same level can be treated in parallel.

For the coupling phase, it may be a good idea to use a description of the sets row(t)
and col(s), e.g., as a list of blocks, in order to avoid write conflicts caused by different
blocks trying to update the same vector.
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6.4 Low-rank structure of H2-matrices

We have seen that a matrix can be approximated by an H-matrix if all submatrices
corresponding to admissible blocks can be approximated by low-rank matrices. We will
now characterize H2-matrices in terms of ranks of suitable submatrices.

Since we are only interested in admissible blocks, we restrict the sets row(t) and col(s)
introduced in Definition 3.31 to

row+(t) := {s ∈ TJ : (t, s) ∈ L+I×J } for all t ∈ TI ,
col+(s) := {t ∈ TI : (t, s) ∈ L+I×J } for all s ∈ TJ .

We consider a row cluster t ∈ TI and define the number of admissible blocks connected
to it by n := | row+(t)| and the corresponding column clusters by row+(t) = {s1, . . . , sn}.
Due to (6.4), we have G|t̂×ŝi = VtSt,siW

∗
si for all i ∈ [1 : n] and therefore

Gt :=
(
G|t̂×ŝ1 . . . G|t̂×ŝn

)
= Vt

(
St,s1W

∗
s1 . . . St,snW

∗
sn

)
.

We have found a factorized representation of Gt, so its rank cannot exceed k. Since the
cluster bases are nested, we can extend this argument to larger matrices Gt including
blocks connected to the predecessors of t, as well.

Lemma 6.14 (Extended transfer matrices) Let V = (Vt)t∈TI be a cluster basis of
rank k, and let (Et)t∈TI be a corresponding family of transfer matrices.

We define the extended transfer matrices inductively by

Er,t :=

{
I if r = t,

Er,t′Et′ if r ∈ Tt′ , t′ ∈ chil(t)
for all t ∈ TI , r ∈ Tt.

We have

Vt|r̂ = VrEr,t for all t ∈ TI , r ∈ Tt.

Proof. By induction on level(r)− level(t).
Let t ∈ TI and r ∈ Tt with level(r) − level(t) = 0. Then we have r = t, and our

definition yields
Vt|r̂ = Vt = Vr = VrEr,r = VtEr,t.

Let now n ∈ N0 be given such that our claim holds for all t ∈ TI and r ∈ Tt with
level(r)− level(t) = n.

Let t ∈ TI and r ∈ Tt with level(r)− level(t) = n+1. Due to level(t) < level(r), we can
find t′ ∈ chil(t) such that r ∈ Tt′ . Due to level(r)− level(t′) = level(r)− (level(t) + 1) =
n+ 1− 1 = n, we can apply the induction assumption to find

Vt′ |r̂ = VrEr,t′ ,

and (6.3) with r̂ ⊆ t̂′ yields

Vt|r̂ = (Vt|t̂′)|r̂ = (Vt′Et′)|r̂ = Vt′ |r̂Et′ = VrEr,t′Et′ = VrEr,t.
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6 H2-matrices

Lemma 6.15 (Low-rank structure) Let G ∈ KI×J be an H2-matrix with row cluster
basis V and column cluster basis W of rank k. The sets

Ft :=
⋃

t>∈pred(t)

⋃
s∈TJ

(t>,s)∈L+I×J

ŝ ⊆ J for all t ∈ TI , (6.10a)

Fs :=
⋃

s>∈pred(s)

⋃
t∈TI

(t,s>)∈L+I×J

t̂ ⊆ I for all s ∈ TJ (6.10b)

are called the farfield indices for t and s.
For every j ∈ Ft, there are exactly one t> ∈ pred(t) and exactly one s ∈ TJ with

(t>, s) ∈ L+I×J such that j ∈ ŝ.
For every i ∈ Fs, there are exactly one s> ∈ pred(s) and exactly one t ∈ TI with

(t, s>) ∈ L+I×J such that i ∈ t̂.
For all t ∈ TI , we can find a matrix Bt ∈ KFt×k such that

G|t̂×Ft = VtB
∗
t ,

and for all s ∈ TJ , we can find a matrix As ∈ KFs×k such that

G|Fs×ŝ = AsW
∗
s .

Proof. Let t ∈ TI . We first prove that for each j ∈ Ft, there are exactly one t> ∈ pred(t)
and exactly one s ∈ TJ with (t>, s) ∈ L+I×J such that j ∈ ŝ.

Let j ∈ Ft, and let t>,1, t>,2 ∈ pred(t), s1, s2 ∈ TJ with (t>,1, s1) ∈ L+I×J and

(t>,2, s2) ∈ L+I×J such that j ∈ ŝ1 and j ∈ ŝ2.
Let i ∈ t̂. Then we have i ∈ t̂>,1 and i ∈ t̂>,2 and therefore (i, j) ∈ t̂>,1 × ŝ1 and

(i, j) ∈ t̂>,2×ŝ2. Due to Corollary 3.23, this already implies both t>,1 = t>,2 and s1 = s2.
Let j ∈ Ft, and let t> ∈ pred(t) and s ∈ row(t>) be the unique clusters defined above.

By Definition 6.5, we have
G|t̂>×ŝ = Vt>SbW

∗
s ,

and Lemma 6.14 yields

G|t̂×ŝ = (G|t̂>×ŝ)|t̂×ŝ = Vt> |t̂SbW
∗
s = VtEt,t>SbW

∗
s .

We conclude that

Bt|ŝ×Kt := WsS
∗
bE
∗
t,t>

for all t> ∈ pred(t), s ∈ row(t>)

with b = (t>, s) ∈ L+I×J

defines the matrix Bt ∈ KFt×Kt uniquely, and we have

G|t̂×ŝ = VtEt,t>SbW
∗
s = VtBt|∗ŝ for all t> ∈ pred(t), s ∈ row(t>)

with b = (t>, s) ∈ L+I×J .

The corresponding results for column clusters can be obtained by similar arguments.
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Lemma 6.16 (Partial inverse) Let V ∈ KI×J . Then there is a matrix R ∈ KJ×I
such that V RV = V .

Proof. Let k := dim(range(V )), and let {v1, . . . , vk} be a basis of range(V ). We can
extend it to a basis {v1, . . . , vn} of KI , where n := dim(KI) = |I|.

For each i ∈ [1 : k], we can find a vector xi ∈ KJ such that V xi = vi.
Since {v1, . . . , vn} is a basis of KI , we can define R ∈ KJ×I by

Rvi :=

{
xi if i ≤ k,
0 otherwise

for all i ∈ [1 : n]

and obtain

V Rvi = V xi = vi for all i ∈ [1 : k].

Let now y ∈ KJ . Since {v1, . . . , vk} is a basis of range(V ), we can find α1, . . . , αk ∈ K
such that

V y = α1v1 + . . .+ αkvk.

This implies

V RV y = α1V Rv1 + . . .+ αkV Rvk = α1v1 + . . .+ αkvk = V y,

and we have proven V RV = V .

Corollary 6.17 (Characterization via bases) Let G ∈ KI×J , let TI×J be a block
tree, and let V and W be cluster bases of rank k.
G is an H2-matrix with row basis V and column basis W if and only if for all t ∈ TI

and s ∈ TJ there are matrices As ∈ KFs×k and Bt ∈ KFt×k such that

G|Fs×ŝ = AsW
∗
s , G|t̂×Ft = VtB

∗
t . (6.11)

Proof. If G is an H2-matrix, we can apply Lemma 6.15 to obtain As and Bt satisfying
the equations (6.11.

Assume now that for all t ∈ TI and s ∈ TJ there are As ∈ KFs×k and Bt ∈ KFt×k
such that (6.11) holds. In order to prove that G is an H2-matrix, we have to construct
coupling matrices Sb ∈ Kk×k for all admissible leaves b = (t, s) ∈ L+I×J .

Let b = (t, s) ∈ L+I×J . By definition, we have ŝ ⊆ Ft and t̂ ⊆ Fs, and (6.11) yields

As|t̂W
∗
s = (AsW

∗
s )|t̂×ŝ = G|t̂×ŝ = (VtB

∗
t )|t̂×ŝ = VtBt|∗ŝ.

Lemma 6.16 yields a matrix R ∈ Kk×t̂ such that VtRVt = Vt, and we obtain

G|t̂×ŝ = VtBt|∗ŝ = VtRVtBt|∗ŝ = VtRG|t̂×ŝ = VtRAs|t̂W
∗
s = VtSbW

∗
s ,

where we let Sb := RAs|t̂×k. We have proven (6.4), so G has to be an H2-matrix.
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Theorem 6.18 (Characterization via ranks) Let G ∈ KI×J , let TI×J be a block
tree, and let Ft and Fs for all t ∈ TI and s ∈ TJ be defined as in Lemma 6.15.
G is an H2-matrix with row and column cluster bases of rank k if and only if

rank(G|t̂×Ft) ≤ k, rank(G|Fs×ŝ) ≤ k for all t ∈ TI , s ∈ TJ .

Proof. If G is an H2-matrix, our claim is a direct consequence of Corollary 6.17.
We assume

rank(G|t̂×Ft) ≤ k for all t ∈ TI

and are looking for a row cluster basis satisfying the second equation in (6.11).

We will prove by induction on |Tt| that for every t ∈ TI there are Vt ∈ Kt̂×k and
Bt ∈ KFt×k such that

G|t̂×Ft = VtB
∗
t

and that if chil(t) 6= ∅ holds there are transfer matrices Et′ ∈ Kk×k for all t′ ∈ chil(t)
such that

Vt|t̂′ = Vt′Et′ for all t′ ∈ chil(t).

Let t ∈ TI with |Tt| = 1, i.e., chil(t) = ∅. Due to rank(G|t̂×Ft) ≤ k, we can apply

Corollary 4.9 yields matrices Vt ∈ Kt̂×k and Bt ∈ KFt×k with

G|t̂×Ft = VtB
∗
t .

Let now n ∈ N be given such that for every t ∈ TI with |Tt| ≤ n matrices Vt ∈ Kt̂×k and
Bt ∈ KFt×k with G|t̂×Ft = VtB

∗
t exist.

Let t ∈ TI with |Tt| = n + 1. This implies chil(t) 6= ∅. We let m := | chil(t)| and
chil(t) = {t1, . . . , tm}.

Since every t′ ∈ chil(t) satisfies |Tt′ | ≤ n, we can use the induction assumption to find

Vt′ ∈ Kt̂′×k and Bt′ ∈ KFt′×k such that G|t̂′×Ft′ = Vt′B
∗
t′ .

Using Lemma 6.16, we find matrices Rt′ ∈ Kk×t̂′ with Vt′Rt′Vt′ = Vt′ for all t′ ∈ chil(t).
Our definition implies Ft ⊆ Ft′ for all t′ ∈ chil(t), and we find

G|t̂×Ft =

G|t̂1×Ft...
G|t̂m×Ft

 =

 (Vt1B
∗
t1)|t̂1×Ft
...

(VtmB
∗
tm)|t̂m×Ft

 =

 Vt1Rt1Vt1Bt1 |∗Ft
...

VtmRtmVtmBtm |∗Ft


=

Vt1 . . .

Vtm


Rt1 . . .

Rtm


 Vt1Bt1 |∗Ft

...
VtmBtm |∗Ft


=

Vt1 . . .

Vtm


Rt1 . . .

Rtm

G|t̂×Ft

︸ ︷︷ ︸
=:Ĝt

.
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Due to rank(G|t̂×Ft) ≤ k, we also have rank(Ĝt) ≤ k and can again apply Corollary 4.9

to find matrices V̂t ∈ K(mk)×k and Bt ∈ KFt×k with Ĝt = V̂tB
∗
t .

Combining with the previous equation we obtain

G|t̂×Ft =

Vt1 . . .

Vtm

 Ĝt =

Vt1 . . .

Vtm

 V̂tB
∗
t ,

and splitting V̂t into k × k submatrices yields

V̂t =

Et1...
Etm

 .

We define

Vt :=

 Vt1Et1
...

VtmEtm

 ∈ Kt̂×k (6.12)

and conclude

G|t̂×Ft =

Vt1 . . .

Vtm

 V̂tB
∗
t = VtB

∗
t .

This is the required factorization, and (6.12) ensures that Vt is defined via transfer
matrices, i.e., that we have a nested basis.

The same arguments can be applied to construct a column basis.
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7 H2-matrix compression

While the approximation of a given matrix by anH-matrix can be computed by consider-
ing the singular value decompositions of all admissible blocks, finding an approximation
by anH2-matrix poses a greater challenge: cluster bases introduce dependencies between
blocks, and the nested structure introduces dependencies between levels.

It turns out that these dependencies are both a blessing and a curse: they can be
used to construct an algorithm of quadratic complexity where H-matrices require cubic
complexity, but the algorithm is a little more complicated than simple singular value
decompositions.

7.1 Orthogonal projections

We have seen in Theorem 6.18 that a matrix G ∈ KI×J is an H2-matrix if and only if
the submatrices G|t̂×Ft and G|Fs×ŝ are of low rank for all t ∈ TI and s ∈ TJ , where Ft
and Fs denote the farfields of t and s, respectively.

In order to obtain an approximation of an arbitrary given matrix by an H2-matrix,
we have to find low-rank approximations of these submatrices. These approximations
can be conveniently constructed by projections into the ranges of the basis matrices Vt
and Ws, and the best possible projections are the orthogonal projections.

Definition 7.1 (Orthogonal projection) Let P ∈ KI×I . If P 2 = P = P ∗ holds, we
call P an orthogonal projection.

Lemma 7.2 (Orthogonal projection) Let P ∈ KI×I be an orthogonal projection.
We have

‖x− y‖2 = ‖x− Px‖2 + ‖y − Px‖2 for all x ∈ KI , y ∈ range(P ). (7.1)

In particular, we have

‖x− Px‖2 ≤ ‖x− y‖2 for all x ∈ KI , y ∈ range(P ), (7.2a)

‖x− Px‖2 = ‖x‖2 − ‖Px‖2 for all x ∈ KI , (7.2b)

‖Px‖2 ≤ ‖x‖2 for all x ∈ KI , (7.2c)

i.e., Px is the best approximation of a vector x ∈ KI in the range of P , and applying
the projection does not increase the norm.
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Proof. Let x ∈ KI and y ∈ range(P ). We can find z ∈ KI with y = Pz by definition
and obtain Py = P 2z = Pz = y. We have

x− y = x− Px+ Px− y = x− Px+ P (x− y)

and find

‖x− y‖2 = 〈x− y, x− y〉 = 〈x− Px+ P (x− y), x− Px+ P (x− y)〉
= 〈x− Px, x− Px〉+ 〈x− Px, P (x− y)〉

+ 〈P (x− y), x− Px〉+ 〈P (x− y), P (x− y)〉
= ‖x− Px‖2 + 〈P ∗(x− Px), x− y〉

+ 〈x− y, P ∗(x− Px)〉+ ‖P (x− y)‖2

= ‖x− Px‖2 + 〈Px− P 2x, P (x− y)〉
+ 〈x− y, Px− P 2x〉+ ‖Px− y‖2

= ‖x− Px‖2 + ‖Px− y‖2.

We obtain (7.2a) from (7.1) by

‖x− Px‖2 ≤ ‖x− Px‖2 + ‖y − Px‖2 = ‖x− y‖2,

applying (7.1) to y = 0 yields ‖x− Px‖2 + ‖Px‖2 = ‖x‖2, which is equivalent to (7.2b)
and also gives us ‖Px‖2 ≤ ‖x‖2, i.e., (7.2c).

Considering the approximation of a submatrix G|t̂×ŝ by an H2-matrix block VtSbW
∗
s ,

it would be advantageous if we could construct an orthogonal projection P such that
range(P ) = range(Vt).

Fortunately, isometric matrices (cf. Definition 4.15) immediately give rise to ortho-
gonal projections.

Lemma 7.3 (Factorized projection) Let V ∈ KI×J be an isometric matrix.
Then P := V V ∗ ∈ KI×I is an orthogonal projection with range(P ) = range(V ).

Proof. We have

P 2 = V V ∗V V ∗ = V (V ∗V )V ∗ = V V ∗ = P,

P ∗ = (V V ∗)∗ = V ∗∗V ∗ = V V ∗ = P,

so P is indeed an orthogonal projection.
We have range(P ) ⊆ range(V ) by definition. Let x ∈ range(V ). Then there is a

x̂ ∈ KJ with x = V x̂ and we obtain

Px = V V ∗x = V V ∗V x̂ = V (V ∗V )x̂ = V x̂ = x,

i.e., x ∈ range(P ).
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7.1 Orthogonal projections

Lemma 7.4 (Blockwise projection) Let V ∈ KI×K and W ∈ KJ×L be isometric
matrices.

Let G ∈ KI×J and S := V ∗GW ∈ KK×L. We have

‖G− V SW ∗‖22 ≤ ‖G− V V ∗G‖22 + ‖G−GWW ∗‖22. (7.3a)

Since we also have

‖G− V V ∗G‖2 ≤ ‖G− V SW ∗‖2, ‖G−GWW ∗‖2 ≤ ‖G− V SW ∗‖2, (7.3b)

the bound (7.3a) cannot overestimate the error by a factor of more than
√

2.

Proof. Let z ∈ KJ . We let P := V V ∗ and find

‖(G− V SW ∗)z‖22 = ‖(G− V V ∗GWW ∗)z‖22 = ‖Gz − PGWW ∗z‖22.

We can apply (7.1) to x := Gz and y := PGWW ∗z and obtain

‖(G− V SW ∗)z‖22 = ‖Gz − PGz‖22 + ‖PGWW ∗z − PGz‖22
= ‖Gz − V V ∗Gz‖22 + ‖P (GWW ∗z −Gz)‖22. (7.4)

Using (7.2c) to bound the second term yields

‖(G− V SW ∗)z‖22 ≤ ‖Gz − V V ∗Gz‖22 + ‖GWW ∗z −Gz‖22
= ‖(G− V V ∗G)z‖22 + ‖(G−GWW ∗)z‖22.

Since this holds for all z ∈ KJ , we conclude

‖G− V SW ∗‖22 ≤ ‖G− V V ∗G‖22 + ‖G−GWW ∗‖22. (7.5)

The equation (7.4) implies

‖(G− V SW ∗)z‖2 ≥ ‖Gz − V V ∗Gz‖2 = ‖(G− V V ∗G)z‖2,

and taking the supremum yields the first estimate of (7.3b).
We use (4.10c) and apply this result to G∗, W and V instead of G, V and W in order

to obtain

‖G−GWW ∗‖2 = ‖G∗ −WW ∗G∗‖2 ≤ ‖G∗ −WW ∗G∗V V ∗‖2 = ‖G− V SW ∗‖2.

This is the second estimate of (7.3b).

Definition 7.5 (Isometric cluster basis) Let V = (Vt)t∈TI be a cluster basis. If all
basis matrices are isometric, i.e., if we have

V ∗t Vt = I for all t ∈ TI ,

we call V an isometric cluster basis.
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7 H2-matrix compression

If we have isometric cluster bases V = (Vt)t∈TI and W = (Ws)s∈TJ , we can use
Lemma 7.4 to compute quasi-optimal coupling matrices

Sb := V ∗t G|t̂×ŝWs for all b = (t, s) ∈ L+I×J .

Due to (7.3a), we can split the approximation error into contributions by the row and
column basis projections.

We can even construct the row and column bases independently: if we first find an
isometric row basis V = (Vt)t∈TI such that

‖G|t̂×ŝ − VtV
∗
t G|t̂×ŝ‖2 ≤ ε for all b = (t, s) ∈ L+I×J

and then an isometric column basis W = (Ws)s∈TJ such that

‖G|∗
t̂×ŝ −WsW

∗
sG|∗t̂×ŝ‖2 ≤ ε for all b = (t, s) ∈ L+I×J ,

Lemma 7.4 yields

‖G|t̂×ŝ − VtSbW
∗
s ‖2 ≤

√
2ε for all b = (t, s) ∈ L+I×J .

7.2 Adaptive cluster bases

Given a matrix G ∈ KI×J and a block tree TI×J , the construction of an optimal H-
matrix approximation is fairly straightforward: we compute the singular value decom-
position of G|t̂×ŝ for all admissible leaves b = (t, s) ∈ L+I×J and obtain the best possible
low-rank approximation by removing the smallest singular values (cf. Lemma 4.25 and
Theorem 4.29).

Constructing a quasi-optimal H2-matrix approximation of a matrix G is more of a
challenge: we cannot handle individual blocks, but have to find cluster bases that are
appropriate for multiple blocks spread across multiple levels of the block tree. Orthogonal
projections allow us to find a relatively simple and very flexible algorithm that directly
constructs a suitable isometric cluster basis in nested representation [8], [6, Chapter 6].

We consider only the row basis V = (Vt)t∈TI , since Lemma 7.4 allows us to obtain the
column basis W = (Ws)s∈TJ by applying the procedure to the adjoint matrix G∗ with a
corresponding “adjoint” block tree.

Theorem 6.18 suggests that we should look for low-rank approximations of the matrices

Gt := G|t̂×Ft for all t ∈ TI .

Due to Lemma 7.3, we can expect good approximation and stability properties from an
isometric cluster basis, so these low-rank approximations should be of the form

Gt ≈ VtV ∗t Gt for all t ∈ TI ,

where V = (Vt)t∈TI is an isometric cluster basis.
We can construct the matrices Vt by a recursive algorithm.
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7.2 Adaptive cluster bases

Case 1: t is a leaf. In this case, we compute the singular value decomposition

Gt = QΣP ∗, with Q ∈ Kt̂×p, P ∈ KFt×p isometric, Σ =

σ1 . . .

σp

 .

We denote the columns of Q by q1, . . . , qp ∈ Kt̂, i.e., we have

Q =
(
q1 . . . qp

)
.

Given a rank kt ∈ [0 : p], we let

Vt :=
(
q1 . . . qkt

)
∈ Kt̂×kt

and observe

VtV
∗
t Q =

(
q1 . . . qkt 0 . . . 0

)
, VtV

∗
t Gt = Q


σ1

. . .

σkt
0

. . .

P ∗.

Lemma 4.25 provides us with the error equation

‖Gt − VtV ∗t Gt‖2 =

{
σkt+1 if kt < p,

0 otherwise
, (7.6)

and Theorem 4.29 states that there is no better approximation of Gt.

Case 2: t is not a leaf. In this case, we let n := | chil(t)| and chil(t) = {t1, . . . , tn}. We
first compute isometric basis matrices Vt1 , . . . , Vtn for all children by recursion. We let

mt :=
∑

t′∈chil(t)

kt′ .

Since we are looking for a cluster basis, there have to be transfer matrices Et1 , . . . , Etn
such that

Vt =

Vt1 . . .

Vtn


Et1...
Etn

 .

In order to keep the notation simple, we introduce

Ut :=

Vt1 . . .

Vtn

 ∈ Kt̂×mt , V̂t :=

Et1...
Etn

 ∈ Kmt×kt (7.7)
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7 H2-matrix compression

and write the equation as
Vt = UtV̂t.

Since the matrices Vt1 , . . . , Vtn are isometric, we have

U∗t Ut =

V
∗
t1

. . .

V ∗tn


Vt1 . . .

Vtn

 =

V
∗
t1Vt1

. . .

V ∗tnVtn

 = I,

i.e., Ut is also isometric. Since we are looking for an isometric basis matrix Vt, we require

I = V ∗t Vt = (UtV̂t)
∗(UtV̂t) = V̂ ∗t U

∗
t UtV̂t = V̂ ∗t V̂t,

i.e., we have to find an isometric matrix V̂t.
Since Ut is isometric, UtU

∗
t is an orthogonal projection. Let z ∈ KFt . The equations

(7.1), applied to P := UtU
∗
t , x := Gtz, and y := UtV̂tV̂

∗
t U
∗
t , together with (4.4b) yield

‖(Gt − VtV ∗t Gt)z‖22 = ‖Gtz − UtV̂tV̂ ∗t U∗t z‖22
= ‖Gtz − UtU∗t Gtz‖22 + ‖UtU∗t Gtz − UtV̂tV̂ ∗t U∗t Gtz‖22
= ‖(Gt − UtU∗t Gt)z‖22 + ‖Ut(U∗t Gt − V̂tV̂ ∗t U∗t Gt)z‖22
= ‖(Gt − UtU∗t Gt)z‖22 + ‖(U∗t Gt − V̂tV̂ ∗t U∗t Gt)z‖22.

Introducing the matrix
Ĝt := U∗t Gt ∈ Kmt×J ,

we obtain

‖(Gt − VtV ∗t Gt)z‖22 = ‖(Gt − UtU∗t Gt)z‖22 + ‖(Ĝt − V̂tV̂ ∗t Ĝt)z‖22. (7.8)

The first term on the right-hand side takes the form

(Gt − UtU∗t Gt)z =

 (G|t̂1×Ft − Vt1V
∗
t1G|t̂1×Ft)z

...
(G|t̂n×Ft − VtnV

∗
tnG|t̂n×Ft)z

 ,

i.e, it represents the error introduced in the children of t. Since we do not intend to
change the basis matrices corresponding to the children, we consider this term fixed.

The second term on the right-hand side describes the approximation error introduced
by the orthogonal projection V̂tV̂

∗
t , and this expression closely resembles the error term

(7.6) for the leaf clusters. We can treat it by the same approach, i.e., by computing the
singular value decomposition

Ĝt = Q̂Σ̂P̂ ∗

and using the first kt columns of Q̂ to construct V̂t. The basis matrix is now given
by Vt = UtV̂t, and due to (7.7), the transfer matrices Et1 , . . . , Etn can be obtained by
splitting V̂t into submatrices.
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7.2 Adaptive cluster bases

Efficient computation of Ĝt. Our algorithm requires the matrices

Ĝt = U∗t Gt =

V
∗
t1

. . .

V ∗tn


Gt|t̂1×Ft...
Gt|t̂n×Ft

 =

V
∗
t1Gt|t̂1×Ft

...
V ∗tnGt|t̂n×Ft


for all non-leaf clusters t. Computing these matrices directly is unattractive, even if we
use the forward transformation to evaluate the products.

We can avoid the direct computation by introducing auxiliary matrices: if we let

Xt := V ∗t Gt ∈ Kkt×Ft for all t ∈ TI ,

we have

Ĝt =

Xt1 |kt1×Ft
...

Xtn |ktn×Ft

 , (7.9)

i.e., we can obtain Ĝt by copying those columns of Xt1 , . . . , Xtn that are elements of
Ft ⊆ Ft1 , . . . ,Ftn .

Of course, we require an efficient approach to construct these matrices. If t ∈ TI is a
leaf, we can simply apply the definition to obtain Xt.

Otherwise, we have

Xt = V ∗t Gt = V̂ ∗t U
∗
t Gt = V̂ ∗t Ĝt,

i.e., we can compute Xt using only the transfer matrices and Ĝt. The resulting algorithm
is given in Figure 7.1.

Lemma 7.6 (Complexity) The function buildrowbasis amatrix, called with t ∈ TI ,
requires not more than

Wbb(t) :=

{
Cbbk̂|J | |t̂| if chil(t) = ∅,∑

t′∈chil(t)Cbbk̂|J |kt′ +Wbb(t
′) otherwise

operations,

where Cbb := max{1, Csn}Csvd + 2 and

k̂ := max{rI , kt : t ∈ TI}, Csn := max{| chil(t)| : t ∈ TI}

denote the maximal rank and the maximal number of children. We have

Wbb(t) ≤ Cbbk̂|I| |J |+ Cbbk̂
2|TI | |J | for all t ∈ TI .

Proof. We use induction over |Tt| to prove the complexity bound.
Let t ∈ TI with |Tt| = 1. Then we have chil(t) = ∅. The function first computes the

SVD of Gt, this requires not more than

Csvd|t̂|2|Ft| ≤ Csvdk̂|J | |t̂| operations
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7 H2-matrix compression

procedure buildrowbasis amatrix(t, G, var V , X);
if chil(t) = ∅ then begin

Compute SVD of Gt;
Choose rank kt;
Use first kt left singular vectors to form Vt;
Xt ← V ∗t Gt

end
else begin

for t′ ∈ chil(t) do
buildrowbasis amatrix(t′, G, V , X);

Form Ĝt according to (7.9);

Compute SVD of Ĝt;
Choose rank kt;

Use first kt left singular vectors to form V̂t;

Xt ← V̂ ∗t Ĝt;

Obtain transfer matrices by splitting V̂t according to (7.7)
end

end

Figure 7.1: Adaptive row basis for a matrix G in array representation.

due to Assumption 5.7. Preparing Xt requires not more than

2kt|t̂| |Ft| ≤ 2k̂|J | |t̂| operations,

and we arrive at the upper bound

Csvdk̂|J | |t̂|+ 2k̂|J | |t̂| ≤Wbb(t).

Now we assume that n ∈ N is given such that the number of operations can be bounded
by Wbb(t) for all t ∈ TI with |Tt| ≤ n.

Let t ∈ TI with |Tt| = n + 1. For every child t′ ∈ chil(t), we have |Tt′ | ≤ n and can
apply the induction assumption. Once the bases for all children have been computed,
we can form Ĝt by copying the appropriate columns from Xt′ , t

′ ∈ chil(t).

Since Ĝt has
∑

t′∈chil(t) kt′ rows, Assumption 5.7 yields that the SVD requires not more
than

Csvdm
2
t |Ft| ≤ CsvdCsnk̂|J |

∑
t′∈chil(t)

kt′ operations.

Computing Xt takes not more than

2ktmt|Ft| ≤ 2k̂|J |
∑

t′∈chil(t)

kt′ operations,
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7.2 Adaptive cluster bases

and this leads to the upper bound

CsnCsvdk̂|J |
∑

t′∈chil(t)

kt′ + 2k̂|J |
∑

t′∈chil(t)

kt′ +
∑

t′∈chil(t)

Wbb(t′) ≤Wbb(t).

In order to obtain the bound for the total complexity, we start with a straightforward
induction to get

Wbb(t) ≤ Cbbk̂|J |
∑
t∈TI

chil(t)=∅

|t̂|+ Cbbk̂|J |
∑
t∈TI

∑
t′∈chil(t)

kt′ for all t ∈ TI . (7.10)

With Corollary 3.19 we obtain∑
t∈TI

chil(t)=∅

|t̂| =
∑
t∈LI

|t̂| =
∣∣∣ ⋃
t∈LI

t̂
∣∣∣ = |I|,

and since each cluster can have at most one parent we also have∑
t∈TI

∑
t′∈chil(t)

kt′ =
∑
t′∈TI

∑
t∈TI

t′∈chil(t)

kt′ ≤
∑
t′∈TI

kt′ ≤ k̂|TI |.

Combining these estimates with (7.10) yields the required upper bound.

Remark 7.7 (Column basis) Given the block tree TI×J for a matrix G ∈ KI×J , we
can define the block tree T ∗I×J via

b = (t, s) ∈ TI×J ⇐⇒ b∗ := (s, t) ∈ T ∗I×J for all t ∈ TI , s ∈ TJ .

If we apply buildrowbasis amatrix to G∗ using the “adjoint” block tree T ∗I×J for the
row cluster tree TJ and the column cluster tree TI , we obtain a row cluster basis for G∗

that due to (7.5) is a suitable column cluster basis for G.

Remark 7.8 (Destructive compression) Since the rank of Gt is always bounded by
|t̂|, we can overwrite the parts of G containing Gt by Xt once the matrix Vt is at our
disposal.

Following this approach, we only need a small amount of auxiliary storage for the
matrices Ĝt that can be discarded as soon as V̂t and Xt have been computed.

After buildrowbasis amatrix is complete, we have the matrices V ∗t G|t̂×ŝ at our dis-
posal for all b = (t, s) ∈ L+I×J . If we apply the same procedure to the construction
of the column basis, we can replace the submatrix G|t̂×ŝ, which is no longer available,

by V ∗t G|t̂×ŝ in the construction of Ĝs. This approach can reduce the complexity of this

second step significantly, since Ĝs now only has not more than Cspk̂(pI + 1) columns
instead of |I|.

After the column basis is complete, we have the matrices V ∗t G|t̂×ŝWs at our disposal,
i.e., the ideal coupling matrices for the H2-matrix.
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7 H2-matrix compression

7.3 Compression error

In our compression algorithm, every generation of descendants of a cluster introduces
further approximation errors, and we have to investigate techniques for keeping these
errors under control.

Since different clusters with different index sets can contribute to the same error, we
introduce the matrices χt ∈ KI×t̂ for all clusters t ∈ TI via

χt,ij =

{
1 if i = j,

0 otherwise
for all i ∈ I, j ∈ t̂

that pad a vector x ∈ Kt̂ with zeros to obtain a vector χtx ∈ KI .
Let t ∈ TI with n := | chil(t)| > 0 and chil(t) = {t1, . . . , tn}. Since the index sets of

the children t′ ∈ chil(t) form a disjoint partition of t̂, we can write the equation

Vt|t̂′ = Vt′Et′ for all t′ ∈ chil(t)

equivalently in the form

χtVt =
∑

t′∈chil(t)

χt′Vt′Et′ .

We have

Gt − VtV ∗t Gt = Gt − UtU∗t Gt + UtU
∗
t Gt − VtV ∗t Gt

=

Gt|t̂1×Ft − Vt1V
∗
t1Gt|t̂1×Ft

...
Gt|t̂n×Ft − VtnV

∗
tnGt|t̂n×Ft

+ UtU
∗
t Gt − UtV̂tV̂ ∗t U∗t Gt

=

 Gt1 |t̂1×Ft − Vt1V
∗
t1Gt1 |t̂1×Ft

...
Gtn |t̂n×Ft − VtnV

∗
tnGtn |t̂n×Ft

+ Ut(Ĝt − V̂tV̂ ∗t Ĝt).

Using the “padding matrices” χt, this equation can be written in the form

χt(Gt − VtV ∗t Gt) = χtUt(Ĝt − V̂tV̂ ∗t Ĝt)

+
∑

t′∈chil(t)

χt′(Gt′ − Vt′V ∗t′Gt′)|t̂′×Ft . (7.11)

The first term on the right of this equation is under our control: Ut is isometric, i.e.,
it will not influence the norm, and the approximation error of Ĝt can be controlled via
choosing an appropriate rank following the singular value decomposition. The remaining
terms have a similar form as the original error on the left, only for the children t′ instead
of t. This property suggests that we apply (7.11) recursively to the children until we
arrive at leaves, where we can control the error explicitly.
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7.3 Compression error

Lemma 7.9 (Error sum) We define

Dt :=

{
Gt − VtV ∗t Gt if chil(t) = ∅,
Ut(Ĝt − V̂tV̂ ∗t Ĝt) otherwise,

for all t ∈ TI . (7.12)

We have

χt(Gt − VtV ∗t Gt) =
∑
t∗∈Tt

χt∗Dt∗ |t̂∗×Ft for all t ∈ TI .

Proof. By induction over |Tt|.
Let t ∈ TI with |Tt| = 1. This implies chil(t) = ∅ and the equation follows directly

from the definition of Dt.
Let now n ∈ N be given such that the equation holds for all t ∈ TI with |Tt| ≤ n.
Let t ∈ TI with |Tt| = n+ 1. Then we have chil(t) 6= ∅ and can apply (7.11) to obtain

χt(Gt − VtV ∗t Gt) = χtDt +
∑

t′∈chil(t)

χt′(Gt|t̂′×Ft − Vt′V
∗
t′Gt|t̂′×Ft)

= χtDt +
∑

t′∈chil(t)

χt′(Gt′ |t̂′×Ft − Vt′V
∗
t′Gt′ |t̂′×Ft)

= χtDt +
∑

t′∈chil(t)

χt′(Gt′ − Vt′V ∗t′Gt′)|t̂′×Ft

due to Ft ⊆ Ft′ for all t′ ∈ chil(t).
Since |Tt′ | ≤ n holds for all t′ ∈ chil(t), we can use the induction assumption to get

χt(Gt − VtV ∗t Gt) = χtDt +
∑

t′∈chil(t)

χt′(Gt′ − Vt′V ∗t′Gt′)|t̂′×Ft

= χtDt +
∑

t′∈chil(t)

χt′
( ∑
t∗∈Tt′

χt∗Dt∗ |t̂∗×Ft
)
|t̂′×Ft

= χtDt +
∑

t′∈chil(t)

∑
t∗∈Tt′

χt∗Dt∗ |t̂∗×Ft

=
∑
t∗∈Tt

χt∗Dt∗ |t̂∗×Ft .

This completes the induction step.

Lemma 7.9 allows us to split the total error Gt − VtV ∗t Gt for the approximation of
Gt into the contributions Ĝt∗ − V̂t∗ V̂ ∗t∗Ĝt∗ and Gt∗ − Vt∗V ∗t∗Gt∗ of its decendants, all of
which we can control explicitly via the singular value decomposition.

We could now obtain an estimate for the error by simply applying the triangle inequal-
ity, but this would not provide a sharp estimate. A closer look reveals that the ranges
of the matrices χt∗Dt∗ are, in fact, orthogonal, so we can use Pythagoras’ identity to
obtain an error equation instead of an error estimate.
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7 H2-matrix compression

Lemma 7.10 (Error orthogonality) Let t ∈ TI and t1, t2 ∈ Tt with t1 6= t2. For the
matrices defined in (7.12), we have

〈χt1Dt1x|Ft1 , χt2Dt2y|Ft2 〉 = 0 for all x, y ∈ KJ .

Proof. Let x, y ∈ KJ . If t̂1 ∩ t̂2 = ∅, we have χ∗t1χt2 = 0 and therefore

〈χt1Dt1x|Ft1 , χt2Dt2y|Ft2 〉 = 〈Dt1x|Ft1 , χ
∗
t1χt2Dt2y|Ft2 〉 = 0.

Otherwise, we assume level(t2) ≥ level(t1) without loss of generality and apply
Lemma 3.18 to obtain t2 ∈ desc(t1). Due to t1 6= t2, we can find t′ ∈ chil(t1) such
that t2 ∈ Tt′ . We have Dt1x|Ft1 ∈ range(Ut1) by construction and therefore also

(Dt1x|Ft1 )|t̂′ ∈ range(Vt′), i.e., we can find z ∈ Kkt′ with

(Dt1x|Ft1 )|t̂′ = Vt′z.

Since t2 ∈ Tt′ , we can use Lemma 6.14 to obtain

(Dt1x|Ft1 )|t̂2 = (Vt′z)|t̂2 = Vt2Et2,t′z

and use t̂2 ⊆ t̂1 to arrive at

〈χt1Dt1x|Ft1 , χt2Dt2y|Ft2 〉 = 〈χ∗t2χt1Dt1x|Ft1 , Dt2y|Ft2 〉
= 〈(Dt1x|Ft1 )|t̂2 , Dt2y|Ft2 〉
= 〈Vt2Et2,t′z,Dt2y|Ft2 〉.

If chil(t2) = ∅, we have

〈χt1Dt1x|Ft1 , χt2Dt2y|Ft2 〉 = 〈Vt2Et2,t′z,Dt2y|Ft2 〉
= 〈Vt2Et2,t′z, (Gt2 − Vt2V ∗t2Gt2)y|Ft2 〉
= 〈Et2,t′z, V ∗t2(Gt2 − Vt2V ∗t2Gt2)y|Ft2 〉 = 0

due to V ∗t2Vt2 = I. Otherwise, i.e., if chil(t2) 6= ∅ holds, we find

〈χt1Dt1x|Ft1 , χt2Dt2y|Ft2 〉 = 〈Vt2Et2,t′z,Dt2y|Ft2 〉

= 〈Ut2 V̂t2Et2,t′z, Ut2(Ĝt2 − V̂t2 V̂ ∗t2Ĝt2)y|Ft2 〉

= 〈Et2,t′z, V̂ ∗t2U
∗
t2Ut2(Ĝt2 − V̂t2 V̂ ∗t2Ĝt2)y|Ft2 〉

= 〈Et2,t′z, V̂ ∗t2(Ĝt2 − V̂t2 V̂ ∗t2Ĝt2)y|Ft2 〉 = 0

due to U∗t2Ut2 = I and V̂ ∗t2 V̂t2 = I.

Lemma 7.9 allows us to represent the approximation error by a sum of the contribu-
tions introduced in all clusters, and Lemma 7.10 states that all of the contributions are
orthogonal with respect to each other, so that we can use the Pythagoras identity to
obtain an expression for the total error that involves only quantities that we can control
explicitly.
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7.3 Compression error

Theorem 7.11 (Error decomposition) We define the approximation G̃ ∈ KI×J by

G̃|t̂×ŝ :=

{
G|t̂×ŝ if b = (t, s) ∈ L−I×J ,
VtV

∗
t G|t̂×ŝ otherwise

for all b = (t, s) ∈ LI×J .

Using the matrices defined in (7.12), we have

(G− G̃)z =
∑
t∈TI

χtDtz|Ft for all z ∈ KJ ,

‖(G− G̃)z‖22 =
∑
t∈TI

‖Dtz|Ft‖22 for all z ∈ KJ ,

‖G− G̃‖22 ≤
∑
t∈TI

‖Dt‖22.

Proof. Let z ∈ KJ . Corollary 3.23 yields

(G− G̃)z =
∑

b=(t,s)∈LI×J

χt(G− G̃)|t̂×ŝz|ŝ =
∑

b=(t,s)∈L+I×J

χt(Gt − VtV ∗t Gt)|t̂×ŝz|ŝ,

and we can use Lemma 7.9 to get

χt(Gt − VtV ∗t Gt)|t̂×ŝz|ŝ =
∑
t∗∈Tt

χt∗Dt∗ |t̂∗×ŝz|ŝ for all t ∈ TI .

Combining both equations and recalling the definition of Ft of Lemma 6.15 gives us

(G− G̃)z =
∑

b=(t,s)∈L+I×J

∑
t∗∈Tt

χt∗Dt∗ |t̂∗×ŝz|ŝ =
∑
t∈TI

∑
s∈row+(t)

∑
t∗∈Tt

χt∗Dt∗ |t̂∗×ŝz|ŝ

=
∑
t∗∈TI

∑
t∈pred(t∗)

∑
s∈row+(t)

χt∗Dt∗ |t̂∗×ŝz|ŝ =
∑
t∗∈TI

χt∗Dt∗z|Ft∗ .

This is the first equation. Lemma 7.10 guarantees that all of its terms are pairwise
orthogonal, and this allows us to obtain a version of the Pythagoras identity for the
error decomposition.

‖(G− G̃)z‖22 = 〈(G− G̃)z, (G− G̃)z〉 =
〈 ∑
t1∈TI

χt1Dt1z|Ft1 ,
∑
t2∈TI

χt2Dt2z|Ft2
〉

=
∑
t1∈TI

∑
t2∈TI

〈χt1Dt1z|Ft1 , χt2Dt2z|Ft2 〉

=
∑
t∈TI

〈χtDtz|Ft , χtDtz|Ft〉 =
∑
t∈TI

‖χtDtz|Ft‖2 =
∑
t∈TI

‖Dtz|Ft‖2.

This is the second equation. It gives rise to the bound for the spectral norm if we take
the maximum on both sides.

Theorem 7.11 provides us with an equation and an estimate for the total error of the
approximation. Frequently, we are interested in blockwise estimates, e.g., if we want to
perform arithmetic operations based on block decompositions as in Chapter 5.
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7 H2-matrix compression

Corollary 7.12 (Block error) Let b = (t, s) ∈ L+I×J . We have

‖(G|t̂×ŝ − VtV
∗
t G|t̂×ŝ)z‖

2 =
∑
t∗∈Tt

‖Dt∗ |t̂∗×ŝz‖
2 for all z ∈ Kŝ.

Proof. Let z ∈ Kŝ. Due to b = (t, s) ∈ L+I×J , we have ŝ ⊆ Ft. We let x := χsz ∈ KJ
and use Lemma 7.9 and Lemma 7.10 to obtain

‖(G|t̂×ŝ − VtV
∗
t G|t̂×ŝ)z‖

2 = ‖(Gt − VtV ∗t Gt)x‖2 =
∥∥∥∑
t∗∈Tt

χt∗Dt∗x|Ft∗
∥∥∥2

=
∑
t1∈Tt

∑
t2∈Tt

〈χt1Dt1x|Ft1 , χt2Dt2x|Ft2 〉

=
∑
t∗∈Tt

‖χt∗Dt∗x|Ft∗‖
2 =

∑
t∗∈Tt

‖Dt∗ |t̂∗×ŝz‖
2.

In the final step, we have used xj = 0 for all j ∈ J \ ŝ and xj = zj for all j ∈ ŝ.
Controlling the error matrices Dt is straightforward: for leaves t ∈ LI , we have

‖Dt‖2 = ‖Gt − VtV ∗t Gt‖2,

and this is precisely the approximation error that we can control by using the left singular
vectors of Gt to define Vt. For the non-leaf clusters t ∈ TI \ LI , we have

‖Dt‖2 = ‖Ut(Ĝt − V̂tV̂ ∗t Ĝt)‖2 = ‖Ĝt − V̂tV̂ ∗t Ĝt‖2
since Ut is isometric, and again this is the approximation error that we can control by
using the left singular vectors of Ĝt to obtain the transfer matrices V̂t.

Remark 7.13 (Weighted estimates) The compression error can be controlled in far
more detail by introducing weight factors to the matrices Gt: if we have ωt,s ∈ R>0 for

all t ∈ TI and s ∈ row(t+) for t+ ∈ pred(t), we can define Gt,ω ∈ Kt̂×Ft by

Gt,ω|t̂×ŝ := ω−1t,sG|t̂×ŝ for all t ∈ TI , t+ ∈ pred(t), s ∈ row(t+)

and replace Gt by Gt,ω in the SVD and accordingly Dt by Dt,ω. If we now choose the
ranks kt to ensure

‖Dt,ω‖2 ≤ ε for all t ∈ TI ,

Corollary 7.12 yields the estimate

‖G|t̂×ŝ − VtV
∗
t G|t̂×ŝ‖

2
2 ≤

∑
t∗∈Tt

ω2
t∗,sε

2 for all b = (t, s) ∈ L+I×J ,

i.e., we can ensure different error bounds for different blocks [5].
One possibility are block-relative error estimates: if we choose the weights ωt,s :=

‖G|t̂+×ŝ‖2 qlevel(t)−level(t
+) for t ∈ TI , t+ ∈ pred(t) and s ∈ row(t+), our approach yields

‖G|t̂×ŝ − VtV
∗
t G|t̂×ŝ‖

2
2 ≤

ε

1− Csnq2
‖G|t̂×ŝ‖

2
2 for all b = (t, s) ∈ L+I×J ,

where Csn is a bound for the number of sons and Csnq
2 < 1.
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7.4 Compression of H-matrices

The algorithm buildrowbasis amatrix requires at least |I| |J | operations. This is not
surprising, since it is looking for an approximation of a general matrix G ∈ KI×J and
therefore has to examine each of its coefficients at least once.

If the matrix G is already given in compressed form, e.g., as an H- or H2-matrix, we
can take advantage of the additional structure to significantly reduce the computational
work required for the compression.

Let us assume that G is an H-matrix, i.e., that we have

G|t̂×ŝ = AbB
∗
b for all b = (t, s) ∈ L+I×J .

In order to take advantage of this factorization, we introduce

Bt := {b = (t>, s) ∈ L+I×J : t> ∈ pred(t)} for all t ∈ TI

and have
Ft =

⋃
(t>,s)∈Bt

ŝ

due to (6.10).
Given a cluster t ∈ TI , we let m := |Bt| and Bt = {b1 = (t>,1, s1), . . . , bm = (t>,m, sm)}

and write Gt in the form

Gt =
(
G|t̂×ŝ1 . . . G|t̂×ŝm

)
.

Since our construction requires only the singular values and the left singular vectors, we
can replace Gt by an isometric factorization without losing the relevant information.

To this end, we compute QR factorizations

Bb = QbRb, Qb ∈ Kŝ×Lb isometric, Rb ∈ KLb×k for all b = (t, s) ∈ L+I×J ,

where the index sets Lb are chosen as subsets of ŝ with |Lb| ≤ k. Due to Corollary 3.23,
this choice implies that the sets Lb1 ⊆ ŝ1, . . . ,Lsm ⊆ ŝm are pairwise disjoint.

The factorizations of the matrices Bb give rise to a factorization of Gt:

Gt =
(
G|t̂×ŝ1 . . . G|t̂×ŝm

)
=
(
Ab1 |t̂×kR∗b1Q

∗
b1

. . . Abm |t̂×kR∗bmQ
∗
bm

)
=
(
Ab1 |t̂×kR∗b1 . . . Abm |t̂×kR∗bm

)Q
∗
b1

. . .

Q∗bm

 .

Since Q(t,s1), . . . , Q(t,sm) are isometric, the second factor does not influence the singular
values or left singular vectors, so we can discard it and conclude that we can replace Gt
by the condensed matrix

Gct :=
(
Ab1 |t̂×kR∗b1 . . . Abm |t̂×kR∗bm

)
∈ Kt̂×Fct , Fct :=

⋃
b∈Bt

Lb ⊆ J .
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7 H2-matrix compression

In a similar fashion, we replace Xt = V ∗t Gt by

Xc
t := V ∗t G

c
t

and for clusters t with chil(t) 6= ∅, we let n := | chil(t)| and chil(t) = {t1, . . . , tn} and
replace Ĝt by its condensed counterpart

Ĝct =

X
c
t1 |kt1×Fct

...
Xc
tn |ktn×Fct

 .

This approach reduces the computational work significantly: there are at most pI + 1
predecessors of a cluster t ∈ TI , and each of these predecessors can be associated with
at most Csp blocks. The thin QR factorizations guarantee that in the condensed matrix,
every one of these blocks is represented by at most k columns.

Lemma 7.14 (Condensed farfield) We assume that TI×J is Csp-sparse. Then we
have

|Fct | ≤ Cspk |pred(t)| ≤ Cspk(pI + 1) for all t ∈ TI

Proof. Let t ∈ TI . We have

Bt = {b = (t>, s) ∈ L+I×J : t> ∈ pred(t)} ⊆
⋃

t>∈pred(t)

row(t>),

|Bt| ≤
∑

t>∈pred(t)

| row(t>)| ≤ Csp | pred(t)| ≤ Csp(pI + 1).

Due to

|Lb| ≤ k for all b ∈ L+I×J ,

we obtain
|Fct | ≤

∑
b∈Bt

|Lb| ≤ k |Bt| ≤ Cspk pred(t) ≤ Cspk(pI + 1).

Lemma 7.15 (Complexity) Preparing the weight matrices Rb for all b = (t, s) ∈
L+I×J requires not more than

CqrCspk
2(pI×J + 1)|J | operations.

If we replace Gt, Ĝt and Xt in the algorithm buildrowbasis amatrix by their condensed
counterparts Gct , Ĝ

c
t and Xc

t , the resulting algorithm requires not more than

CspCbbk̂
2(pI + 1)|I|+ CspCbbk̂

3(pI + 1)|TI | operations.
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Proof. Let b = (t, s) ∈ L+I×J . Due to Assumption 5.7, the QR factorization of Bb can
be computed in not more than

Cqrk
2 |ŝ| operations,

and performing this task for all admissible leaves requires not more than

Cqrk
2

∑
b=(t,s)∈L+I×J

|ŝ| ≤ CspCqrk
2(pI×J + 1)|J | operations

due to Lemma 3.34.
In order to obtain the estimate for the construction of the row basis, we simply replace
Ft by Fct in the proof of Lemma 7.6 and use Lemma 7.14 to find a bound for |Fct |.

Once we have constructed suitable isometric cluster bases V = (Vt)t∈TI and W =
(Ws)s∈TJ , we can compute the coupling matrices for admissible leaves efficiently by
taking advantage of the low-rank factorization: we have

Sb := V ∗t G|t̂×ŝWs = V ∗t AbB
∗
bWs = (V ∗t Ab)(W

∗
sBb)

∗ for all b = (t, s) ∈ L+I×J ,

and V ∗t Ab ∈ KKt×k and W ∗sBb ∈ Kks×k can be evaluated by applying the forward
transformation to the columns of Ab and Bb, and this takes not more than

2k2|t̂|+ 2k3|Tt|+ 2k2|ŝ|+ 2k3|Ts| operations.

Multiplying both products requires only 2 ktkks ≤ 2k3 operations per block.

Remark 7.16 (Typical complexity) If we have |t̂| ≥ k and |ŝ| ≥ k for all leaves
t ∈ LI and s ∈ LJ and if no cluster has exactly one child, we have already seen in
Remark 6.10 that we have k|TI | ≤ 2|I| and k|TJ | ≤ 2|J | and find that our algorithm
requires O(k̂2(pI + 1)(|I| + |J |)) operations. The original H-matrix requires O(k̂(pI +
1)(|I|+ |J |)) units of storage, so the algorithm has almost optimal complexity.

Remark 7.17 (Error control) Since this algorithm computes exactly the same cluster
bases (up to rounding errors) as the previous one, the same error estimates apply.

Remark 7.18 (Second phase) Usually we have to compute both a row and a column
basis. If we start with the row basis, we compute QR factorizations of the matrices Bb
and the condensed matrices AbR

∗
b .

The column basis can be computed by reversing the roles of Ab and Bb, i.e., the QR
factorizations of Ab have to be computed and the triangular factors multiplied with Bb.

There is, however, a potentially attractive alternative: if we already have an isometric
row basis at our disposal, we can also condense the admissible blocks by replacing Ab by
VtV

∗
t Ab and BbA

∗
b by BbA

∗
bVtV

∗
t . Since V ∗t is isometric, we can discard it as before to

obtain a condensed matrix Gct . This approach has the advantage that the matrices Ĝct
end up containing the coupling matrices for the compressed H2-matrix.
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7.5 Compression of H2-matrices

It is frequently desirable to construct an H2-matrix approximation of a matrix that is
already, explicitly or implicitly, given in H2-matrix form, e.g., to reduce an unnecessarily
high rank or to recompress the intermediate result of an arithmetic operation.

We assume that G is an H2-matrix with a row cluster basis Vold and a column clus-
ter basis Wold, both of rank k. The transfer matrices for both bases are denoted by
(Eold,t)t∈TI and (Fold,s)s∈TJ , and the coupling matrices by (Sold,b)b∈L+I×J

.

In order to handle the recompression efficiently, we can take advantage of Corol-
lary 6.17: for each t ∈ TI , we know that a matrix Bt ∈ KFt×k exists satisfying

Gt = G|t̂×Ft = Vold,tB
∗
t .

As in the case of the H-matrix compression, we can use a QR factorization

Bt = QtZt,

where Zt ∈ KLt×k for an index set Lt ⊆ Ft with |Lt| ≤ k to find a representation

Gt = Vold,tZ
∗
tQ
∗
t

that allows us to discard the isometric matrix Qt and only compute the SVD of the
condensed matrix Vold,tZ

∗
t . Since this matrix cannot have more than k columns, the

resulting recompression algorithm is very efficient.

Definition 7.19 (Total weights) A family (Zt)t∈TI of matrices Zt ∈ KLt×k with index
sets Lt ⊆ Ft satisfying |Lt| ≤ k is called a family of total weights for the row cluster
basis Vold and the matrix G ∈ KI×J if for every t ∈ TI there is an isometric matrix
Qt ∈ KFt×Lt such that

Gt = Vold,tZ
∗
tQ
∗
t . (7.13)

Total weight matrices allow us to significantly reduce the computational work required
for the H2-matrix compression, but constructing them directly via the definition (7.13)
is unattractive: computing Zt directly would require ∼ k2 |Ft| operations and lead to
quadratic complexity if applied to all clusters.

In order to overcome this obstacle, we follow the same approach as for the forward
and backward transformation and consider the task of computing isometric matrices
Qt ∈ KFt×Lt and weight matrices Zt ∈ KLt×k with |Lt| ≤ k such that

Gt = Vold,tZ
∗
tQ
∗
t for all t ∈ TI

for all clusters, not just for individual clusters. As in the transformation algorithms,
this allows us to make use of the hierarchical structure to speed up the computation.

Let t ∈ TI , and let n := | row+(t)| denote the number of admissible blocks b = (t, s) ∈
L+I×J . We enumerate the corresponding column clusters as row+(t) = {s1, . . . , sn}.
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We assume that t is not the root, i.e., there is a parent cluster t+ ∈ TI such that
t ∈ chil(t+). This implies

pred(t) = {t} ∪ pred(t+),

and therefore

Ft = Ft+ ∪
n⋃
j=1

ŝj .

Using a suitable recursive algorithm, we can assume that the matrices Zt+ and Qt+ and
the index set Lt+ ⊆ Ft+ with

Gt+ = Vold,t+Z
∗
t+Q

∗
t+

have already been computed, and therefore we can use (6.3) to obtain

Gt =
(
Gt+ |t̂×Ft+ Vold,tSold,t,s1W

∗
old,s1

. . . Vold,tSold,t,snW
∗
old,sn

)
=
(
Vold,t+ |t̂Z∗t+Q

∗
t+ Vold,tSold,t,s1W

∗
old,s1

. . . Vold,tSold,t,snW
∗
old,sn

)
=
(
Vold,tEold,tZ

∗
t+Q

∗
t+ Vold,tSold,t,s1W

∗
old,s1

. . . Vold,tSold,t,snW
∗
old,sn

)
= Vold,t

(
Eold,tZ

∗
t+Q

∗
t+ Sold,t,s1W

∗
old,s1

. . . Sold,t,snW
∗
old,sn

)
.

The first submatrix already involves an isometric factor that can be eliminated during
a condensation step, but the remaining submatrices do not. QR factorizations of the
column cluster basis can help us transform these matrices into a more suitable form.

Definition 7.20 (Basis weights) A family (RW,s)s∈TJ of matrices RW,s ∈ KLW,s×k
with index sets LW,s ⊆ ŝ satisfying |LW,s| ≤ k is called a family of basis weights for the
column cluster basis Wold if for every s ∈ TJ there is an isometric matrix QW,s ∈ Kŝ×LW,s

such that
Wold,s = QW,sRW,s. (7.14)

Assuming that we can construct these basis weight matrices efficiently, we can use
them to write Gt in the form

Gt = Vold,t
(
Eold,tZ

∗
t+Q

∗
t+ Sold,t,s1W

∗
old,s1

. . . Sold,t,snW
∗
old,sn

)
= Vold,t

(
Eold,tZ

∗
t+Q

∗
t+ Sold,t,s1R

∗
W,s1

Q∗W,s1 . . . Sold,t,snR
∗
W,sn

Q∗W,sn
)

= Vold,t
(
Eold,tZ

∗
t+ Sold,t,s1R

∗
W,s1

. . . Sold,t,snR
∗
W,sn

)

Q∗t+

Q∗W,s1
. . .

Q∗W,sn

 .

Introducing the matrices

Yt :=


Zt+E

∗
old,t

RW,s1S
∗
old,t,s1

...
RW,snS

∗
old,t,sn

 ∈ KF
c
t×k, Pt :=


Qt+

QW,s1
. . .

QW,sn

 ∈ KFt×F
c
t

(7.15)
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7 H2-matrix compression

procedure totalweights(s, Vold, Sold, RW , var Z, L);
Fct ← ∅;
if t is not the root then
Fct ← Lt+ ;

for s ∈ row+(t) do
Fct ← Fct ∪ LW,s;

Yt ← 0 ∈ KFct×k;
if t is not the root then
Yt|Lt+ ← Zt+E

∗
old,t;

for s ∈ row+(t) do
Yt|LW,s ← RW,sS

∗
old,t,s;

Compute a QR factorization Yt = Q̂tZt;
for t′ ∈ chil(t) do
totalweights(t′, Vold, Sold, RW , Z, L)

end

Figure 7.2: Column basis weights for Wold

with the index set
Fct := Lt+ ∪ LW,s1 ∪ . . . ∪ LW,sn ⊆ J ,

we can write this identity in the short form

Gt = Vold,tY
∗
t P
∗
t .

We compute a QR factorization of Yt to obtain an isometric matrix Q̂t ∈ KFct×Lt , a
matrix Zt ∈ KLt×k with an index set Lt ⊆ Fct ⊆ J satisfying |Lt| ≤ k and

Yt = Q̂tZt.

With the isometric matrix Qt := PtQ̂t ∈ KFt×Lt , we arrive at

Gt = Vold,tY
∗
t P
∗
t = Vold,tZ

∗
t Q̂
∗
tP
∗
t = Vold,tZ

∗
tQ
∗
t

and have found the required factorization.
So far, we have assumed that t is not the root. If it is, we simply skip the terms

connected to t+ in the procedure, i.e., for the root, only blocks in row+(t) are considered.
The resulting procedure is summarized in Figure 7.2.

It is, of course, still incomplete, since we still have to address the task of computing
the basis weights (RW,s)s∈TJ required to set up the matrices Yt. We can again use a
recursive algorithm: if s ∈ TJ is a leaf, we have Wold,s at our disposal and can compute
the QR factorization

Wold,s = QW,sRW,s

directly, finding RW,s ∈ KLW,s×k with an index set LW,s ⊆ ŝ.
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procedure basisweights(s, Wold, var RW , LW );
if chil(t) = ∅ then

Compute a QR factorization Wold,s = QW,sRW,s with RW,s ∈ KLW,s×k
else begin

L̂W,s ← ∅;
for s′ ∈ chil(s) do begin
basisweights(s′, Wold, RW , LW );

L̂W,s ← L̂W,s ∪ LW,s′
end;

Ŵs ← 0 ∈ KL̂W,s×k;
for s′ ∈ chil(s) do

Ŵs|LW,s′ ← RW,s′Fold,s′

Compute a QR factorization Ŵs = Q̂sRW,s with RW,s ∈ KLW,s×k
end

end

Figure 7.3: Column basis weights for Wold

Otherwise, i.e., if s has children, we can use recursion to first compute the matrices
RW,s′ for all children s′ ∈ chil(s). We let n := | chil(s)| and chil(s) = {s1, . . . , sn}. Using
(6.3) again, we find

Wold,s =

Wold,s1Fold,s1
...

Wold,snFold,sn

 =

QW,s1RW,s1Fold,s1
...

QW,snRW,snFold,sn


=

QW,s1 . . .

QW,sn


RW,s1Fold,s1

...
RW,snFold,sn


We construct

Ŵs :=

RW,s1Fold,s1
...

RW,snFold,sn

 ∈ KL̂W,s×k, L̂W,s := LW,s1 ∪ . . . ∪ LW,sn ⊆ ŝ,

and finding a QR factorization

Ŵs = Q̂W,sRW,s

with an isometric matrix Q̂W,s ∈ KL̂W,s×LW,s and a matrix RW,s ∈ KLW,s×k with an
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index set LW,s ⊆ L̂W,s with |LW,s| ≤ k yields

Ws =

QW,s1 . . .

QW,sn

 Ŵs =

QW,s1 . . .

QW,sn

 Q̂W,s

︸ ︷︷ ︸
=:QW,s

RW,s,

where QW,s is the product of two isometric matrices and therefore isometric, too. This
procedure is summarized in Figure 7.3.

Now we can get back to the task of constructing an improved cluster basis. Let t ∈ TI .
If chil(t) = ∅ holds, we have Vold,t at our disposal and can compute the singular value
decomposition of

Gct := Vold,tZ
∗
t .

Due to (7.13), i.e., Gt = GctQ
∗
t , the left singular vectors and singular values of this

matrix are the same as of the matrix Gt, and we can proceed as in the algorithm
buildrowbasis amatrix to choose a rank kt and construct Vt ∈ Kt̂×k. Instead of com-
puting Ĝt, we prepare the matrix

Rt := V ∗t Vold,t ∈ Kkt×k

describing the change from the original to the new cluster basis.
If chil(t) 6= ∅, we use recursion to prepare the cluster bases and the matrices Rt′ for

all children t′ ∈ chil(t). Let n := | chil(t)| and chil(t) = {t1, . . . , tn}. We have

Ĝt = U∗t Vold,tZ
∗
tQ
∗
t =

V
∗
t1Vold,t1Eold,t1

...
V ∗tnVold,tnEold,tn

Z∗tQ
∗
t =

Rt1Eold,t1
...

RtnEold,tn

Z∗tQ
∗
t .

We let

V̂old,t := U∗t Vold,t =

Rt1Eold,t1
...

RtnEold,tn

 (7.16)

and conclude that we have to compute the singular value decomposition of

Ĝct := V̂old,tZ
∗
t

and use the singular values to choose the rank kt and the left singular vectors to define
V̂t and thereby the transfer matrices of the new cluster basis. The basis change matrix
can be computed efficiently via

Rt = V ∗t Vold,t = V̂ ∗t U
∗
t Vold,t = V̂ ∗t V̂old,t.

Since Ĝt = ĜctQ
∗
t holds, the result is the same as in the original algorithm. The algorithm

is summarized in Figure 7.4.
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procedure buildrowbasis h2matrix(t, Vold, Z, var V , R);
if chil(t) = ∅ then begin

Compute SVD of Gct := Vold,tZ
∗
t ;

Choose rank kt;
Use first kt left singular vectors to form Vt;
Rt ← V ∗t Vold,t

end
else begin

for t′ ∈ chil(t) do
buildrowbasis h2matrix(t′, Vold, Z, V , R);

Form V̂old,t according to (7.16);

Compute SVD of Ĝct := V̂old,tZ
∗
t ;

Choose rank kt;

Use first kt left singular vectors to form V̂t;

Rt ← V̂ ∗t V̂old,t;

Obtain transfer matrices by splitting V̂t according to (7.7)
end

end

Figure 7.4: Adaptive row basis for an H2-matrix

Since the entire error analysis for the original algorithm buildrowbasis amatrix re-
mains valid for the new algorithm buildrowbasis h2matrix, we only have to investigate
the latter’s complexity. This involves three steps: the construction of the basis weights,
the construction of the total weights, and finally the construction of the new cluster
basis.

Lemma 7.21 (Basis weights) We define

Wbw(s) :=

{
Cqrk

2 |ŝ| if chil(s) = ∅,
(Cqr + 2)

∑
s′∈chil(s) k

3 +Wbw(s′) otherwise
for all s ∈ TJ .

Calling the function basisweights for a cluster s ∈ TJ requires not more than Wbw(s)
operations.

Computing all basis weights takes not more than

Cqrk
2 |J |+ (Cqr + 2)k3 |TJ | operations.

Proof. By induction over |Ts|.
Let s ∈ TJ with |Ts| = 1. Then we have chil(s) = ∅ and can use Assumption 5.7 to

see that we need not more than

Cqr|ŝ| k2 = Wbw(s) operations.
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7 H2-matrix compression

Let now n ∈ N be such that the estimate holds for all s ∈ TJ with |Ts| ≤ n.
Let s ∈ TI with |Ts| = n+ 1. Then we have chil(t) 6= ∅ and find

|L̂W,s| ≤ k | chil(s)|.

Constructing Ŵs requires not more than∑
s′∈chil(s)

2|LW,s′ | k2 ≤ 2k3 | chil(s)| operations,

and the QR factorization not more than

Cqr|L̂W,s| k2 ≤ Cqrk
3 | chil(s)| operations,

again due to Assumption 5.7. Adding both estimates completes the induction.
For the upper bound, a simple induction yields the bound

Cqr

∑
s∈LJ

|ŝ| k2 + (Cqr + 2)
∑

s∈TJ \LJ

∑
s′∈chil(s)

k3 ≤ Cqr|J | k2 + (Cqr + 2)
∑
s′∈TJ

k3

≤ Cqr|J | k2 + (Cqr + 2)|TJ | k3,

where we have used Corollary 3.19 for the first sum.

Lemma 7.22 (Total weights) We define

Wtw(t) := (Cqr + 2)(Csp + 1)k3 +
∑

t′∈chil(t)

Wtw(t′) for all t ∈ TI .

Calling the function totalweights for a cluster t ∈ TI requires not more than Wtw(t)
operations.

Computing all total weights takes not more than

(Cqr + 2)(Csp + 1)k3 |TI | operations.

Proof. Let t ∈ TI . We have

|Fct | ≤ k + k | row+(t)| ≤ (Csp + 1)k.

Constructing the matrix Yt takes not more than

2k3 +
∑

s∈row+(t)

2k3 ≤ 2(Csp + 1)k3 operations,

and finding its QR factorization not more than

Cqrk
2 |Fct | ≤ Cqrk

2(Csp + 1)k = Cqr(Csp + 1)k3 operations.

Adding both estimates yields the first result. The second follows directly via a simple
induction.
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Lemma 7.23 (Improved cluster basis) We define

Wrb(t) :=

{
(Csvd + 4)k2 |t̂| if chil(t) = ∅,
(Csvd + 6)

∑
t′∈chil(t) k

3 +Wrb(t
′) otherwise

for all t ∈ TI .

Calling the function buildrowbasis h2matrix for a cluster t ∈ TI requires not more
than Wrb(t) operations.

Constructing the entire adaptive row basis takes not more than

(Csvd + 6)(k2 |I|+ k3 |TI |) operations.

Proof. By induction over |Tt|.
Let t ∈ TI with |Tt| = 1. Then we have chil(t) = ∅. Computing Gct requires not more

than
2k2 |t̂| operations,

the singular value decomposition requires not more than

Csvdk
2 |t̂| operations

due to Assumption 5.7, and preparing Rt takes not more than

2k2 |t̂| operations.

Adding the three estimates yields Wrb(t).
Let now n ∈ N be chosen such that the estimate holds for all t ∈ TI with |Tt| ≤ n.
Let t ∈ TI with |Tt| = n + 1. Then we have chil(t) 6= ∅. Constructing V̂old,t requires

not more than ∑
t′∈chil(t)

2k3 operations.

Since this matrix hat not more than∑
t′∈chil(t)

k = k | chil(t)|

rows, we can compute Ĝct in not more than

2k3 | chil(t)| operations

and Assumption 5.7 yields that not more than

Csvdk
3 | chil(t)| operations

are required for the singular value decomposition. The matrix Rt can finally be computed
in not more than

2ktk
2 | chil(t)| ≤ 2k3 | chil(t)| operations,

and adding the four estimates yields Wrb(t), completing the induction.
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7 H2-matrix compression

For the upper bound, a simple induction yields

(Csvd + 4)
∑
t∈LI

k2 |t̂|+ (Csvd + 6)
∑

t∈TI\LI

∑
t′∈chil(t)

k3

≤ (Csvd + 4)k2 |I|+ (Csvd + 6)
∑
t′∈TI

k3

≤ (Csvd + 4)k2 |I|+ (Csvd + 6)k3 |TI |,

where we have used Corollary 3.19 for the first sum.

We can see that O(k2|J | + k3|TJ |) operations are sufficient to compute the basis
weights and that O(k2|I|+k3|TI |) operations are sufficient for the total weights and the
improved row basis.

Remark 7.24 (Typical complexity) If we have |t̂| ≥ k and |ŝ| ≥ k for all leaves
t ∈ LI and s ∈ LJ and if no cluster has exactly one child, we have already seen in
Remark 6.10 that we have k|TI | ≤ 2|I| and k|TJ | ≤ 2|J | and find that our algorithms
require O(k2 |J |) and O(k2 |I|) operations, respectively, i.e., we obtain linear complexity.

Remark 7.25 (Weighted estimates) Since the new algorithm works with the total
weights Zt instead of the original matrices Gt, we cannot choose arbitrarily general
weighting strategies as in Remark 7.13.

Fortunately, there is still enough flexibility to ensure blockwise error estimates: if we
let ωt,s := ‖G|t̂+×ŝ‖2qlevel(t)−level(t

+) for t ∈ TI , t+ ∈ pred(t), and s ∈ row+(t+), we can
see that we only have to modify the definition of Yt in (7.15) by including simple weights:

Yt,ω :=


Zt+E

∗
old,t/q

RW,s1S
∗
old,t,s1

/‖G|t̂×ŝ1‖2
...

RW,snS
∗
old,t,sn

/‖G|t̂×ŝn‖2

 .

Of course, now we have to compute the norms of the admissible submatrix blocks. If we
prepare basis weights RV for the row cluster basis as well as RW for the column cluster
basis, we have

‖G|t̂×ŝ‖2 = ‖Vold,tSold,t,sW ∗old,s‖2 = ‖RV,tSold,t,sR∗W,s‖2 for all b = (t, s) ∈ L+I×J ,

and the matrix on the right has not more than k rows and columns, therefore its spectral
norm can be computed efficiently. Since we need only a lower bound, we can even use a
power iteration to estimate this norm.
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[7] S. Börm and L. Grasedyck. Hybrid cross approximation of integral operators. Nu-
mer. Math., 101:221–249, 2005.
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