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1. Introduction

Differential equations have been established as one of the most important representations
of the laws governing natural phenomena, e.g., the movement of bodies in a gravitational
field or the growth of populations.

If all functions appearing in the equation depend only on one variable, we speak of
an ordinary differential equation. Ordinary differential equations frequently describe the
behaviour of a system over time, e.g., the movement of an object depends on its velocity,
and the velocity depends on the acceleration.

Ordinary differential equations can be treated by a variety of numerical methods, most
prominently by time-stepping schemes that evaluate the derivatives in suitably chosen
points to approximate the solution.

If the functions in the equation depend on more than one variable and if the equation
therefore depends on partial derivatives, we speak of a partial differential equation. Par-
tial differential equations can be significantly more challenging than ordinary differential
equations, since we may not be able to split the computation into discrete (time-)steps
and have to approximate the entire solution at once.

A typical example is the potential equation of electrostatics. Given a domain  C R3,
we consider

0%u 0%u 0%u

aiﬁ($)+67$%($)+aix§(x)=f(x) for all z € Q,

oYu
oxY

Explicit solutions for this equation are only known in special situations, e.g., if = R3
or Q = [a1,b1] X [ag,ba] X [as, bs], while the general case usually has to be handled by
numerical methods.

Since computers have only a finite amount of storage at their disposal, they are
generally unable to represent the solution u as an element of the infinite-dimensional
space C2(Q) exactly. Instead we look for an approzimation of the solution in a finite-
dimensional space that can be represented by a computer. Since the approximation is
usually constructed by replacing the domain §2 by a grid of discrete points, the approx-
imation of the solution is called a discretization.

A fairly simple discretization technique is the method of finite differences: we replace
the derivatives by difference quotients and replace §2 by a grid €2, such that the difference
quotients in the grid points can be evaluated using only values in grid points. In the case
of the potential equation, this leads to a system of linear equations that can be solved
in order to obtain an approximation wuy, of u.

We have to investigate the discretization error, i.e., the difference between uy, and w in
the grid points. This task can be solved rather elegantly by establishing the consistency

where denotes the v-th partial derivative with respect to the i-th variable.




1. Introduction

and the stability of the discretization scheme: consistency means that applying the
approximated derivatives to the real solution u yields an error that can be controlled,
and stability means that small perturbations of the forcing term f lead only to small
perturbations of the solution uy. Once both properties have been established, we find
that the discretization scheme is convergent, i.e., that we can reach any given accuracy
as long as we use a sufficiently fine grid.

For time-dependent problems like the heat equation and the wave equations, it is a
good idea to treat the time variable separately. An attractive approach is the method
of lines that uses a discretization in space to obtain a system of ordinary differential
equations that can be treated by standard time-stepping algorithms.

Since the Lipschitz constant arising in this context is quite large, it is a good idea to
consider implicit time-stepping schemes that provide better stability and do not require
us to use very small time steps in order to avoid oscillations.

The wave equation conserves the total energy of the system, and we would like to
have a numerical scheme that shares this property. If we replace the total energy by
a suitable discretized counterpart, we find that the Crank-Nicolson method guarantees
that the discretized total energy indeed remains constant.

In order to prove consistency of finite difference methods, we frequently have to assume
that the solution w is quite smooth, e.g., a standard approach for the potential equation
requires u to be four times continuously differentiable. This is an assumption that is only
rarely satisfied in practice, so we have to consider alternative discretization schemes.

Variational methods are particularly attractive, since they are based on an elegant
reformulation of the partial differential equation in terms of Hilbert spaces. We can
prove that the variational equation has a unique generalized solution in a Sobolev space,
and that this generalized solution coincides with the classical solution if the latter exists.
Variational formulations immediately give rise to the Galerkin discretization scheme that
leads to a system of equations we can solve to obtain an approximation of the solution.

If we use a finite element method, this system has a number of desirable properties,
most importantly it is sparse, i.e., each row of the corresponding matrix contains only
a small number of non-zero entries. This allows us to apply particularly efficient solvers
to obtain the approximate solution.

In order to be able to approximate the solution even with fairly weak regularity as-
sumptions, we investigate the approximation properties of averaged Taylor polynomials
and obtain the Bramble-Hilbert lemma, a generalized error estimate for these polynomi-
als, and the Sobolev lemma, an embedding result for Sobolev spaces that allows us to
use standard interpolation operators to construct the finite element approximation.
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2. Finite difference methods

This chapter provides an introduction to a first simple discretization technique for elliptic
partial differential equations: the finite difference approach replaces the domain by a grid
consisting of discrete points and the derivatives in the grid points by difference quotients
using only adjacent grid points. The resulting system of linear equations can be solved
in order to obtain approximations of the solution in the grid points.

2.1. Potential equation

A typical example for an elliptic partial differential equation is the potential equation, also
known as Poisson’s equation. As its name suggests, the potential equation can be used
to find potential functions of vector fields, e.g., the electrostatic potential corresponding
to a distribution of electrical charges.

In the unit square Q := (0,1) x (0,1) the equation takes the form

d%u &%u

_Tx%(ﬂf)_@(fﬂ) = f(x) for all x = (z1,z2) € Q.

In order to obtain a unique solution, we have to prescribe suitable conditions on the

boundary
00 :=0NR2\ Q={0,1} x [0,1]U[0,1] x {0,1}

of the domain. Particularly convenient for our purposes are Dirichlet boundary conditions
given by
u(z) =0 for all z = (1, x2) € ON.

In the context of electrostatic fields, these conditions correspond to a superconducting
boundary: if charges can move freely along the boundary, no potential differences can
occur.

In order to shorten the notation, we introduce the Laplace operator

0%u 9%u

A = — — i lz= Q
u(x) 927 (z) + 923 () or all z = (z1,22) € 0,

and summarize our task as follows:
Find u € C(Q) with ulg € C%(Q), and

—Au(z) for all z € Q, (2.1a)
u(z) =0 for all z € 0. (2.1b)

I
=
&



2. Finite difference methods

Solving this equation “by hand” is only possible in special cases, the general case is
typically handled by numerical methods.

The solution u is an element of an infinite-dimensional space of functions on the domain
), and we can certainly not expect a computer with only a finite amount of storage to
represent it accurately. That is why we employ a discretization, in this case of the domain
): we replace it by a finite number of discrete points and focus on approximating the
solution only in these points.

Using only discrete points means that we have to replace the partial derivatives in the
equation by approximations that require only the values of the function in these points.

Lemma 2.1 (Central difference quotient) Let h € R.g and g € C*[—h,h]. We can
find n € (—h,h) with

g(h) —29(0) + g(=h) h? (@)

2 =g¢"(0) + 129 n)-

Proof. Using Taylor’s theorem, we find 74 € (0,h) and n— € (—h,0) with

/ h? " h? " ht (4)
g(h) = g(0) + hg'(0) +59 (0) +Eg (0) + 219 (n4),
) — a0y — hat oy oy - gy @
9(=h) = g(0) = hg'(0) + 5-97(0) = ~=9"(0) + 579 (n-).

Adding both equations yields

Wt g (ny) + 90 (n-)

9(h) + g(=h) = 29(0) + K" (0) + 15 .

Since the fourth derivative ¢(¥) is continuous, we can apply the intermediate value the-
orem to find 7 € [n—, ny] with

) () — 9 W) +gWno)

9" (n) 5
and obtain .
(1)~ 29(0) + g(~h) = 1"(0) + 154D ).
Dividing by h? gives us the required equation. ]

Exercise 2.2 (First derivative) Let h € R-q and g € C?[0,h]. Prove that there is an
n € (0,h) such that

g(h) —g(0 h
W90 _ o) + 2.
Let now g € C3[—h, h]. Prove that there is an n € (—h, h) such that
g(h) —g(—h h?



2.1. Potential equation

Applying Lemma to the partial derivatives with respect to 1 and x5, we obtain
the approximations

2u(w1,x2) — u(zy + h,z2) —u(zy — h,a2)  6%u h? 0*u
h2 - 8:1?% (x) + 12 8:6‘11 (7717 I’Q), (228“)
2u(w1,x2) — u(z1, @2 + h) —u(zi, 22 —h) _ 6%u h? 0*u

with suitable intermediate points 7 € [z1 — h, z2 + h| und 12 € [z2 — h, x2 + h]. Adding
both equations and dropping the h? terms leads to the approximation

u(zy + hyz2) +u(zr — hyz2) + u(zr, 22 + h) + u(zr, 22 — h) — 4u(zr, 2)

Apu(x) = 2

(2.3)
fiur alle x € Q, h € H,

of the Laplace operator, where the set
H, = {hER>0 s x1+h€ [0,1], 1 —he€ [0,1], xo+ h € [0,1], x9 —h € [0,1]}

describes those step sizes for which the difference quotient can be evaluated without
leaving the domain €2. The approximation is frequently called a five point star,
since the values of u are required in five points in a star-shaped pattern centered at x.

In order to quantify the approximation error, we introduce suitable norms on function
spaces.

Reminder 2.3 (Maximum norm) For real-valued continuous functions on a compact
set K, we define the maximum norm by

|ulloo k1= max{|u(x)| : = € K} for allu € C(K).
For vectors with a general finite index set T, we let
|u|loo := max{|u;| : i €L} for all u € RE.

Lemma 2.4 (Consistency) If u € C*(Q) holds, we have

2
|Apu(z) — Au(z)| < %|u|4,g forallz € Q, h € Hy, (2.4)

where we use the semi-norm

4,Q ‘= max {'

on the right-hand side that is defined by the mazimum norm of the fourth derivatives.

OV THy,
vV AH
Oz Oxy

|u

: v, 1 € No, 1/+u:4}

00,02



2. Finite difference methods

Figure 2.1.: Grid for N =9

Proof. We add the equations (2.2) and bound the fourth derivatives by |u|4q. [

Compared to the differential operator A, the difference operator Ay offers the advan-
tage that only values of the function in a small number of discrete points are required.
We can use this property to replace the domain €2 by a finite set of points that is far
better suited for computers.

Definition 2.5 (Grid) Let N € N, and let
1
=N
Qp = {(Gh,jh) : i,je{l,...,N}} CQ,
oQy, := {(ih,0), (th,1),(0,5h), (1,5h) : 4,5 € {0,...,N +1}} C9Q,
Qh = Qp U OQy,.

We call Qy,, 02, and Qy, grids for the sets 2, 0 and Q.

Restricting the estimate (2.4) to the grid €2, yields

h2
| — Apu(z) — f(x)| = | — Apu(z) + Au(z)] < EHuH“@ for all x € Q,

and this property suggests that we look for a solution of the equation —A,u = f, since
we may hope that it will approximate the “real” solution u. Since the evaluation of Apu
in € Q) requires only values in points of €, we introduce functions that are only
defined in these points.

10



2.2. Stability and convergence

Definition 2.6 (Grid function) Let Q; and Qj, grids for Q and 2. The spaces

G(Qp) :=A{up : up maps Qyp, to R},
G(Qp) == {up : up maps Qp to R}

are called spaces of grid functions from Qy, and Q, respectively, to R. The space
Go(Q) == {un € G(,) : up(z) =0 for all z € 00}
is called the space of grid functions with homogeneous Dirichlet boundary conditions.

The difference operator Ay, is obviously a linear mapping from G(,) to G(£,), and
we can approximate the differential equation (2.1)) by the following system of linear
equations:

Find a grid function u; € Go(£2,) such that
—Apup(x) = f(x) for all x € . (2.5)

Since this system of linear equations (each point = € €2, corresponds to a linear equation
that uy, has to satisfy) is defined on the set €2}, of discrete points instead of the continuous
set 2, we call a discretization of the potential equation . In this particular case,
all differential operators are replaced by difference quotients involving a finite number
of values, giving this approach the name finite difference method.

2.2. Stability and convergence

Merely formulating the discrete system , is not enough, we also have to investi-
gate whether this system can be solved, whether the solution is unique, and whether it
approximates the continuous solution wu.

If is easy to see that —Ay, is a linear mapping from Go(£2;,) to G(Q5) and that

dim Go(Q,) = dim G(Qy) = N2

holds. In order to prove that the system has a unique solution, it is enough to
prove that —Ap is an injective mapping.

A particularly elegant way of proving this result is to use the following stability result
for the maximum norm:

Lemma 2.7 (Maximum principle) Let v, € G(§,) denote a grid function satisfying
—Apvp(x) <0 for all x € Q.

There exists a boundary point xg € 02, such that
vp(z) < vp (o) for all x € Qp,

i.e., the grid function takes its mazximum at the boundary.

11



2. Finite difference methods

Proof. We define the sets of neighbours of points x by
N(z) = {(x1 — h,x2), (1 + h,z2), (x1,22 — h), (x1,22 + h)} for all z € Q.
The distance (with respect to the grid) from a grid point to the boundary is denoted by

if x € 0y,

0: Qh — No, T +— . .
1+ min{d(z') : 2/ € N(z)} otherwise.

We denote the maximum of vy by
m = max{vy(z) : € Q}
and intend to prove by induction
(vp(z) =m A d(z) < d) = Fzg € 0N, : vp(z0) =M (2.6)

for all d € Ny and all z € . This implication yields our claim since §(x) is finite for
all z € Q.

The base case d = 0 of the induction is straightforward: if z € Q with vy(x) = m
and d(x) = d = 0 exists, the definition of § already implies z € 99y, so we can choose
Trog— .

Let now d € Ny satisfy . Let z € Qy be given with §(z) = d + 1 and vy (x) = m.
This implies = € €2;, and we obtain

> hP(va(x) — vnla’) = 4h2op(z) — Y B Pup(a’) = —Apva(z) 0.
z'eN(z) z'€N(z)

Since m = vy (z) is the maximum of vy, none of the summands on the left side of this
inequality can be negative. Since the sum cannot be positive, all summands have to be
equal to zero, and this implies

m = vp(x) = vp(a) for all 2’ € N(x).

Due to §(x) = d + 1, there has to be a 2’ € N(z) with §(z’) = d, and since we have just
proven v (z') = m, we can apply the induction assumption to complete the proof. [

The maximum principle already guarantees the injectivity of the differen operator
—A}, and the existence of a unique solution.

Corollary 2.8 (Unique solution) The system of linear equations has a unique
solution.

Proof. Let uyp, i, € Go(€2,) be given with

—Apup(x) = f(x) for all x € Qy,
—Aptp(x) = f(x) for all x € Q.

12



2.2. Stability and convergence

We let vy, := up, — 4y, and obtain
Apvp(z) = Apup(z) — Apap(x) = —f(z) + f(x) =0 for all x € Q.

The requirements of Lemma are fulfilled, so the grid function v, has to take its
maximum at the boundary 0€;,. Due to vy, € Go(£2,), we have vj|sq, = 0, and therefore

vp(z) <0 for all € Q.
We can apply the same argument to the grid function vy, := @y — up = —vp, to obtain
vp(z) = —op(z) >0 for all z € Qy,

and this yields v, = 0 and u, = @,. We have proven that Ay is injective.
Due to dim G(£2;,) = dim G¢(Q,), the rank-nullity theorem implies that A, also has
to be surjective. [

Since Lemma, only requires Apvp, not to be negative in any point x € £, we can
also use it to obtain the following stability result that guarantees that small perturbations
of the right-hand side of (2.5 are not significantly amplified.

Lemma 2.9 (Stability) Let u, € Go(Q4) a grid function with homogeneous Dirichlet
boundary conditions. We have

1
lunlloo.n < gllAnuAllcog-
Proof. (cf. [7, Theorem 4.4.1]) The key idea of our proof is to consider the function

w: Q — Rxo, CL‘H%(l—ZEl).

Since it is quadratic polynomial, we have |w|s 0 = 0, and we can combine
—Aw(z) =1 for all x € Q
with to obtain
—Apwp(z) =1 for all x € Qy,

with the grid function wy, := wlg, € G(Q).
We denote the minimum and maximum of —Apup by

a :=min{—Apup(x) : € O},
B := max{—Apup(x) : x € Q}

and define

u}f = wpf.

13



2. Finite difference methods

This implies
—Apuf (2) = —Apwp(2)B =B for all x € Qy,

so we also have

—Ap(up — ) (@) = —Apup(z) =B <0 for all z € Q.
Let z € Q. Lemma [2.7) yields a boundary point x¢ € 9, such that

up(z) — u;f (z) < uplwo) — uyf (o).
Due to the Dirichlet boundary conditions, we have uy(xo) = 0 and conclude
up(z) < uyf (z) — uf (20).

It is easy to prove 0 < w(z) < 1/8 for all z € Q,, which implies u; (z) — u; (z0) < /8.
Since x is arbitrary, we have proven

1
up(x) < §B for all x € Q.

Since —uyp, is bounded from above by —a, we can apply the same arguments to —uy, to
get

up(x) > <« for all x € Q.

1
8
Combining both estimates yields
1 1
lunllosn < g max{lal, [B]} = SllAnunllcog,-

Combining this stability result with the consistency result of Lemma [2.4) we can prove
the convergence of our discretization scheme.

Theorem 2.10 (Convergence) Let u € C*(Q) be the solution of and let up, €
Go(Q) be the solution of (2.5). We have

2
e = o, < G5l

Proof. Due to (2.1)), we have
f(x) = —Au(x) for all x € Q.
The consistency result of Lemma [2.4] yields

|Anu(@) — Apun(z)| = [Apu(z) + f(2)]

14



2.2. Stability and convergence

h2
= |Apu(z) — Au(z)| < €|u]4,g for all z € Qp,
which is equivalent to
2
1AR(w = un)lloc. = |Anu = Aptin[loo,e, < - lulag.
Now we can apply the stability result of Lemma to get
2

6

1 1
v — unlloo, < gHAhu — Apuplloo,n, < 3 |ul4,0-

If we can solve the linear system , we can expect the solution to converge to
approximate u|q, at a rate of h?. In order to express the linear system in terms of
matrices and vectors instead of general linear operators, we have to introduce suitable
bases for the spaces Go(2),) and G(2p,). A straightforward choice is the basis (¢y)yeq,
consisting of the functions

1 ife=y _
x) = ’ for all z € Qy,
#u(@) {O otherwise "

that are equal to one in y and equal to zero everywhere else and obviously form a basis
of Gop(2,). Restricting the functions to G(€2) yields a basis of this space, as well.
Expressing —A}, in these bases yields a matrix L € R® > given by

4h=2  ifx=y

—h7% if |v1 —y1| = h, 22 =2,

14 = for all x,y € Q.

0 otherwise

Expressing the grid function wj, and fj, in these bases yields vectors uy, f;, € R and
the discretized potential equation ([2.5)) takes the form

Lhuh = fh. (27)

Since has a unique solution, the same holds for .

The matrix Ly is particularly benign: a glance at the coefficients yields Ly = Lj, so
the matrix is symmetric. Applying the stability result of Lemma [2.9] to subsets wy, C €y,
shows that not only Ly, is invertible, but also all of its principal submatrices Ly |w, xcw, -
This property guarantees that Lj possesses an invertible LR factorization that can be
used to solve the system . We can even prove that Ly, is positive definite, so we can
use the more efficient Cholesky factorization.

For large values of NV, i.e., for high accuracies, this approach is not particularly useful,
since it does not take advantage of the special structure of Ly: every row and column

15



2. Finite difference methods

contains by definition not more than five non-zero coefficients. Matrices with the prop-
erty that only a small number of entries per row or column are non-zero are called sparse,
and this property can be used to carry out matrix-vector multiplications efficiently and
even to solve the linear system.

Exercise 2.11 (First derivative) If we approximate the one-dimensional differential
equation

o' (z) = f(x) for all x € (0,1)

by the central difference quotient introduced in Ezercise we obtain a matriz L €
RNXN given by

1/(2h)  ifj=i+1,
lij =1 —1/(2h) ifj=1i—1, foralli,j€[l:NJ.

0 otherwise,
Prove that L is not invertible if N is odd.

Remark 2.12 (General domains) Finite difference discretization are particularly
well-suited for differential equations on “simple” domains like the unit square inves-
tigated here. Treating more complicated domains requires us to use more involved
techniques like the Shortley-Weller discretization and may significantly increase the
complexity of the resulting algorithms.

2.3. Diagonal dominance and invertibility

The finite difference approach can be applied to treat more general partial differential
equations: we simply have to replace all differential operators by suitable difference
quotients. While the consistency of these schemes can usually be proven by using suitable
Taylor expansions, the stability poses a challenge.

We investigate linear systems of equations

Ax=Db (2.8)

with a matrix A € RZ*Z, a right-hand side b € R? and a solution x € RZ. A general-
ization of the stability Lemma [2.9 would look like

1%l < C||A%||s0 for all x € RY

with a constant C' € R>¢. This inequality can only hold if A is injective, i.e., invertible,
and we can rewrite it in the form

A" b]lso < C|Ib]loo for all b € RT

by substituting x = A~ !b.

16



2.3. Diagonal dominance and invertibility

We recall that any norm || - || for R? induces the operator norm
|A] :=sup { HH ’H c x e R\ {O}} for all A € RZ*Z, (2.9)

Stability therefore simply means that we have to be able to find an upper bound for
A7l that is independent of the mesh parameter h.

Lemma 2.13 (Neumann series) Let || - || be a norm for RZ, and let Let X € RT*Z.
If we have | X|| < 1, the matriz I — X is invertible with
S 1
X'=@I-X)", I —=X)71 <

2 X

Proof. Let || X]|| < 1. We define the partial sums
m
Y, = ZXZ for all m € Ng.

In order to prove that (Y,,)5°_, is a Cauchy sequency, we first observe

m m—n—1
)4 L L
Yo =Yall =] > X Z X=Xt x|
L=n+1 l=n+1 =0
S X+

Given € € R+, we can find ng € N with || X]|™*! < (1 — || X]|)¢, and this implies

1Yo =Y, < X < X <e for all n,m € Ng, ngp <n <m.
= [IX] = 1= [X]]

We conclude that (Y,,)5°_, is a Cauchy sequency and therefore has a limit

m=0

Y .= lim Y, —z:XZ

m— 00

=0
satisfying
1Yl = ZXK < Z x| = HXII
Due to
I-X)Y=(I-X)) X' =) X'} X' = ZXf ZXE =1,
=0 =0 =0
—X)=> X(I-X)=) X -) X! = Zx’f ZX" =1,
=0 =0 £=0
we finally obtain Y = (I — X))~ 1. ]

17



2. Finite difference methods

Exercise 2.14 (Generalized convergence criterion) Let ||-|| be a norm for R and
let X € RTXZ. Assume that there is a k € N such that |X*|| < 1. Prove

k—1
xXm
X)—IH S Zm:O H || )

oo
X' = (1-X)", -
2 1 X

In order to be able to apply Lemma we have to be able to find an upper bound
for the operator norm. In the case of the maximum norm, this is particularly simple.

Lemma 2.15 (Maximum norm) We have
1X |00 = max{ D layl e I} for all X € RT*T,
JjeT
Proof. Let X € RZ*T and set
poi= max{z EZTIRRER EI}.
JET

Let y € R? and i € Z. We have

(Xy)il = |- @igys| < D lwigllysl < D laigl Iy loo < pllylloo

JET JET JjeET

and conclude || X]|o < p.
Now we fix 7 € Z such that

p=>lail.

jE€T

If we introduce the vector y € R” given by

-1 if Tij < 0
= for all j € Z,
Yi {1 otherwise J
we find [|y||cc = 1 and
N e = Sy — (Xy ), < [Xy e = e ix
JET JjET y

Using the maximum norm and the Neumann series, we can find a simple criterion that
allows us to check whether a given matrix is invertible: the diagonal elements have to
be large enough.
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2.3. Diagonal dominance and invertibility

Definition 2.16 (Diagonally dominant matrices) A matriz A € CT*7 withT C J
1s called weakly diagonally dominant if

> a| < aiil forallicT.
JjeJ
J#i

It is called strictly diagonally dominant if
Z |aij| < lai foralli e 1.
JjeT
J#

Using the Neumann series, it is possible to prove that strictly diagonally dominant
matrices are invertible.

Lemma 2.17 (Strictly diagonally dominant) Let A € CT*T be strictly diagonally
dominant. Then A is invertible.

Proof. Since A is strictly diagonally dominant, we have

(o775 75 0 for alli € Z,
so the diagonal part D € RZ*Z of A, given by
a; ifi=j, .
dij = i for all 4,5 € Z,
0 otherwise
is invertible. The matrix
M:=I-D'A (2.10)
satisfies
Qi .
my=1——=20 foralli e T.
Qi

Since A is strictly diagonally dominant, we also have

Qi 1 .
Z Im;| = Z Imij| = E ||aU|| = Tanl Z lag;| <1 for all i € Z,
(23 (23 .
JjET

jer JeL Jer <1
J#i J#i J#i

and we can conclude |[M]|o < 1 by Lemma [2.15
Now Lemma yields that I — M = D! A is invertible, and this implies that the
matrix A itself also has to be invertible. ]

19



2. Finite difference methods

Remark 2.18 (Jacobi iteration) Lemma([2.17 is, in fact, not only a proof of the ex-
istence of the inverse A™', but also suggests a practical algorithm: in order to solve
the linear system , we choose an arbitrary vector x| and consider the sequence
(x> given by

x(mtD) = x(m) _ p~1(Ax(™ — b) for all m € Ny.
The difference between these vectors and the solution x satisfies
x(m+D) _y — x(m) Dfl(Ax(m) —b)

Due to |[M||oc < 1, we obtain

lim x™ =x
m—0o0

Y

1.e., we can compute the solution of the linear system by iteratively multiplying by A
and dividing by the diagonal elements. If the matriz-vector multiplication can be realized
efficiently, one step of the iteration takes only a small amount of time.

This algorithm is know as the Jacobi iteration.

2.4. Convergence of the Neumann series

We have seen that strictly diagonally dominant matrices are invertible and that we can
approximate the inverse by the Neumann series and the solution of the linear system
by the Jacobi iteration.

Unfortunately, the matrices associated with partial differential equations are usually
not strictly diagonally dominant: any reasonable difference quotient will yield the value
zero if applied to the constant function, and this implies

Zazj =0

jeT

for all grid points ¢ € Z that are not adjacent to the boundary. Obviously, this means

jaiil = | Y aij| <D lal,
JET jeT
i#i i#i

so the best we can hope for is a weakly diagonally dominant matrix, and the simple

example
11
S

indicates that weakly diagonally dominant matrices may be not invertible. If we want
to ensure that A~! exists, we have to include additional conditions.
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2.4. Convergence of the Neumann series

The proof of Lemma relies on the fact that the Neumann series for the matrix
M converges. Lemma states that this is the case if ||M]|| < 1 holds, but this is only
a sufficient condition, not a necessary one: for any x € R,

0 z
M= (o )

satisfies M2 = 0, so the Neumann series for this matrix always converges. On the other
hand, given any norm || - ||, we can find an = € R with | M,| > 1.

Definition 2.19 (Spectral radius) Let X € C2*Z. X\ € C is called an eigenvalue of
X if an eigenvector e € CZ\ {0} ewists such that

Xe = Je.

The set
o(X):={A € C : X is an eigenvalue of X}

18 called the spectrum of X. The mazimum of the eigenvalues’ absolute values
o(X) :=max{|\| : A€ a(X)}
is called the spectral radius of X.

Lemma 2.20 (Necessary condition) Let X € CI*Z. [f the sequence (X922, con-
verges to zero, we have o(X) < 1.

Proof. By contraposition.
Let o(X) > 1. Then we can find an eigenvalue A € o(X) with |A\| > 1. Let e € RZ\ {0}
be a matching eigenvector. We have

X'e = e, 1X| = A llell > el for all ¢ € Ny,

and this implies that (X*)$°, cannot converge to zero. |

The Neumann series can only converge if (X)$°, converges to zero, so o(X) < 1 is a
necessary condition for its convergence. We will now prove that it is also sufficient, i.e.,
that the convergence of the Neumann series can be characterized by the spectral radius.

Theorem 2.21 (Schur decomposition) Let X € C"*". There are an upper triangu-
lar matriz R € C™"™ and a unitary matriz Q € C™*"™ such that

Q*XQ =R.

Proof. By induction.
Base case: For n = 1, any matrix X € C™*! already is upper triangular, so we can
choose Q =1.
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2. Finite difference methods

Inductive step: Let n € N be such that our claim holds for all matrices X € C"*"™,
Let X € CnrDx(nt1),

By the fundamental theorem of algebra, the characteristic polynomial px (t) = det(tI—
X) has at least one zero A € C. Since then A\I — X is singular, we can find an eigenvector
e € C"™! and we can use scaling to ensure ||e||s = 1.

Let Qg € C(»tDx(n+1) he the Householder reflection with Qgd = e, where § denotes
the first canonical unit vector. We find

A R
QSXQ0=( ﬁ“)

for Rg € C'*" and X € Ccrxn,
Now we can apply the induction assumption to find an upper triangular matrix R €
C™™ and a unitary matrix Q € C"*" such that

~

Q*XQ =R.

. 1 (A Ro
cal g on(%)

observe that Q is a product of unitary matrices and therefore unitary itself, and conclude

axa- (' gaxa(’ g)=(" ¢)(" X)( o)-( &)-®

Since R is upper triangular, so is R. [ |

We let

Using the Schur decomposition, we can investigate the relationship between the spec-
tral radius and matrix norms.

Lemma 2.22 (Spectral radius and operator norms) Let X € CI*Z. We have

o(X) < [IX]|
for any operator norm induced by a norm || - || for Ct.
Given an € € Ry, we can find a norm || - || x, such that the corresponding operator

norm satisfies
Xl x,e < o(X) +e.

Proof. We may assume Z = [1 : n] without loss of generality.
Let || - || be a norm for C". Let A\ € o(X), and let e € C" be a corresponding
eigenvector. We have
[Xell = [[Aell = [A] [lel],

and the definition (2.9) of the operator norm yields [|X]|| > |A], i.e., ||X]| > o(X).
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2.4. Convergence of the Neumann series

Let now € € R-g. Due to Theorem we can find a unitary matrix Q € C™*™ and
an upper triangular matrix R € C"*" such that

Q"XQ =R,
and since unitary matrices leave the Euclidean norm invariant, we have
X2 = [[R[]2-

We split R € C™*" into the diagonal D € C™*™ and the upper triangular part IN, given
by

i i =7, G if i < g, .
dij = A j. nij = A ‘7‘ for all 4, j € [1 : n].
0 otherwise, 0 otherwise

We have R =D + N and ||D||2 = o(R) = 0(X), so we only have to take care of N.
For a given 0 € Rs(, we can define the diagonal matrix S € R"*™ by

Sij = s ‘7? for all 4,5 € [1: n].
0 otherwise
We observe S™IDS = D and
(STINS);; = & 'ny; for all 4,7 € [1 : n].

We choose § small enough to ensure ||[STINS||2 <e.
We define the norm

Iyllx.e = 1S7'Q"yll2 for all y e C*
and observe

IXyllxe=IS7'Q*Xyll2 = [ST'Q*XQS(S'Q*y)[l2 < [S'Q*XQS|2[ST' Q*y]l2
= |IST'RS|2|ly |l x.c for all y € CZ,

which implies | X||x. < [|[STIRS]|2.

Due to R = D + N, we can use the triangle inequality to obtain
IX[lx.e = [STHD + N)S|l2 < [|ST'DS|l2 + [[ST'NS||2 < [D]]2 + € = o(X) + ¢,

completing the proof. [

Corollary 2.23 (Neumann series) Let X € CT*T. The Neumann series converges if
and only if o(X) < 1. In this case, I — X is invertible and we have

ix’f = (I-X)%
£=0
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2. Finite difference methods

Proof. 1f the Neumann series converges, we have

lim X! = 0.

{—00

By Lemma this implies o(X) < 1.
Let now o(X) < 1, and let € := (1 — 9(X))/2. By Lemma we can find a norm
|| - llx.e such that

oX)+1

<1.
2

IX[lxe < 0(X) +e=0(X) + (1 - 0o(X))/2 =

Applying Lemma with this norm, we conclude that the Neumann series converges
to (I — X)_l. ]

2.5. Irreducibly diagonally dominant matrices

In order to apply Corollary we need a criterion for estimating the spectral radius
of a given matrix. A particularly elegant tool are Gershgorin discs.

Theorem 2.24 (Gershgorin discs) Let X € CT*Z. For every inder i € I, the Ger-
shorin disc is given by

'DXJ' = {Z eC : ‘Z — xu] < Z\xw\}

JjET

J#i
We have

o(X) € | Dx.i,
1€T

i.e., every eigenvalue A € o(X) is contained in the closure of at least one of the Gersh-
gorin discs.

Proof. [10, Theorem 4.6] Let A € o(X). Let e € CZ\ {0} be an eigenvector for A and X.
We fix ¢ € 7 with

lej] < el for all j € Z.

Due to e # 0, we have |e;| > 0.
Since e is an eigenvector, we have

)\ei = (Xe)z = Zl’ijej,
JET
and the triangle inequality yields
()\ — x“)ez = injej,

JeL
J#i
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2.5. Irreducibly diagonally dominant matrices

A =zl leil < lagllesl <D lwigl el

jeT =
J#i JF#
A=zl < i),
JeL
J#i
ie.,, A € 'DXJ‘. |

Exercise 2.25 (Diagonally dominant) Let A € RZ*Z be a matriz with non-zero di-
agonal elements, let D be its diagonal part, and let M :=1 — D7 1A.
Assume that A is weakly diagonally dominant. Prove o(M) <1 by Theoremm
Assume that A is strictly diagonally dominant. Prove o(M) < 1 by Theorem m

Exercise 2.26 (Invertibility) Let € € Ry, let A € R™ " be given by

Prove o(A) C [1,5] and conclude that A is invertible.

Hints: All eigenvalues of symmetric matrices are real.

What is the effect of the similarity transformation with the matriz S used in the proof
of Lemma on the matriz A ?

Theorem states that any eigenvalue of a matrix X is contained in at least one
closed Gershgorin disc Dx ;. In the case of weakly diagonally dominant matrices, we
find o(M) < 1, but for convergence of the Neumann series we require o(M) < 1, i.e., we
need a condition that ensures that no eigenvalue lies on the boundary of the Gershgorin
disc.

Definition 2.27 (Irreducible matrix) Let X € C2*Z. We define the sets of neigh-
bours by

N@):={j€Z : z;; #0} forallieT
(cf. the proof of Lemma and the sets of m-th generation neighbours by
J f m =0, .
Ny (i) := {i} ) ifm ) for allm e Ny, 1 € 7.
UjeNm,l(i) N(j) otherwise

The matriz X is called irreducible if for all i,j € T there is an m € Ny with j € Np,(4).
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2. Finite difference methods

In the context of finite difference methods, an irreducible matrix corresponds to a grid
that allows us to reach any point by traveling from points to their left, right, top, or
bottom neighbours. In the case of the unit square and the discrete Laplace operator,
this property is obviously guaranteed.

For irreducible matrices, we can obtain the following refined result:

Lemma 2.28 (Gershgorin for irreducible matrices) Let X € C2*T be irreducible,
and let the Gershgorin discs be defined as in Theorem [2.2].
If an eigenvalue A € o(X) is not an element of any open Gershgorin disc, i.e.,

A€ Dx foralli e T,
it 1s an element of the boundary of all Gershgorin discs, i.e., we have
A € 0Dx; foralli e T.

Proof. [10, Theorem 4.7] Let A € o(X) be an element of the boundary of the union of
all Gershgorin discs, and let e € CT be a corresponding eigenvector of X.
In a preparatory step, we fix ¢ € Z with
lejl < el for all j € 7.
As in the proof of Theorem we find
N =zl eil <) s e, A = 2] <Y gl (2.11)
JET JET
J# J#i
Our assumption implies that A cannot be an element of the interior of any Gershgorin
disc, so it has to be an element of the boundary of Dy ,, i.e.,

A=zl > ) |y,

jeZ
J#i

and combining this equation with the left estimate in (2.11)) yields

> gl led < lail lesl, 0< ) |wisl (les] — leal)-

jET jez jeT
J# J#i J#
Due to our choice of i € Z, we have |e;| — |e;| < 0 for all j € Z and conclude |ej| = |e]

for all j € Z with j # i and z;; # 0, i.e., for all neighbours j € N(i).

We will now prove |e;| = |e;| for all j € N,, (i) and all m € Ny by induction.

Base case: For m = 0, we have Ny(i) = {i} and the claim is trivial.

Induction step: Let m € Np be such that |e;| = |e;| holds for all j € N, (7). Let
k € Np+1(i). By definition, there is a j € Ny, (i) such that £ € N(j). Due to the

induction assumption, we have |ej| = |e;|, and by the previous argument we obtain
lex| = lej| = leil.

This means that 1} holds for all ¢ € Z, and this is equivalent to A € Dy ;. Due to
A ¢ DX,i; we obtain A € 8DX7Z‘. |
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2.5. Irreducibly diagonally dominant matrices

Definition 2.29 (Irreducibly diagonally dominant) Let A € CT*Z. We call the
matriz A irreducibly diagonally dominant if it is irreducible and weakly diagonally dom-
inant and if there is an index i € T with

> laij| < lail.

JjET
J#i
Lemma 2.30 (Invertible diagonal) Let A € CT*7 be a weakly diagonally dominant,

and let #7 > 1. If A is irreducible, we have ay; # 0 for all i € I, i.e., the diagonal of
A is invertible.

Proof. By contraposition. We assume that there is an index ¢ € Z with a; = 0. Since
A is weakly diagonally dominant, this implies a;; = 0 for all j € Z, ie., N(i) = 0.
We obtain Nq(i) = N (i) = 0, and a straightforward induction yields N,, (i) = 0 for all
m € N. If #7 > 1 holds, we can find j € 7\ {i} and conclude j € N,, (i) for all m € N,

so A cannot be irreducible. ]

Corollary 2.31 (Irreducibly diagonally dominant) Let A € CZ*Z be irreducibly
diagonally dominant, and let M :=1 — D' A with the diagonal D of A.
The matriz A is invertible and we have

Al = (i M‘f> D
£=0

Proof. Due to Lemma the diagonal matrix D is invertible and M is well-defined.
We have already seen that

. o
M :{ Br=a holds for all 4, € Z,

—Qij /aii otherwise

so M is irreducible, since A is.
For every ¢ € 7 we have

> il = @Z\aij| <1,
J€T “ljer
JF J#
since A is weakly diagonally dominant. Due to m;; = 0, the Gershgorin disc Dyy; is a
subset of the disc with radius one around zero. This implies o(M) < 1.
We now have to prove o(M) < 1. Due to Definition there is an index ¢ € Z such
that

s
Z‘aij‘<’an’\7 a::Z| il <1,

jeT jez il
J#i JFi
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2. Finite difference methods

so the i-th Gershgorin disc Dj; has a radius of @ < 1. Let A € o(M). If [\ < a <1
holds, we are done. If |A\| > a holds, we have A\ € 0Dx;, and Lemma implies that
there exists at least one open Gershgorin disc Dx ; with j € Z and A € Dx ;. Since this
is an open disc around zero of radius at most one, we conclude || < 1.

We conclude o(M) < 1, so the Neumann series converges to

M =1-M) =D 'A)'=A"D.
=0

Multiplying by D! yields the final result. |

2.6. Discrete maximum principle

Let us now return our attention to the investigation of finite difference discretization
schemes. We denote the set of interior grid points by €, the set of boundary points by
0Qy,, and the set of all grid points by .

The discretization leads to a system

Lu=f, ulpo, =8 (2.12)

of linear equations with the matrix L € RQhXQh, the right-hand side f € R, the
boundary values g € R%and the solution u € R,

We can separate the boundary values from the unknown values by introducing A :=
Lig, xq, and B := L, xsq, . The system (2.12) takes the form

u
Aulg, +Bujgo, = (A B) (u|‘;;h ) =Lu="f,
h

and due to ul|pn, = g, we obtain
Aulg, =f —Bg. (2.13)

In the model problem, we can apply the maximum principle introduced in Lemma [2.7] to
vanishing boundary conditions g = 0 and find that the coefficients of u are non-positive
if the same holds for the coefficients of Au < 0.

Definition 2.32 (Positive matrices and vectors) Let A,B € RT*7 and x,y € RZ.
We define

X>y <<= Yiel : z; >y,
X>y <= Yiel : z; >y,
A>B < Vicl,jcJ : a;> by,
A>B < Vicl,jecJ : a;j>b.
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2.6. Discrete maximum principle

Using these notations, Lemma [2.7] can be written as
Lu<0=u<0 for all u € RZ.

In order to preserve this property in the general case, we would like to ensure A~! > 0.
Due to Lemma [2.13] we have

A7l = (Z Mf> D!, M=I-D'A,
=0

where D again denotes the diagonal part of A. If we can ensure M > 0 and D > 0, this
representation implies A~! > 0.
Due to

—a;j/a; it i # g, o
mij = aij/aii Z#]. for all i,5 € Qp, (2.14)
0 otherwise

we should ensure a;; <0 for all ¢, 5 € Z with 7 # j and a;; > 0 for all ¢ € Z.

Definition 2.33 (Z-matrix) A matriz A € R%*% s called a Z-matrix if

ai; >0 for all i € Qp,
aijgo fOTalliGQh,jGQh,i#j.

If A is a Z-matrix, we have M > 0. If the Neumann series for M converges, this
implies A~ > 0. For an irreducibly diagonally dominant matrix A, we can even obtain
a stronger result.

Lemma 2.34 (Positive power) Let A € R™*T be a matriz with A > 0.

The matriz A is irreducible if and only if for every pair i,j € T there is an m € Ny
with (Am)m > 0.
Proof. We first prove

(Am)ij >0 < je€ Nm(l) (2.15)

by induction for m € Nj.

Base case: Due to A? = I, we have (A%);; # 0 if and only if i = j.

Induction assumption: Let m € Ny be chosen such that (2.15)) holds for all 4,5 € Z.

Induction step: Let i, € Z, and let B := A™. We have

(A™); = (BA)i;j = > biag; = Y biax
kel kel
JEN(k)

Assume first (Am“)ij > 0. Then there has to be at least on k € Z with b;, > 0 and
apj > 0. By the induction assumption, the first inequality implies k& € Ny,(i). The
second inequality implies 7 € N(k), and we conclude

je |J N&)=Nnpyali).
kENm ()
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2. Finite difference methods

Now assume j € N,,11(i). By definition we find k£ € N,,(i) with j € N(k). By the
induction assumption, we have b;; > 0, and by the definition of neighbours we have
arj > 0. Due to A > 0 and B > 0, we obtain

(A5 > agbi; > 0,

completing the induction.
Since A is irreducible if and only if for every pair i¢,j € Z there is an m € Ny with
j € Np,(i), our proof is complete. [ |

Theorem 2.35 (Positive inverse) Let A be an irreducibly diagonally dominant Z-
matriz. Then A is invertible with A= > 0.

Proof. Since A is a Z-matrix, all of its diagonal elements are strictly positive, so M =
I - D 'A is well-defined. We have already seen that M > 0 holds.
Since A is irreducibly diagonally dominant, the Neumann series for M fulfills

ATD=1I-M)"'=> M,
=0

and due to D > 0, this implies A~! > 0.
Since A is irreducible, so is M. Let 4,5 € Z. By Lemma we find m € Ny with
(M™);; > 0 and conclude

(EZMQHZUW%U>Q
=0 *
i.e., we have (A71D);; > 0. Due to D > 0, this implies (A~1);; > 0. |

Remark 2.36 (M-matrix) A Z-matriz A € RT*T is called an M-matrix if A~! > 0.
Theorem|2.39 states that an irreducibly diagonally dominant Z-matrix is an M-matrix.

Lemma 2.37 (Harmonic extension) Let L € R%*2n pe g Z-matriz such that A :=
L|o, xq, is irreducibly diagonally dominant. There is a vector uy € R such that

Luy = 0, (2.16a)
wlaq, = laq,, (2.16b)

where 1pq, denotes the vector in R with every component equal to one. This vector
satisfies

u< ].Qh.
Proof. Due to (2.13)), (2.16) is equivalent to
AUO|Qh = —B1|agh.
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2.6. Discrete maximum principle

Due to Theorem this equation has a unique solution.
Since L is a Z-matrix and weakly diagonally dominant, we have

(Ll)i =/l + Z &j = |£”’ — Z ’&J’ >0 for all 7 € 7.
JEQ, JEQ
J# J#
This implies
L(]. — uo) > 0,
and
1]s0, = woloq,,
yields

A(1—up)l, = A(1 —w)lo, +B(1 —ug)lse, = L(1 —ug) > 0.

Due to A~! > 0, we find
1-— up > 0.

Theorem 2.38 (Discrete maximum principle) Let L € R®**% be an irreducibly
diagonally dominant Z-matrix.
Let u € R satisfy
Lu<0.

Then there is a boundary index j € 0, such that
u; < Uy for all i € Q.
Proof. We denote the maximum of u on the boundary by
B :=max{u; : i€ 0N}.
Let ug € R? be the function introduced in Lemma, and define
u:=u— SBuyg.

Due to (2.16)), we have

Lu=L(u—pfu)=Lu<0

and
wi=u;— B <0 for all j € 092y,.

With A = L|Qh><Qh and B = L‘thaﬂh, we find

- ulo . -
0>Lu=(A B) (ﬁ||aﬁhh> = Atlq, + By, .
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2. Finite difference methods

Since L is a Z-matrix, we have B < 0 and therefore Bu > 0.
Due to A~! > 0, we find

g, <ilg, +A™'Bi=A"'Li<o0,

and conclude
u=1u+ fBuy < Buy.

Due to Lemma [2.37] each component of ug is bounded by one, and therefore each
component of u is bounded by S. [

2.7. Stability, consistency, and convergence

Let us consider a partial differential equation

Lu(z) = f(z) for all z € Q,
on a domain 2. We prescibe Dirichlet boundary conditions, i.e., we require

u(x) = g(x) for all x € 0€.

Here f : 2 — R and g : 92 — R are suitable functions, £ is a linear differential operator,
and v : 2 — R is the solution.
We approximate €2 by a grid €2, and the boundary 09 by 09, and let €, := Q;, U08y,.
As before, we define the spaces
G(Qp) == {u: Qy — R},
G(Q) == {u:Q, — R},
Go(Qh) = {u € G(Qh) : U|3Qh = 0}

and consider a linear finite difference operator
Ly G(Q) — G(Q)
that approximates £. The finite difference approximation u; € G(£y,) of the solution u
is then given by
Lrup(z) = f(z) for all x € Qp, (2.17a)
up(x) = g(x) for all x € O€,. (2.17b)

The functions uy, f|o, and glaq, can be interpreted as vectors u € RQh, f € R and
g € R% and the linear operator £, corresponds to a matrix L € R *n We find

Lu=f, ulpo, =8 (2.18)

and now have to prove that this system has a unique solution u that converges to the
solution u of the original differential equation.

Using Theorem we can apply the same arguments as in the proof of Lemma [2.9
to establish stability of general finite difference schemes.
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2.7. Stability, consistency, and convergence

Corollary 2.39 (Stability) Let L € R X% pe qn irreducibly diagonally dominant Z-
matriz, and let Ly, : G(Qp,) — G(Qy) denote the corresponding finite difference operator.
Let wy, € G(Q,) be a grid function satisfying

Lrwp(z) >1 for all x € Qp,

and let B
v = max{|wy(z) —wp(y)| : z,y € W}

Then we have
[unlloo, 2, < VILrUR 00,0, for all uy, € Go(Q). (2.19)
Proof. Let uy, € Go(Q,). We fix
B = max{|Lrup(x)| : =€ Q} =|Lrupllony,-
Then we have

L (up, — Bwy)(z) = Lpup(z) — BLuwk(z) < Lpup(z) — B <0 for all z € Qp,
Eh(—uh — Bwh)(a:) = —[,huh(a:) — Bﬁhwh(x) < —Ehuh(:c) — B <0 forall z ey

Theorem yields boundary indices y, z € 0§, such that

up(x) — Bwn(x) < up(y) — Bwa(y),
—up(x) — Bwp(z) < —up(z) — Pwp(2) for all x € .

Due to up|aq, =0, we find

up(z) < B(wp(z) —wn(y)) < B,
—up(x) < B(wp(z) —wp(2)) < By for all z € Oy,

and this implies ||up|/co0,0, < BY = VILrUn| 00,0, - ]

Corollary 2.40 (Error estimate) Let v € R>q be a constant such that holds.
Let Ly, be consistent of order p with £ and the solution u, i.e., let

Hﬁu — ﬁhUHOO’Qh < C.nhP

hold for constants C.n, € R>q, p € N, and the mesh width h € Rxq.
Then we have
Hu - uhHoQO < Cchhp'

Proof. By definition, we have
Lu(x) = f(x) = Lrup(z) for all z € Q.
Using ([2.19)) yields

lun = ulloo.0n < Al[Lnun = Lyulloon, = [Lu = Latlloc,0) < Cenyh?.
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2. Finite difference methods

2.8. Analysis in Hilbert spaces

Until now, we have worked with the maximum norm to establish consistency, stabil-
ity, and convergence. In the following chapters, it is advantageous to formulate our
statements in terms of norms corresponding to Hilbert spaces.

Definition 2.41 (Inner product) LetV be an R-vector space. A mapping a: VxV —
R s called a bilinear form if

a(v + aw,u) = a(v,u) + aa(w, u) for all u,v,w eV, a € R, (2.20a)
a(v,u+ aw) = a(v,u) + aa(v, w) for all u,v,w eV, ae€R. (2.20b)

A bilinear form a is called positive definite if
a(u,u) >0 for allu € V\ {0}, (2.20c)
and it is called symmetric if
a(u,v) = a(v, u) for all u,v € V. (2.20d)
A symmetric positive definite bilinear form is called an inner product for the space V.
Lemma 2.42 (Cauchy-Schwarz) Let a: V xV — R be an inner product. We have
la(v,uw))? < a(v,v)a(u,u) for all u,v € V.

Both sides are equal if and only if u and v are linearly dependent.

Proof. Let u,v € V. If a(v,v) =0, we let @ € R and use (2.20a) and (2.20b)) to find

0<a(tv—au tv—au)

= La(v, v — au) — aa(u, 2v — au)
1
a2

a(v,v) — a(v,u) — a(u,v) + o’a(u, ).
With ([2.20d)), we conclude
2a(v,u) < Jya(v,v) + o?a(u,u) = o’a(u, u).

Since this inequality holds for arbitrary values of «, we have a(v,u) < 0. Replacing v
by —v, we obtain —a(v,u) = a(—v,u) < 0, and therefore |a(v,u)| = 0.
Let now a(v,v) # 0. For all @ € R we can apply (2.20a)), (2.20b)), and ( ) to

obtain

0

IN

a(u — av,u — av)
a

(u,u — av) — aa(v,u — av)

a(u,u) — aa(u,v) — aa(v,u) + o?a(v,v)
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2.8. Analysis in Hilbert spaces

= a(u,u) — 2aa(v,u) + o?a(v,v).

Due to a(v,v) > 0, we can minimize the last term by choosing

o a(v,u)
©a(v,v)
and obtain
— a(v,u)2 a(v’u)Qa v,V) = alu,u) — a(v’U)Z
0 < a(u,u) 2a(v,v) a(v, )2 (v,v) = a(u, u) a(v,v)

Multiplying by a(v,v) yields
0 < a(v,v)a(u,u) — a(v,u)?,
and this is the Cauchy-Schwarz inequality. If a(v,u)? = a(v,v)a(u, u) holds, we have

0 < a(u — av,u — av) = a(v,v)a(u,u) — a(v,u)* =0,

i.e., a(u—av,u—av) =0. Due to (2.20c), this implies u —av = 0, so v and v are linear
dependent. [

Remark 2.43 (Positive semidefinite) A bilinear form a: V xV — R is called posi-
tive semidefinite, if

a(u,u) >0 for allu e V.

The proof of Lemma[2.43 remains valid except for the final statement if a is only sym-
metric and positive semidefinite.

Corollary 2.44 (Hilbert norm) Let a: V x V — R be an inner product.
llullq :== v/ a(u,u) forallu ey

is a norm for the space V. We call it the Hilbert norm corresponding to the inner
product. Using this norm, the Cauchy-Schwarz inequality takes the short form

la(v,u)| < ||v]la||ulla for all u,v € V. (2.21)

Proof. Let uw € V. Due to , we have
a(0,u) = a(u — u,u) = a(u,u) — a(u,u) =0
and therefore ||0]|, = \/a(0,0) = 0. If ||u||, = 0 holds, we have
0= |[ull} = a(u, u),

and ([2.20c) yields u = 0.
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2. Finite difference methods

For a € R, (2.20al) and (2.20b)) yield
laulla = /alau, au) = v/a2a(u, u) = |af [|ulla.

Let v € V. (2.20a)), (2.20b)), (2.20d), and Lemma yield

lu +vllz

a(u+v,u+v) = al(u,u) + 2a(v,u) + a(v,v)
< a(u,u) + 2v/a(u, u)a(v,v) + a(v,v) = (Va(u,v) + va(v,v))?
(lulla + llvlla)?,

so we also have established the triangle inequality. [

Definition 2.45 (Banach space) Let V be an R-vector space with a norm || - |y. A
sequence (up)0>y in V is called a Cauchy sequence, if for every e € Rsq there is an
ng € Ng such that

lun — umllv < e for all n,m € Ng with n, m > nyg.

If every Cauchy sequence converges, i.e., if for every Cauchy sequence (up)22, there is
au €V with

lim ||u— u,|ly =0,
n—oo

the space V is called a Banach space.

Definition 2.46 (Hilbert space) Let V be an R-vector space, and let a: V xV — R
be an inner product for V. If V is a Banach space with respect to the Hilbert norm || - ||4,
we call it a Hilbert space. In this case, we denote the norm by ||ully := ||ullq and the
inner product by (v, u)y := a(v,u) for all u,v € V.

In order to take advantage of the properties of Hilbert spaces, we have to equip the
grid functions introduced in Definition [2.6] with a suitable inner product. We imitate
the L?-inner product on the space of square-integrable functions:

Definition 2.47 (Hilbert space of grid functions) Let N € N, and let h and Qp
be as in Definition . Let Go(Qp,) be the space of grid functions with homogeneous
Dirichlet boundary conditions. With the inner product

(v,u)q, = h* Z v(x)u(x) for all v,u € Go(Qp),
€N

Go(Q4) is a Hilbert space with the Hilbert norm given by
1/2

[ull, :=h Z u(x)? for all u € Go ().
TEQy,
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2.8. Analysis in Hilbert spaces

In order to obtain convergence with respect to the Hilbert norm | - ||o,, we need
consistency and stability estimates. For the consistency, we can simply rely on the
estimate provided by Lemma [2.4]

Lemma 2.48 (Consistency) Let u € C4(Q)). We have
h?
80— Ay, < fulso

Proof. We use (2.4) to find

h4
|Au = Apully, =1 (Au(@) - Apu())? <12 Y Sl
€, T€Q

h* N2 pt
=N lulig =

2 h4 2
D < — .
36 (N +1)236 [ulin < 35lulie

Replacing the stability estimate is a little more challenging, since it involves the max-
imum norm on the right-hand side, where we would like to see the Hilbert norm instead.
Instead of working with the discrete maximum principle (cf. Theorem , we can rely
on the Cauchy-Schwarz inequality for the Euclidean inner product.

Lemma 2.49 (Stability) Let u, € Go(Q,). We have

1
[unlld, < §<Uh7 —Apun)o,;

and this implies

1
lunllen < Sl Anunlie,-

Proof. The Cauchy-Schwarz inequality ([2.21]) applied to the Euclidean inner product
reads

n 2 n n
<Z xkyk> < (Z xi) (Z yi) for all z,y € R", n € N, (2.22)
k=1 k=1 k=1

Let x € Q. By definition, we find i, € [1 : N] with = = (ih, jh). Due to uy(0,jh) =0,
we can use a telescoping sum to obtain

un (@) = up(ih, jh) — up(0,jh) =Y un(kh, jh) — up((k = 1)h, jh),
k=1

and the Cauchy-Schwarz inequality (2.22)) yields

i 2
up(x)? = (Z up (kh, jh) — up((k — 1)h,jh)>

k=1
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2. Finite difference methods

IN

(Z 1) <Z up(kh, jh) — up((k — 1)h,jh))2>

k=1

= z’Z(w(kth) —un((k = 1)h, jh))*.
k=1

This sum only involves differences between neighbouring grid points, just like the discrete
Laplacian. We denote the set of neighbours again by

N)={yeQ : (m1 =y1 Alza —y2| = h)
\/(3}2 =y2 A\ |l‘1 - y1| = h)} for all z € Qh

and write the discrete Laplacian as

—Apup(z) =h™? Z up(z) — up(y) for all z € .
yEN (z)

Taking advantage of the homogeneous Dirichlet conditions, the symmetry y € N(z) <=
x € N(y), and employing a change of variables, we find

(up, =Apun), = > un(z) Y up(z) — up(y)

z€Q yeEN(z)
_ Z up () Z up(x) — up(y)
z€Qy, yEN(z)
= Z up () (up () — un(y))
SN
=5 X w@ ) —w) g Y ) ) - )
2yeQy, T,y
yEN(z) TEN(y)
=5 2w - @) -5 Y @) ) - )
z,yeQy, x,yGQh
yEN(z) TEN(y)
=5 2w - m) -5 Y o)) - un)
nyeih, VNG
:% Z (up( )—Uh(y))2
yGQh
yEN ()
> % ES; un (@) — up(z1 — h, 22))* + ;gg;h(uh(xl = hyw2) = up())”
= ) (un(@) —un (w1 — hy22))*
€Qp
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2.8. Analysis in Hilbert spaces

We can complete the proof by combining both estimates and using Gauss’ summation

formula:
N N N N )
Z 2§ZZuh (ih thSZZZ (up(kh,jh) — up((k — 1)h, jh))
zeQy =1 j=1 =1 j=1 k=1

IA
=1
=1

.
(1=
=

>

5

;“

.
=

|

<

>
=

Ea

|

—_

~—

>
<

>

=

N N
N(N +1) . -
=5 > D _(wn(kh,jh) = un((k = 1)h, jh)
k=1 j=1
N(N+1 N +1)2
< ( 5 )<Uh, Apup)q, < (2>(Uh, —Apup)q,
1
= 272(“11, —Apup)q,;

and multiplying by h? yields the first estimate.
From this, we immediately obtain

—_

1
lunlléy, < 5 un, —Anunda, < 5 lunllonl|Anunle,

using the Cauchy-Schwarz inequality (2.21), and dividing by |Jus|o, yields the second
estimate. ]

We can proceed as in the proof of Theorem to find
2

|un — ula,

i.e., the grid functions will converge to the solution with respect to the Hilbert norm at
the same rate as with respect to the maximum norm.

The larger constant in the estimate is due to the larger constant in the stability
estimate. Using more sophisticated techniques, it is actually possible to prove

16]|un g, < (un, —Apup)a,,

and the constant grows to 272 as the mesh is refined, the smallest eigenvalue of the
Laplace operator on the unit square €.
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3. Finite difference methods for parabolic
equations

Partial differential equations like Poisson’s equation are typically used to describe sys-
tems that do not change over time, e.g., the electrostatic field corresponding to a fixed
charge distribution or equilibrium states of mechanical systems.

Now we focus on time-dependent partial differential equations, starting with parabolic
equations that can be approached similarly to ordinary differential equations.

3.1. Heat equation

A classical example for a parabolic equation is the heat equation. For the two-dimensional
unit square = (0,1)2, it takes the form

du

5 (t,z) = g(t, ) + Azu(t,x) for all t € R>p, z € Q, (3.1a)

where A, is the Laplace operator applied only to the x variable. As in the previous
chapter, we have to add boundary conditions to ensure the uniqueness of the solution.
We once again choose homogeneous Dirichlet conditions

u(t,z) =0 for all t € R>q, = € 0. (3.1b)
We also have to provide initial conditions
u(a, ) = up(z) for all x € Q. (3.1c)

The value u(t,z) can be interpreted as the temperature at time ¢ € R>( in the point
x € 2. The function g describes where and when heat is created: a positive value g(t, x)
means that at time ¢ € R>( the point x € 2 is being heated, while a negative value
means that it is being cooled.

If g is constant with respect to time, i.e., if there is a function g : 2 — R such that

g(t, ) = goo(w) for all t € R,

it is possible to prove that the solution u will converge to a function us € C?(Q2) that
solves the Poisson equation

—AUoo () = goo(T) for all x € Q,
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3. Finite difference methods for parabolic equations

Uso(z) =0 for all z € 9.

This limit is called the equilibrium solution, and we can approximate it by the techniques
we have already discussed.

In order to handle the time dependence of the solution, we interprete v and g as
functions in time mapping to functions in space, i.e., we let

u(t)(z) :== u(t, x), g(t)(z) == g(t,z) for all t € R>g, = € Q.

By introducing the space

C3() = {u € C(D) : ulo € C®(9), ulpn = 0}
and extending the Laplace operator to

9%v 92%v :
Py (y) + Ly fzeq,
Av(z) ;—{ax%@”) o3 (7)1

for all v € C53(Q), = € Q,
0 otherwise 56(%)

we can write (3.1]) as the ordinary differential equation
u(0) = uo, a'(t) = g(t) + Au(t) for all t € Rx, (3.2)

with the initial value @y € C53(Q), the heating function § € C(Rxq, C5%(£2)), and the
solution @ € C'(R>q, C5%,(2)).

3.2. Method of lines

The idea of the method of lines is to replace the spatial differential operator by an
approximation. We choose the finite difference discretization we have already employed
for the Poisson equation: we let N € N, let h := 1/(IN + 1), replace the domain Q by
the grid €2, and the space C§g, () by Go(£21,), and approximate the differential operator
A by

Ay Go(Qh) — Go(Qh)

defined as
v(x1 + hyxe) + v(x1 — hyx2) + v(x1, 22 + h) + v(21, 22 — h) — 4v(x)
Apv(z) = h2
for all x € 5 and extended by
Apv(z) =0

for all boundary points z € 99),. Replacing u, g and g by

up(t) = u(t)|q, gn(t) :==9()lq, ug,p 1= Uolq, for all ¢t € R>o,
we obtain the approximation

uh(()) = UQ,h, u%(t) = gh(t) + Ahuh(t) for all ¢t € RZOv (3.3)
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3.2. Method of lines

and this is an ordinary differential equation in the finite-dimensional space Go().
If we introduce the function

[ R0 x Go(Q) = Go(), (t,yn) = gn(t) + Anyn, (3.4)
we can write (3.3]) in the standard form
up(0) = uo p, up, () = f(t,up(t)) for all t € R>o. (3.5)

Lemma 3.1 (Unique sol}ltion) The ordinary differential equation has a unique
solution up, € C*(R>q, Go(Q)).

Proof. Since G(£2;,) is finite-dimensional, the mapping A}, is continuous, i.e., there is a
constant Ca such that

1 AryRlloe < Callynllso for all y, € Go(,).

We find

£t yn) — (it 20)lloo = | ARYR — Anzilloo = [[AR (YR — 21)|lco
< Callyn = 2nlloo for all y, 2z, € Go(Q4),

so the function f is Lipschitz continuous in the second parameter.
We can apply the Picard-Lindelgf theorem to conclude that (3.5)) has a unique solution,
and this is equivalent to (3.3) having a unique solution. ]

In this proof, the existence of Ca is the consequence of the fact that Ay is a linear
mapping between finite-dimensional spaces. This is a fairly general approach and does
not provide us with any information regarding the behaviour of the Lipschitz constant.

In the case of our model problem, we can fortunately compute all eigenvalues and
eigenvectors of Ay, and this gives us better insight into the behaviour of the system.

Lemma 3.2 (Eigenvalues) We define

My = 4R~ % (sin® (71 h/2) + sin®(72h/2) for allv € [1: N)?,

en(x) = 2sin(mvay) sin(rraxs) forallv € [1: NJ?, 2 € Q.

Then we have

—Apehy = Al for allv € [1: NJ?,
1 if v =
(Ehwsehpu), = v 'L_L’ forallv,pe|l: N]Q.
0 otherwise

Proof. Let v € [1: N]?, and let © € Q. We have

2ep(x) — epp(x1 + h,x2) — ep(x1 — h, x2)
h2

—Apep(x) =
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3. Finite difference methods for parabolic equations

2ep,(x) —epp(r1, 22 + h) — epp(z1,22 — D)
+ 2 .

Using the trigonometric identity sin(ca + ) = sin(a) cos(5) + cos(a) sin(/3), we obtain

2ep,(x) —ep (21 + h,x2) — ep (1 — h,x2)
= 4sin(rvixy) sin(mraxy)
— 2sin(mvixy + wrrh) sin(mrexs)
— 2sin(mvix; — wrrh) sin(mrexs)
= 2(2sin(rv 1)
— sin(mv121) cos(mrh) — cos(mvyxy) sin(wvih)
— sin(m1@1) cos(—mvih) — cos(mriay) sin(—mv1h)) sin(rveas)
= 2(2sin(rvy21)
— sin(mvyx1) cos(mrh) — cos(mvyxy) sin(myvih)
— sin(mvi21) cos(mrh) 4 cos(mrrxy) sin(mvi b)) sin(mrazs)
= 4(1 — cos(mvih )
)

= 2(1 — cos(mvih

sin(mvy2) sin(mrexs)

~— ~—

eh7
Using the trigonometric identity cos(a) = 1 — 2sin?(a/2), we obtain

2en () —epp(x1 + h,x2) —ep(x1 — h, x2)
=2(1 — 1+ 2sin®(m1h/2))en, (z) = 4sin®(mv1h/2)ep, (7).

Applying the same reasoning to the second variable xs, we get

2ep(x) —ep(z1, 220+ h) — ep (21,22 — h)
=2(1-1+ 2Sin2(7r1/2h/2))ehv,,(x) = 4sin®(mveh/2)en, (1),

and adding both equations finally yields
—Apeny(z) = 4h2(sin?(rv1h)/2) + sin?(rvah/2))en ., (2) = Anven(2).

In order to establish the orthogonality of the eigenvectors, we make use of the trigono-
metric identity

Zsm(mjkh) sin(mpkh) = for all v, € [1: NJ.

k=1

S . (N+1)/2 ifv=np,
otherwise

Let v, € [1: N]2. We have

N
(enwrenpl, =h° Y env(@)enu(®) =h* > eny(ih, jh)en u(ih, jh)
zEeQ, 2,7=1
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N
= 4h? Z sin(mvyih) sin(mwvejh) sin(mwpgih) sin(mugjh)
ij—1

N N
= 4h? (Z sin(wvyih) sin(wuu’h)) Z sin(mvagh) sin(mpgjh)

i=1 Jj=1

otherwise
1 ifr=yp,
10 otherwise.

We can see that that largest eigenvalue of —Ay, is given by

Amax = Ao (N.N) = 2hnn = 8h ™2 sin® (1N h/2)
e 2.2 (T N Qb —2 i 2 Q-2
= 8h™ “sin <2N+1> 8h~“sin“(7/2) = 8h

for large values of N. We have already seen in Lemma that the spectral radius is a
lower bound for any operator norm, therefore the Lipschitz constant Ca of the ordinary
differential equation cannot be smaller than \yax ~ 8h ™2 ~ 8N2.

Since the Lipschitz constant plays an important role in many stability and conver-
gence estimates, the fact that it grows as we refine the finite difference grid is rather
inconvenient.

Fortunately, the equation has a redeeming quality: since all eigenvalues of —Ay,
are strictly positive, the finite difference operator is positive definite, i.e., we have

<—Ahuh,uh>2 >0 for all up € Go(Qh) \ {0} (36)
In fact, we even have
(—Ahuh, uh>2 > Amin””h”% for all uy, € Go(Qh),

where Amin = Ap (1,1) & 2712 denotes the minimal eigenvalue of —Ay.
For the right-hand side f introduced in (3.4]), this implies

<f(t7uh) - f(tvvh)a Up — vh>2
= (Ap(up —vp)sun — vp)2 < —Aminllun — vnll3  for all up, v, € Go(Qp).

Lemma 3.3 (Perturbations) Let V be a Hilbert space with inner product (-,-)y. Let
feCRxV,V) satisfy

(f(t,v) — flt,w),v —w)y < =A|v — w3 for allt € R>g, v,w eV
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3. Finite difference methods for parabolic equations

for a suitable constant A € R>q. Let y,z € C1(R>q,V) satisfy the ordinary differential
equations

y'(t) = f(t,y()), () = f(t,2(t)) for all t € R>o.
Then we have
ly(t) = z(®)lly < e *[ly(0) = 2(0) ||y for all t € R>o.
Proof. We consider the function
7: R0 = R0, t = Jly(t) — =I5
It is continuously differentiable with

(y'(t) = 2'(t), y(t) — 2(t))2
(Ft,y(1)) = [t 2(), y(t) = 2(t))2 for all £ € R>o.

Y(t) =2
p

Due to our assumption, we have

2(f(t,y(t) = F(L,2(1)), y(t) = 2(1))2
< =2M\|ly(t) — 2|5 = —2M9(t) for all ¢ € R>o.

v (t)

We have to prove (t) < e~2\(0).
To this end, we follow the proof of [I1], Satz 9.IX] and introduce

/’}\/: RZO — Rzo, t+— 6_2)\t’y(0)

and w :=7 — . Our goal is to prove w > 0.

Since w is continuous, every point ¢t € R>¢ with w(t) < 0 would be surrounded by an
interval [a,b] such that w|f, < 0. Since w(0) = 0 holds, we can enlarge the interval to
ensure w(a) = 0. We have

WG (t) =7 () =+ (1) > =209(t) + 22y(t) = —2X\w(t) >0 for all t € [a, b].

Due to the fundamental theorem of calculus and w(a) = 0, this implies wlj, > 0 and
therefore wl(, ) = 0. We conclude that there can be no t € Rx>( with w(t) < 0.
We have proven

ly(t) = 2(@)[5 = () <A(t) = e >X7(0) = e *¥|ly(0) — 2(0)[};  for all t € R,

and taking the square root yields the required estimate. [

In our case, this lemma states that the ordinary differential equation (3.5 is wvery
stable with regard to perturbations of the initial value, even if the Lipschitz constant
Ch is large.
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Remark 3.4 (Limit ¢ — co) In our model problem, we have Apn > 0, and Lemma
yields that all solutions of have to converge to the same limit for t — oo, no matter
what the initial value at t = a is.

If gy, is fized, i.e., if gn(t) = gn.oo holds for a function gn € Go(Q), we can even
compute this limit: if up o € Go(S2) solves

—ApUhco = Ghyoos
we have
St Un,00) = Ghoo + Aptineo = 0 for allt € R,

so the constant function t — up, o 15 a solution of . Due to Lemma all solutions
have to converge to up o fort — oo.

3.3. Time-stepping methods

Let us take a look at approximation methods for general initial value problems. Let V
be a Hilbert space with inner product (-,-) and norm || - ||.
The initial value problem (3.5 is of the following form:

Let yo € V, and let f € C(R>¢ x V,V). Find y € C*(Rx>¢, V) such that
y(0) = yo, y'(t) = ft.y(t)) for all £ € Rxo. (3.7)

We consider time-stepping methods for finding an approximate solution. The basic idea
is to replace the continuous time interval R>q by discrete points

O=th<ti <ty <...

and try to approximate y(¢;) for these points. To keep the presentation simple, we fix a
step size 0 € Ry and let

t;i =10 for all i € Np.
A single-step method is defined by a time-step function
\IIZRZ()XRZQXV—)V

that takes the current time ¢;, the time step ¢ and the current value y(¢;) and computes
an approximation of y(t;11). The resulting sequence of approximate solutions is given
by

ﬂ(O) =0, @(tiﬂ) = \I/(ti, d, ﬂ(tl)) for all ¢ € Ny.

In order to construct ¥, we can take our cue from the fundamental theorem of calculus:
due to (3.7), we have

) —it) = [ s = [ flsus) ds
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3. Finite difference methods for parabolic equations

yaﬂnzy@»+/”“f@w@»@,

t;

so it seems straightforward to look for a quadrature formula to approximate the integral.
Unfortunately, this quadrature formula cannot evaluate the integrand in the interval
[ti, tit1], since only y(¢;) is at our disposal.
A simple solution is to use a quadrature formula that only uses this one value.

Lemma 3.5 (Rectangle rule) Let g € C'([a,b],V). There are n.,mp € [a,b] such that

Proof. For the first statement, we consider the function

_(b—ap
- 2
(b~

2

b
/g@w—wﬂww 9’ (1))

/abg(s) ds = (b~ a)g(b)H = 2 19" () |-

¢: [a,b] = R, s+ s—b.

Using partial integration and ¢’ = 1, we find
b b b
/g@w—@ﬂm@zjﬁ@—mwwzfw@@@—mw$,
a a b a b
- [ et srds == [ o) ds,

and the mean value theorem yields 7, € [a, b] such that

The second statement can be proven by using the same arguments for p(s) =s—a. =

b
;/W@wwww

(b—a)’

b
=l )l [ b= sds = g ()|
a

b
/g@%—®ﬂM@

Applying the rectangle quadrature rule to the left point of interval [¢;,¢;41], we find

tir1
| Hste ds = 65t ute)

and therefore
W(t,0,y(t)) =y(t) +0f(t,y(t)).
This defines the explicit Fuler method. For our model problem (3.5)), we have

up(tiv1) = un(ti) + 0(gn(ti) + Anun(ts)),
\I’(ti, 5, :L') =x+ 5gh(ti) + 5Ah$,
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3.3. Time-stepping methods

so performing one time step requires only linear combinations of grid functions and one
evaluation of the finite difference operator.
We can also use the right point of [t;, ;1] as a quadrature point. This yields

/ - f(s,y(s))ds = 0 f(tit1,y(tiv1))-

t;

We find

Y(tiv1) = y(ti) + 0 f(tiv1, y(tit1)),
Y(tiv1) — 0f (tiv1, y(tiv1)) =~ y(t:)

and have to solve this equation to obtain y(¢;+1). This approach is known as the implicit
Euler method.
For our model problem ({3.5)), we find

Y(tiv1) — 0f (tiv1, y(tiv1)) = un(tiv1) — 0gn(tiv1) — 6Apun(tiv1) =~ un(ti),
(I = 0Ap)up(tiv1) ~ up(ti) + 6gn(tiv1),
U(t,6,2) = (I —6A4) " (z + dgn(titr)),

so performing one time step requires us to solve the finite difference equation. This is
computationally considerably more expensive than the explicit Euler method, but it has
particularly attractive properties regarding parabolic equations.

Since both Fuler methods approximate the integral essentially by the integral of a
constant function, they are only first-order accurate. In order to reach a higher accuracy,
we can approximate the integral by the trapezoidal rule.

Lemma 3.6 (Trapezoidal rule) Let g € C?([a,b],V). There is an n € [a,b] such that

(b—a)’
12

lAZ@ﬁk_b;%M@+ﬂ@»Hg lg" ()]

Proof. We consider the function

— -b
¢: [a,b] = R, sr—>(sa)2(8),
satisfying ¢” = 1 and ¢(a) = ¢(b) = 0. The linear function interpolating ¢ in a and b is

given by

p: [a,b] =V, s

and its integral coincides with the quadrature rule

b bbh—s bs—ua —a —a
[ reras= [F=2ds g+ [ 22 as o) = g() + 00,

—Qa

49



3. Finite difference methods for parabolic equations

Using partial integration twice, we find

b _a b b
/ g()ds — "= %(g(a) — g(b)) = / o(s) — pls) ds = / o"(5)(g(s) — p(s)) ds

By the mean value theorem we find 1 € [a, b] such that

|

[ atras =25 0te - g < [ 1o 6 as
b

(b—a)’

g )

==lg"WIl [ e(s)ds =

a

Approximating the integral by the trapezoidal rule yields

(fCisy(ts) + f(tivr, y(titr)))-

[NCRIS)

tit1
| o~

This approach requires us to solve

y(tiv1) = y(t:) + gf(ti,y(ti)) + gf(ti+17y(ti+1)),

) 0
y(tiv1) — §f(ti+1ay(ti+l)) ~y(t) + §f(ti7y(ti))
to obtain an approximation of y(t;4+1). The resulting algorithm is known as the Crank-
Nicolson method [5]. Since the trapezoidal rule integrates linear functions exactly, we
can expect second-order convergence.
For our model problem, we find

1) 1) 1) 1)
up(tiv1) — s9n(tiv1) — §Ahuh(ti+1) ~ up(t;) + s gn(ts) + §Ahuh(ti)a

2 2
1) t;) + t; 1)
<I - 2Ah> up(tiv1) =~ up(ti) + AL 2gh( +1) + 5 Anup(ti),

so the function ¥ is given by

U(t,d,z) = (I - gAh) - (:1: + 59h(ti) +29h(ti+1) i gAhx> ' (3.8)
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3.4. Consistency, stability, convergence

3.4. Consistency, stability, convergence

We have to ensure that the time-stepping methods approximate the solution of the ordi-
nary differential equation sufficiently well. As in the previous chapter, we split the error
analysis into two parts: we investigate the consistency of the time-stepping methods, i.e.,
how well the algorithm approximates the solution during only one step, and we establish
the stability of the methods, i.e., how sensitive they react to perturbations. Combining
consistency and stability allows us to establish the convergence of the methods.

In order to obtain the required results, particularly estimates regarding the stability
of the methods, we have to take advantage of the methods’ properties. A standard
assumption is that the right-hand side function f is Lipschitz-continuous with respect
to its third parameter, i.e., that there is a constant Ly € R>( such that

| f(t,v) = f(t,w)|| < Lf|lv—wl]| for all t € R>p, v,w €V, (3.9)

In our case, this condition is problematic, since the best possible Lipschitz constant is
given by Ly = ||Ap|| ~ h™2, i.e., the Lipschitz constant will grow rapidly when we refine
the finite difference grid.

That is why we also consider an alternative condition that is frequently sufficient to
obtain the required results: we assume that the differential equation is contracting, i.e.,
that

(f(t,v) = f(t,w),v—w) <0 for all t € R>g, v,w € V. (3.10)

In our case, we have f(t,v) — f(t,w) = Ap(v — w), and Lemma yields that —Ay, is
positive definite, so Ap has to be negative definite, i.e., (3.10]) holds.

Definition 3.7 (Consistency) Let p € N. A time-stepping method, characterized by
its time-step function ¥, is consistent of p-th order with a solution y of the initial value
problem , if there are constants Cep € R>g and 0mqee € Rso U {00} such that

Hy(t + 6) - \I}(tv 57y(t))H S Ccn5p+l fOT’ a’” t € RZD? 6 € <O7 6maa:)'

Lemma 3.8 (Explicit Euler method) Let y € C%(Rxq,V) be a solution of .
The explicit Fuler method satisfies

52
ly(t +0) = W(t, 6,y < S M1y oo r.e+a Jor all't € R>o, 6 € Ry,

i.e., the explicit Fuler method is consistent of first order.

Proof. Let t € R>p and § € R5. By the fundamental theorem of calculus, we have

t+9
y(t+6) = y(t) + / (s) ds,

U(t,0,y(t)) = y(t) + 0f (£, y(t)) = y(t) + oy'(¢).
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3. Finite difference methods for parabolic equations
With Lemma we find 7 € [a, b] such that

2
ot + ) — w8y | < & "Gl

Taking the maximum yields our estimate. [

Lemma 3.9 (Implicit Euler method) Let y € C%(Rx¢,V) be a solution of . If
there is a Lipschitz constant Ly € R>q such that holds, the implicit Euler method
satisfies

(52
- < — |l R 1/Ly).
Iyt +8) = Wt 090D < 57519 loofuarsy for allt € Roo, € (0,1/Ly)

If instead we have , we obtain the stronger result

52
ly(t +0) = W(t, 6,y (D < S M1y oo .e+a Jor all't € R>o, 6 € R>o.

In both cases, the implicit Euler method is consistent of first order.

Proof. Left as an exercise, e.g., by following the lines of the proof of Lemma [

Lemma 3.10 (Crank-Nicolson method) Let y € C3(R>q,V) be a solution of .
If there is a constant Ly € R>q such that the Lipschitz condition holds, the Crank-
Nicolson method satisfies

53
- v <— |y R 2/Ly).

If instead we have , we obtain the stronger result

3

5
Iyt +8) = Wit 0,y < 18 e for all t € Rsg, 6 € Rsy.

In both cases, the Crank-Nicolson method is consistent of second order.
Proof. Let t € R>p and § € Rso. We denote the error by
e:=y(t+0)—y(t+40), whereg(t+09):=V(tdyt)).
By the fundamental theorem of calculus, we have
t+0
we+d) =y + [ (s,
t

and the definition of the Crank-Nicolson method yields

-+ 6) = y(t) + 3 (F(y(0) + £t +8,5(: +5)

52



3.4. Consistency, stability, convergence

= (1) + 3 (F(Ey(0) + Tt 45,0t +5)))
+ g(f(t+6,gj(t+5)) — f(t+6,y(t+0)))

=y(t) + g(y’(t) +y'(t+6)) + g(f(t +0,(t+6)) — f(t+0,y(t +0))).

We can split the error into the quadrature error
t+6
o= [ V) ds— S0 4y e+ )
t

and the approximation error

eq == g(f(t+5,y(t+ §) — f(t+8,5(t+9))).

For the quadrature error, Lemma [3.6] yields

3
d "

legll < 7519 oo f1,644)-

Let now ({3.9) hold, and let 6 < 2/L;. Then we have

leall = 2L+ 6,y(t +8) — F(t +8.5(t + )|

o . oL
< SLelly(t +8) = gt + o)l = =L el.

53 5L
lell < lleall + lleall < S5ty oo e + 52l
and
53 "
(L—0Ls/2)[le] < EHZ/ ”oo,[t,t—&-é]

yields the first estimate.
For the second estimate, let (3.10) hold instead of (3.9). Since V is a Hilbert space,
we have
lell? = (e, e) = (eq + €as )
0 . -
= {egre) + S {f(t+0,y(t +0)) = f(t+6,5(t +9)), y(t + ) — gt +9))

53
< (ege) < lleglllell < S ly" lloo eetslle]

by the Cauchy-Schwarz inequality, and dividing by ||e|| yields the desired estimate. m
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3. Finite difference methods for parabolic equations

Remark 3.11 (Global consistency) The estimates of Lemmas and m-
volve the mazimum norm of derivatives of the solution y in [t,t + 0], while our Defini-
tion [3.7 requires the constant C.,, to be independent of t and §.

We can fix this issue by considering only the approximation of y in a compact time
interval [a,b]. Assuming that the relevant derivatives of y are continuous, the mazimum
norm in [t,t + 0] can be bounded by the maximum norm in [a,b], and this is indeed a
constant that does not depend on t and 6.

Consistency allows us to control the error introduced by one step of our algorithm.
Since the next step starts with an approximation instead of the exact solution, we have
to investigate how the errors introduced at different steps propagate with time.

Definition 3.12 (Stability) A time-stepping method, characterized by its time-step
function U, is stable if there are constants Ly € R and dpmaz € Roo U {00} such that

| (t,d,v) — ¥(t,0,w)|| < (1+ Lgd)|jv —w|| for allt € R>p, 6 € (0,0maz),
v,w € V.

The method is unconditionally stable if we can choose Ly = 0.

Lemma 3.13 (Explicit Euler method) Assume that f € C(R>oxV,V) is Lipschitz-
continuous in the second argument, i.e., that there is a constant Ly € R>q such that

| f(t,v) = f(t,w)]| < Lyllv—w|| forallt € R>p, v,w e V.
Then the explicit Euler method satisfies
|W(t,0,v) —¥(t,6,w)|| <A+ Lgd)lv—w|  forallt € Rsg, 6 € Rsp, v,w eV,
i.e., it is stable.
Proof. Let t € R>p, 6 € R>¢, and v,w € V. We have

v:=V(t,0,v) =v+0f(tv),
w:=Y(t, 0, w) =w+ df(t,w)

and find

15— @ = llo — w + 6(F(t,0) — F(Ew)I| < o —wl + S F(Ev) — F(t,w)]
< o —wll + Lydllo - w] = (1 + Ly8) o - w].

For the model problem, we can obtain the following more precise estimate.
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3.4. Consistency, stability, convergence

Lemma 3.14 (Explicit Euler, heat equation) Let U denote the time-step function
of the explicit Fuler method for our model problem , and let

Cy :=max{1, |1 — d\pmaql}-
We have

1V (t, 6, un) — ¥(t,0, ’Uh)HQh < Cyllup, — Uh”Qh for allt € R>g, 0 € R>,
up, v € Go().

Proof. Let t € R>g, 6 € Rxq, and up,vp € Go(Q2). Due to Lemma We can find

(w)yep:Ny2 such that
Up — Vp = Z Qpep -

vE[1:N]?
We let

up, = V(t,0,un) = up + 0(gn(t) + Anup),
Op := U(t,6,vp) = vp + 6(gn(t) + Apvn)

and observe

Up — Op = up — v + 00, (up, — vp) = (I + 0A,) (up — vp)
= Z (I+6Ap)aven, = Z (1 =00 np)owen .,

ve[l:N]? ve[l:N]?
[@n, — Tnl|* = (Up, — On, Up — Up)

= Z Z (1= ) (1 — 8hn ) (en s en )

ve[l:N]2 pe[1:N]2

= Z (1—5)\]1,,,)20412,.

ve[l:N)?
Since s — (1 — 5)? is convex, we have
(1= 6Mn)? < max{(1 — SAmin)?, (1 — SAmax)?} < max{1, |1 — SApax|}? = C3
and conclude

[in —Tnl* = D (1—6Mu) 0l <Cy Y ol
ve[l:N]? ve[l:N]?

ZC\% Z Z Oéyau<eh,meh,u>

ve[1:N]2 pe[1:N]2

= CF (up, — vp, up — vp) = Cf lup, — vn ).
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3. Finite difference methods for parabolic equations

This estimate is quite sharp: if we choose uy = ey, (v, n) and v, = 0, we have
H\Ij(t7 9, uh) - \Ij(t7 0, Uh)HQh = ’1 - 6Amax’ Huh - UhHQh'

In particular, if we have d\pax > 1, the solution computed by the explicit Euler method

will change its sign at each step. For dA\pax > 2, the approximate solution will diverge

rapidly for t — oo, although we have seen in Lemma[3.3|that the exact solution converges.
In order to obtain a stable method, we have to ensure

6 < 1/Amax = h?/8. (3.11)

This is called the Courant-Friedrichs-Lewy condition (abbreviated as CFL condition)
for our discretization of the heat equation [4]. Bounds like this are common for explicit
time-stepping schemes for parabolic or hyperbolic partial differential equations.

Lemma 3.15 (Implicit Euler method) Assume that holds. Then the implicit
Euler method satisfies

U (t,6,v) — Wt d,w)| < |v—w for allt € R>g, 6 € R>g, v,w €V,
i.e., it is unconditionally stable.
Proof. Let t € R>p, 6 € R>p and v, w € V. We define
v:=W(t,6,0), w = U(t,d,w)
and obtain
v=uv+df(t0), w=w+0f(t,w).
Using and the Cauchy-Schwarz inequality, we find

T—@|> =@ —@0,0—w) = (v+6f(t+06,0) —w—0f(t+8,@),v— )
=(v—w,v—w)+6{(f(t+0,0) — f(t+6,w),v—w)
< (v —w,v—w) < v —w||v-wl,
and dividing by [|[v — w|| yields our result. ]
For the implicit Euler method, we can also obtain a sharper estimate if we consider

our model problem.

Lemma 3.16 (Implicit Euler, heat equation) Let ¥ denote the time-step function
of the implicit Euler method for the model problem . We have

W (t, 8, un) — ¥ (t,d,vp) —||un —vnlla,  for allt € Rxo, 0 € Rx,

1
< -
up, v, € Go(§2p).

56



3.4. Consistency, stability, convergence

Proof. Let t € R>g, 0 € R>q, and up,vp, € Go(91,). Due to Lemma we can find

(w)yepi:ny2 such that
Up — Vp = Z ayeh’y.

ve[l:N]?
We let

up, = V(t,0,un) = up + 0(gn(t) + Antin),
vy, = W(t,6,vn) = vp + 0(gn(t) + Apvn)
and observe
up — Up = up, — vy + 6A(Uup — Up),
(I —0A)(up, — vp) = up — vy,
Up =0 = (I = 00,) Mup —vp) = > (1= 004) owen,

ve[l:N]?

1
- Ve%;vp m%eh’w
@n — Onl? = (@ — Op, ap — 5h>

1
- [Z;V]z “GX;V]Q 1+ 5)\h v 1+ 0An, a0y (ehs €hp)

1 1 )
= _— < _—
> L+ oA )2 v = > (14 )2 Y

ve(l N]2 ve[l:N]?
Z auay<€h,ua 6h,u>
(HM“““ €[1:N]? pe[1:N]2
1 2
- m”“h‘”h” |

We can see that the implicit Euler method is stable with Ly = 0 for the model problem
(3.3). If we assume 0 < 1, we even have

B ) S S R
1+5)\min 1‘1'5>\min - 1“‘)\min ’

i.e., the method is stable with Ly = —Apin/(1 + Amin)-
Finding a general stability result for the Crank-Nicolson method requires special con-
siderations that would lead too far, so we focus only on the model problem.

Lemma 3.17 (Crank-Nicolson, heat equation) Let U denote the time-step func-
tion of the implicit Euler method for the model problem . We have

W (t,0,un) — ¥(t,0,vn)lla, < |lun — villa, for allt € R>p, ¢ € Rxo,
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3. Finite difference methods for parabolic equations

Up, Vp € Go(Qh),
i.e., the Crank-Nicolson method is unconditionally stable.

Proof. Let t € R>g, § € R>g, and up,, v, € Go(Q). Due to Lemma we can find

()yepn:nvy2 such that
Up — Vp = Z Oél,ehﬂj.

I/E[l:N]2
We let
_ 1) 1) ~
up = V(t,0,up) = up + 5(gh(lt) + Apup) + 5(gh(lt +9) + Apuy),
- 1) 1) -
Op = W(t, 0,vp) = vp + 5(gh(t) + Apvp) + 5(gh(t +9) + Apuy),

and observe

-~ 1) 1) -
Up — Vp = Up, — Vp + *Ah(uh — Uh) + iAh(uh — 'Uh),

2
(I — gAh> (T — Tn) = (I + gAh) (up, — vp),

Tp — T = (I - gAh>_1 (I + gAh) (un — vn),

@ — o = (1- gAh>_1 (1+ gAh) 3 aens

vE[1:N]?

Z 1—0Ap/2

1 —1—5)\]17,//2&1/6]17”7

ve[1:N]?
o 1—0Anu/2\2
[an = ol =) (7 ) al.
ve[l:N]? 1+ 5)\}1,1//2
We have to investigate the function
1—s5
: R R .
Y >0 — N, S 1+s
Due to
, —(14+s)—(1-y9) -2
7 (s) (1+5)2 1 +s)2 or all s € R,
the function is monotonic decreasing. We have
S$—00
and conclude
v(s)? <1 for all s € R>.

o8



3.4. Consistency, stability, convergence

This means

[an —onl* = Y (6Mnw/2)%a Z = [lun —vnll*.

ve[1:N]? e[l:N

Remark 3.18 (Oscillations) The function v introduced in the proof of Lemma
is megative for arguments greater than one.

This means that the sign of the v-th eigenvector component changes if dAp, > 2
holds, i.e., we have an unconditionally stable method that still may produce oscillations
for high-frequency eigenvectors if the step size § is too large.

Exercise 3.19 (Midpoint rule) We can define another time-stepping scheme based
on the midpoint quadrature rule: for any g € C?([a,b],V), we can find n € [a,b] such

that .
H/ 9ds— - ag(“20) | < LS.

Based on the approximation

9

W8 =yt + [ fs.u(s) ds ~ y(t) + 7 (14372, L F VR0

t

we define U as the solution — if it exists — of

v+ \I’(t,é,v))
2

\IJ(t,é,v):v+5f<t+5/2, for all t € Rsg, § € Rsg, v € V.,

Prove that

e this time-stepping scheme is unconditionally stable if holds, and that

e it coincides with the Crank-Nicolson method if there is a linear operator A:V — V
such that f(t,x) = Az for allt € R>o and x € V.

In particular, for our model problem the midpoint rule and the trapezoidal rule lead to
the same unconditionally stable second-order consistent time-stepping method if gp is
constant.

We can now proceed to prove convergence of our time-stepping method by combining
consistency and stability.

Theorem 3.20 (Convergence) Let y € C*(R>q,V) be a solution of , and let U
be the time-step function of a time-stepping method.

Let this method be consistent of p-th order with the solution, and let it also be stable.
We denote the corresponding constants with Cep, Ly and 6pmaz.
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3. Finite difference methods for parabolic equations

If Ly # 0, the approximations y(t;) computed by the method satisfy

~ ebwti 1 »
ly(t:) = ()l < Cen—p——6 (3.12)
4

for all i € Ng.
If Ly = 0, we have

[y(ti) =yt < Centid® for all i € Ny.

Proof. We handle the case Ly # 0 by induction.
Base case: For i = 0, we have y(ty) = y(to) by definition.
Induction assumption: Let ¢ € Ny be such that holds.
Induction step: We have

ly(tivr) = y(tir)ll = Nly(ipr) — W (ti, 6, y(t)) + W (L, 6,y(t:)) — W(ti, 6,y (L)) |
< ly(ti +0) = W(ts, 6, y(t)l| + [[W (s, 6, y(ti)) — W (ts, 6, y(ti))|-

We can bound the first term by the consistency condition and the second by the stability
condition to find

ly(tivs) = G(tis) | < Cend? + (1 + L) lly(ts) — (¢,

and the induction assumption yields

Lyt;
~ e -1
l(ti11) = Gt < Cend?™ + (14 L) Cen ™ o
A Taylor-expansion of s — e® around zero reveals that for each s € R, there is an n € R

such that )

S
s=1 n__
e =1+s+el

In particular, we have 1+ s < e® for all s € R. In our case, we find 1+ Lgd < eX¥® and
conclude

Lyt; _
ly(tict) — §(tis)|| < Cen <5 L0+ qudz(j 1)) 5

Lyd + elvdeluti 1 — [46
<Ot te eL@ 20 5p

Lytiyr _ 1
e
== CCHT(SP.

Let us now consider the case Ly = 0. Let i € Ny. By definition, stability with Ly = 0
implies stability with any constant Ly > 0. Introducing the function

elti — 1

C: R>0 — RZO, L— Ccn L

oP,
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3.5. Influence of the spatial discretization

the first part of our proof can be written as
ly(t:) —y(t:)|| < C(L) for all L € Rsyp.
By L’Hopital’s rule, we have

0 (,Lt;

O i 1 _
lim (L) = Cp L0~ Dl
L—0 a7 Ll=o

ti eOti

oP = Ccn o = Ccnt'iépa

and this yields
ly(t:) = §(t:) || < Centid®.

3.5. Influence of the spatial discretization
We have established that we can write the heat equation in the form
u(0) = wo, u'(t) = g(t) + Au(t) for all t € R>g

and that approximating u by grid functions and A by the finite difference operator Ay
yields

up(0) = o p, up, () = gn(t) + Apup(t) for all ¢ € R>.

We have also proven that the discretized problem can be solved by stable time-stepping
methods like the implicit Euler method or the Crank-Nicolson method.

Until now, we have neglected to investigate the error introduced by the spatial dis-
cretization, i.e.,

en(t) = u(t)lq, — un(t) for all £ € R>.

Our approach is to represent ej, as the solution of an initial value problem, so we compute
the derivative

= g(t)lq, + (Au(t))]q, — gn(t) — Apun(t)
= (Au(t) — Apu(t))lg, + An(u(t) —ua(t))
= (Au(t) — Ahu(t))bh + Aheh(t) for all t € Rzo.

The first term on the right-hand side corresponds to the spatial consistency error
vp(t) == (Au(t) — Apu(l))lg, for all ¢ € R>
incurred for the exact solution u. According to Lemma we expect

vn () [|oo.0, < Ch? for all ¢ € Rxg
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3. Finite difference methods for parabolic equations

with a suitable constant C' € R>(. Now the error is the solution of
en(0) = uolg, — uo,h, e (t) = vp(t) + Apen(t) for all t € R>o, (3.13)

and this initial value problem can be used to derive error bounds.
To prepare our proof, we require a very simple version of the stability result obtained

in Corollary
Lemma 3.21 (Stability of I —0Ay) Let § € R>o. We have
lwh oo, < I[(I — 6AR)WA| 00,0, for all wy, € Go(Qp,).
Proof. Let wy, € Go(,), and let = € €, satisfy
wp(y) < wp(x) for all y € €Uy,. (3.14)

If z is a boundary point, i.e., x € 9, we have wp(z) = 0 and therefore wy, < 0.
Otherwise, i.e., if x € 2} holds, we have

(I = 68 wp(x) = wy(2) +6h2 Y (wp(x) —wn(y)),

yEN (z)

where N(z) C €, denotes the neighbours of x in the grid. Due to (3.14), we find
wp(x) —wp(y) > 0 for all y € N(z) and conclude

(I — AR wp(x) > wp(z).

In summary, wy, is bounded by max{0, (I — dAp)wp(z)}, and therefore also by the
maximum norm ||(I — §Ap)wh] o0y, -
Applying the same argument to —wjy, we obtain

‘|whH007gh < H(I — 5Ah)whHoo7Qh for all wy, € Go(Qh)

Theorem 3.22 (Method of lines) Let v, € C(R>0,Go(Q1)). We consider the solu-
tion e, € Cl(Rzo,Go(Qh)) Of , i.€.,

en(0) = uolg, — vo,hs e, (t) = vp(t) + Apen(t) for allt € R>o.
We have
t
len()lloo.n < lluolay, — uo,nlloo.c +/ [vn(8)llo. 21, ds for all't € Rx>o.
0
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3.5. Influence of the spatial discretization

Proof. In order to use Lemma [3.21] we essentially imitate the structure of the implicit
Euler method.
Let t € R>p, n € N, and

d:=t/n, ti =10 for all ¢ € [0 : n).

Using the fundamental theorem of calculus, we find

ti

en(ts) = en(ti1) + / () ds = en(ti 1) + / on(3) + Anen(s) ds

ti—1 ti—1

ti t;
= eh(ti—l) + / vh(s) ds + 5Ah€h(ti) =+ / Aheh(s) — Aheh(ti) dS,
ti—1

ti—1

and subtracting dApep(t;) yields

(I — (SAh)eh(ti) = eh(ti_l) + /ti vh(s) ds + /t‘ti Aheh(S) — Aheh(ti) ds,

ti—1

t;
(1 = 0An)en(ti)|loc,0n < llen(ti—1)lloc,0n +/ [[vn(8)llso02,

ti—1

t;
+/ [Anen(s) — Anen(ti)lloo,, ds.

ti—1

The first two terms look similar to the ones appearing in the final result, and we can get
rid of the third term by taking advantage of the continuity of ey,.

Let € € R5. Since s — ep(s) is a continuous function, the same holds for the function
s+ Apen(s). Since [0, 1] is a compact interval, this function is also uniformly continuous,
so we can find §. € Ry such that

|Anen(s1) — Apen(s2)lloon, <€ for all s1,s9 € [0,t] with |s1 — s2| < 6.

We choose n large enough to ensure § = t/n < . and therefore |Apep(s) —
Apen(ti)|locon, < €forall s € [ti_1,t], so we can conclude

ti t;
1L = 68R)en(t:) oo < llen(tio)llsos + / on(5) oo, ds + / eds
i—1 ti—1

ti
= |len(ti=1) |00, +/ lon(s) s, ds + de.

ti—1

Now we can employ Lemma to obtain
len(ti)lloo.0n < [T = 0An)en(ti)]loo.0y

t;
< len(ti-1)lloo, 0, —|—/ lon ()00, + 0€ for all i € [1: n].

ti—1
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3. Finite difference methods for parabolic equations
A straightforward induction yields

t;
llen(ti)|loo,, < llen(to)llso0, +/ |vn(5)]|c0,02, ds + id€ for all i € [0 : n],
0

and in particular
tn
len()lloo,2n = llen(tn)lloc,n < llen(to)llos,0s +/ [[0n.(8)[|oo,02, ds + nde
to

t
— Jlen()llooy + / 10n(5) o0, ds + te.
0

Since this estimate holds for all € € R+, the proof is complete. [

If we use the Hilbert norm || -|| instead of the maximum norm, we can obtain a similar
result by a particularly simple argument.

Lemma 3.23 (Approximation error) Lete, € C1(Rxg,Rx>q) be a solution of .
We have

t
len(®)l < lluolg, — uonl +/ [on(s)| ds for all't € Rxo.
0

Proof. We consider the function
7: R0 — Rxo, t = |len(®)]]-
Since the Hilbert norm is given by the inner product, we find

A1) = llen(t)]| = (ent), en(®)?,
oy L 2(ep(t),en(®))  (vn(t) + Anen(t), en(t)) or 8
D= 5 et en(t) 12 Ten (0] forall € Rxo

by the product rule. Using (3.6) and the Cauchy-Schwarz inequality, we find
1oy (on(t) + Anen(t),en(t)) _ (on(t), en(t)) + (Anen(t), en(t))
7 (t) = =

len (D) len(®)]]

(o). en(®) _ lon (@] len(®)]
= Ta®l = el

and the fundamental theorem of calculus yields

= [Jon ()|l for all t € R>,

A(t) = 1(0) + /0 7 (8)ds < ~(0) + /0 lon(s)]] ds

t
= ||u0|Qh — ug | +/ llvn(s)|l ds for all ¢t € R>o.
0
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4. Finite difference methods for hyperbolic
equations

Parabolic equations like the heat equation typically show the behaviour outlined in
Lemma the initial conditions become less and less important as time progresses,
and if the driving terms (g in the case of the heat equation) are constant, the solution
converges to a limit for ¢ — oo.

Many processes do not have this property, e.g., electromagnetic waves keep traveling
and never reach a steady state. Some of these processes can be described by hyperbolic
partial differential equations.

4.1. Transport equations

We consider transport equations as a first example. Let u € C'(R x R) describe a density
of a fluid, i.e., the amount of fluid in an interval [a,b] C R at a time ¢t € R is given by

b
Map(t) = / u(t,x) dx for all t € R.

The transport of fluid is described by a fluz function f € C(R x R) that assigns each
point € R and each time ¢ € R the rate at which fluid flows in the positive direction.
The amount of fluid in [a, b] changes accordingly, i.e., we have

%m@b(t) = f(t,a) — f(t,b) for all ¢t € R.

The change in fluid is the balance between inflow at a and outflow at b.

We would like to obtain an equation for the density, so we have to get rid of the
integral in the definition of mgp. By the mean value theorem for integrals, we can find
n € [a, b] such that

0 o) 0
J(ta) = F(0) = Smap(t) = | So(ta)de = (b—a) 5 (L),

a

and dividing by b — a yields
f(t7b) — f(t7a) _ Ou

— = —(t,n).

b —a 81; ( 7"7)

If f is differentiable, we can consider a,b — x and obtain
of ou
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4. Finite difference methods for hyperbolic equations
A standard assumption is that the flux f depends on the density u. A simple example
is given by

flt,x) = au(t, x) for all t,z € R,

where o € R is a suitable constant. This choice leads to the linear transport equation

0 0

a%(t,x)%—%(t,x) =0 for all t,x € R.
For a more interesting example, we consider

1 0 0

Flt2) = gut,2)” a—i(t, v) = u(t, ) o (1, 2) for all £,z € R.
This leads to the nonlinear Burgers’ equation [2]
0 0
u(t,x)a—;b(t, ) + ai:(t, z) =0 for all ¢,z € R.

4.2. Method of characteristics

For the potential equation , we could prescribe boundary conditions on the entire
boundary 02 of the computational domain €.

For the heat equation , seen as an equation in the space-time domain Rx>g x 2
we could prescribe boundary conditions on R>g x 9€ and initial conditions at {0} x €,
but our analysis indicates that these two conditions already lead to a unique solution
(at least for the discretized problem).

Now we consider the kind of boundary conditions that can be used for transport
equations in the form

ou ou
a(z)a—Zl(z) + b(z)a—ZQ(z) = ¢(2) for all z € R? (4.2)

with functions
a,b,c:R?> > R.

An elegant approach to analyzing equations of this kind is the method of characteristics.
We introduce a curve v € C'(R, R?) and consider the function @ € C*(R) given by

u(r) == u(v(1)) for all 7 € R.
Differentiating u using the chain rule yields
N ou ou
() = 5 - () + 5 (1(7)72(7) for all 7 € R,
21 22

and comparing this equation with (4.2)) suggests that we look for a curve 7 such that

a(y(r)) = 1(7), b(~(7)) = 75(7) for all 7 € R.

This is a system of ordinary differential equations that can be used to describe the
behaviour of the solution.
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4.2. Method of characteristics

Definition 4.1 (Characteristic curve) A function v € C*(R,R?) is called a charac-
teristic curve of if

V(1) = <b('y(7))> for all T € R.

If v is a characteristic curve of (4.2), and if u € C1(R?) is a solution, the function
U = u o vy satisfies

W) = o= (A + (L)
_ Ou ou

= 5, (/(M)a(y(1) + 5= (4(7))b(7(7))
21 z2
= c(v(1)) for all 7 € R,
i.e., U is a solution of the initial value problem
u(0) = u(v(0)), ' (1) = c(v(1)) for all 7 € R.

If this problem has a unique solution, e.g., if ¢ is Lipschitz continuous, we see that if we
know u(~y(0)), the solution u is uniquely determined along the entire curve 7.

This suggests how we may choose boundary conditions: if a characteristic curve inter-
sects the boundary at two or more points, we may only prescribe the value of u in one
of these points, since this fixes the values in all others.

For the simple transport equation, we let z = (¢, x) and have

a(z) =1, b(z) = a, c(z) =0 for all z € R?,

so the characteristic curves are given by

(1) = <£ —:a7'> for all 7 € R,

where ¢ € R can be chosen to choose the starting point v(7) = (0,£). Due to ¢ = 0, we
have

u(y(7)) = u(0,€) for all 7 € R,

i.e., u is constant along the characteristic curves.
For (t,x) = z = v(7), we have t = 7 and & = £ + «t, so we can write this equation in
the form

u(t, &+ at) = u(0,¢), for all t, ¢ € R,
and with & := z — ot we get
u(t,x) = u(0,z — at) for all ¢,z € R.

This means that the solution of the linear transport equation is uniquely determined by
the values u(0,-) of u at time ¢ = 0.
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4. Finite difference methods for hyperbolic equations

4.3. One-dimensional wave equation

Another problem that can be tackled with the method of characteristics is the one-
dimensional wave equation

2 2
gtg (t,z) — ¢ %(t z) =0 for all £,z € R (4.3)

with ¢ € R\ {0}. We introduce

. ™2 2 T (1 =€)/ (20)
TR (&)~ (wE0),
and investigate u := u o y. We have
ou 0 0 0 0
52 (7,6 = (M) ZE (T8 + 5 (1 ) 2 (7€)
0 0
= R n6) + 5o (7).
0*u 1 0%u oy 1 9%u 072
?&9{(7’5) = 270@(7(7’6))875(7—’{)+2708t8:c(7( 7,§)) §( 7,¢)
1 9% oM 1 0%u 072
+§8$8t(7(7—’€))87§( §)+§W( (T 75))875(735)
1 62 1 9%u 1 92 162
= 1557 ) + 155 (1(1.8) = 13- (17 0) + 755 (1T, 9)

0? 0u
= 135500 - 2S5 ((n) =0 forall ne R

This means that 0u/J7 is constant with respect to ¢, i.e., that there is a function v,
such that

95
({TZTL(T, £) = vy (7) for all 7,¢ € R,

and that 0u/0¢ is constant with respect to 7, i.e., that there is a function vy such that

ou

g6 = vl®) for all 7,¢ € R.
Let u; and ug be antiderivatives of v; and vy, and define
u: R? - R, (1,€) = ur(7) + u2(§).
We find
Ol r.6) <>—v1<7>—g¢< o),
aa 9
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4.4. Conservation laws

so u and w can differ only by a constant.
We can add this constant to u; or us without changing the relevant equations and
obtain

u(r, &) = ur(r) + ua(§) for all 7,£ € R.
Let now t,z € R. We observe

o [(@tet—x+ct)/(20)) _ [t
v@tetz—d) = < (x+ect+x—ct)/2 ) \z
and obtain the final result

u(t,x) = ui(x + ct) + ua(x — ct) for all t,x € R.

4.4. Conservation laws

Hyperbolic partial differential equations are frequently connected to conservation laws.
In the case of the transport equation (4.1)), the amount m, of fluid is conserved: we
have

0 o [° b0
ammb(t) = 8t/a u(t, x) dx—/a &u(t,x) dx
b9
:—/ E (t,x)dx = f(t,a) — f(t,b) for all t € R,
o Oz

i.e., if the flux function were zero, the amount of fluid would be constant.
In the case of the wave equation (4.3]), the energy of the system is conserved. The
energy is defined as the sum of the kinetic energy

1 [ /0u 2
Eyin(t) == 5 /OO <E(t’ x)) dx for all t € R
and the potential energy
2 [ /0u 2
Epot(t) := 7). <%(t,m)) dx for all t € R,

assuming that both integrals exist and are bounded. If we also assume

0 0
lim —u(t,x) =0, lim 8—1;(15,3:) =0 for all t € R,

z—o0 Ot T——00
we can use the product rule and partial integration to find

< Ju 0%u * Ju 0%u
B (t) = . a(ta x)w(@l‘) dr = . a(t,x)czﬁ(t, x)dx
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4. Finite difference methods for hyperbolic equations

= O; 68;1; (t,:c)gZ(t, x) de = —Ep () for all t € R,
and therefore the total energy
E(t) := Exin(t) + Epot(t) forallt € R
satisfies
E'(t) = By, (t) + ELo(t) =0 for all ¢ € R,

i.e., the total energy is constant.

Convervation laws play an important role in many applications, and numerical algo-
rithms for solving the corresponding partial differential equations should at least try
to ensure that the quantities that are conserved in the continuous equation are also
conserved in the discretized equation, at least approximately.

4.5. Higher-dimensional wave equation

We consider the two-dimensional wave equation

2
ng(mx) — PAu(t,z) =0 for all t € R>o, z € Q2

in a domain 2 C R? with a parameter ¢ € Rsg.
In order to obtain a unique solution, we impose Dirichlet boundary conditions

u(t,z) =0 for all t € R>p, z € 0Q.
We can eliminate the second time derivatives by introducing the velocity function
ou _
v(t,z) = a(t,x) forall t € R>g, v € Q

and writing the wave equation in the form

0 0
a—?(t,x) = v(t,x), a—z(t,x) = A Au(t, x) for all t € R>p, z € Q, (4.4a)
u(t,z) =0, v(t,z) =0 for all t € R>q, x € 0N. (4.4b)

As in the case of the heat equation (3.1]), these equations can be considered as an ordinary
differential equation for

y(t) == <Z€Z ;) € C5°(Q) x C§°(Q) for all ¢ € R>,
where

CSO(Q) ={u € C(Q) s ulg € C(Q), ulpn =0}
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4.5. Higher-dimensional wave equation

is the space of infinitely differentiable functions with homogeneous Dirichlet boundary
conditions. The equations (4.4]) correspond to the ordinary differential equation

/ o Y2 (t)
Y (t) - (CZAyl (t)) fOI' all t e RZ()’

so we can expect that we have to introduce initial conditions

y(0) = yo = (Zg)

with ug,vg € C§°(£2) at the time ¢ = 0 to ensure that the initial value problem can have
at most one solution.

As in the one-dimensional case, the wave equation conserves the total energy. For
the kinetic energy, we can essentially use the same definition as in the one-dimensional
setting. For the potential energy, we have to introduce two differential operators.

Definition 4.2 (Gradient and divergence) Let d € N, let Q C R? be a domain, let
© € CYQ). The mapping

Ve: Q — RY, T : ,

is called the gradient of . Let u € C*(Q,R?). The mapping

8’LL1

ou
T — d
81‘1

V'U:Q%R, +87xd<33),

(z) +
1s called the divergence of u.

Reminder 4.3 (Gauf} integral theorem) Let d € N, let Q C RY be a Lipschitz do-
main, let
n:oQ — R?

denote the mapping that assigns all boundary points x € 0) the unit exterior normal
vector n(x).
We have

/ (n(z),u(x))2 dr = / V- u(z)de for all u € C1(Q, RY).
oN Q

Applying this result to u := @v for ¢ € C1(Q) and v € CY(Q,R?) using the product rule
yields the equation

/8 o@)n(a). o(@))2do = /Q (@)Y - v(z) di + / (Veo(z), v(x))2 de

Q

corresponding to multi-dimensional partial integration.
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4. Finite difference methods for hyperbolic equations

For the multi-dimensional wave equation (4.4]), we define the kinetic energy by

2
1
Eyin(t) := / Ou —(t,x) | dr= / v(x)? dx for all t € R>g
ot 2 Q -
and the potential energy by

Epot(t) / |Vu(t, z)||3 de = / (Vu(t,z),Vu(t,z))adr  for all t € R>g.

Corollary 4.4 (Energy conservation) Let u,v € C!(R>o,C5°(Q)) solve the wave
equation . We have
Epn(t) + E;mt(t) =0 for all t € R>o,

i.e., the total energy is constant.

Proof. Let t € R>¢. Using the product rule and multi-dimensional partial integration,
we find

w 2
B (t) = gt (t,z) gtz (t,z)dx —/ o (t, x)Agu(t, z) de
ou
= ot —(t,2)*V - (Vu)(t, ) da
=c? - aaqz(t x){(n(x), Vu(t,z))s dr — 02/Q<V08?(t,33),Vu(t,x)>2 dz

= 2 / (gtVu(t x), Vu(t,z))s dr = —Elgot(t)-

4.6. Method of lines

As in the case of parabolic equations, we can employ the method of lines to approximate
the solution of the wave equation (4.4): we replace u(t,) by a grid function wuy(t) €
Go(Q4) and v(t,-) by a grid function vj,(t) € Go(Qy,), while the Laplace operator A is
approximated by the finite difference operator Ap. This results in the following system
of ordinary differential equations:

up, (t) = vp(t), vy (1) = S Apup(t) for all ¢ € R>, (4.5a)
up(0) = ug,p, v (0) = vo,p- (4.5b)

This system can be solve by time-stepping methods.
We introduce the Hilbert space

V= Go() x Go(Qn),
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4.6. Method of lines

for the moment with the inner product

((unsvn), (ThsYn)) = (Un, Th)ay, + (Vn, Yy, for all (up,vp), (zn,yn) €V,
and let
. [Uo,n
w= (1),

y(t) == un(?) for all t € R>g

' Uh(t) =
v

f(t, (up,vp)) = <C2A};uh> for all t € R>q, (up,vp) € V.

This allows us to write (4.5 in the usual form
y(0) = o, Y (t) = f(t,y(t)) for all t € R>o. (4.6)
The explicit Euler method takes the form

up(to) = uo,n, U (to) = vo,h,
ﬂh(ti—i-l) = ﬂh(ti) + (Yﬁh(ti), 5h(ti+l) = 5h(ti) + 562Ahﬂh(7§i) for all 7 € No,
for the implicit Euler method we find

un(to) = vo,n, un(to) = vo,n,

ah(ti+1) = ﬂh(ti) + 55h(ti+1), fﬁh(tiJrl) = fﬁh(ti) + 662Ahﬂh(7§i+1) for all 7 € Ny,

and substituting the variables yields

Up(tiv1) = Un(ts) + 6 (T (t:) + 6 ARUL (tig1)),
(I = > Ap)an(tir1) = Un(ti) + 60 (L),
Un(tis1) = On(ti) + 0> Ap(@n(ti) + 60n(tit1)),
(I = 32N UR(tis1) = T (t;) + 62 Aptin (t;) for all ¢ € Ny,

so performing one time step requires us to solve two linear systems.
For the Crank-Nicolson method, we obtain

up(to) = uo,n, Up(to) = vo,h,
~ - O, -
un(tiv1) = un(ti) + 5 (On(t:) + On(tivn)),
~ - ) - - )
Op(tiv1) = Op(t;) + §C2Ah(uh(ti) + up(tiv1)) for all i € Ny,

and once more substitution yields

Tulti) = (1) + 5 (30000 + Tu(t) + S An(n(0:) + Tntis),
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4. Finite difference methods for hyperbolic equations

52 ~ 52 - -
<I — ZczAh>uh(ti+1> = (I + ZC2Ah>Uh(ti) + 5’Uh(ti),

Tn(tisr) = Tn(t) + gc%h (ah@,-) +an(t) + g('ﬁh(ti) + Eh(tiﬂ))),
2

0 ~ 52 ~ -
(I - ZC2Ah>Uh(ti+l) = (I + ZCQAh)Uh(ti) + 6 Aptn (t:),
so we can perform one time step by solving two linear systems.
In order to prove convergence, we have to establish that our time-stepping algorithms

are consistent and stable. Since the original wave equation conserves the total energy,
we should also consider whether the discrete solution shares this property.

4.7. Discrete conservation of energy

Since the potential energy of a solution (u, v) of the original equation (4.4]) can be written
in the form

02
Epot(t) = 5 /Q<Vu(t,x),Vu(t,x)>2 dx

C2

2
=3 u(t, z)(n(z), Vu(t,z))2 de — 5 /Q u(t,z)V - Vu(t,z) dx

o2
2
_ _% / ult,2)Agu(t,z)dz  for all t € Rag
Q

by partial integration (cf. Reminder |4.3) due to u(t, x)|an = 0, a straightforward defini-
tion of the potential energy of the discrete problem is given by

2

c
Epot,n(t) = *§<Uh(t), Apup(t))a, for all t € R>g.

For the kinetic energy, we choose

1
Ekin,h(t) = §<’Uh<t), vh(t)>gh for all t € Rzo.
The product rule immediately yields

Epin n(t) = (0n (), v, (), = (vn(t), & Apun(t))a, = (up(t), ¢ Apun(t))a,
= — {)ot,h(t) for all t € RZ()?

where the last step makes use of the fact that Ay is a self-adjoint operator. We can see
that the method of lines preserves the discrete energy

2
© (un(t), Apup(t))q,  for all t € Rsg.

1
Ep(t) := Exinn(t) + Epot,n(t) = §\|Uh(t)\|52)h ~ 3

Obviously, we prefer time-stepping schemes that share this property.
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4.7. Discrete conservation of energy

In order to generalize the following results, we introduce the operator
Ly = —c2A,
and write our system in the form
/
(i) = () Ch) = () (o) ormeemeo
In the following, we only assume that L is positive definite, i.e., that
(Vp, Lyvp)a, >0 for all v, € Go(p,) \ {0}.

For our model problem (4.5)), this property is guaranteed by Lemma
The energy of a state (us(t), vp(t)) can be written as Ej(t) = 3@, (un(t), vn(t)), where

®p,: Go(Q) x Go(Qn) — Rxo, (@h,yn) = lunlldy, + (@h, Lazn)a,,
is called the discrete energy functional.
Lemma 4.5 (Explicit Euler method) Let § € R>q. Let up, v, € Go(Q4), and let
up, 1= up, + ovp, vy, = vp, — 0Lpup,
denote the approzimations constructed in one step of the explicit Euler method. We have
Oy (Un, Tp) — P (un, va) = 62| Launlld, + 6*(vn, Lrva)a, = 0.
Proof. By the third binomial equation, we have

[TRlI,, = lonll, = (@ = va, B + va)e,, = —0(Lhun, T + vh)a,,

(@h, Lrtn) o, — (Un, Loup)o, = (U — up, Ln(Un + up))a, = 6(Un, Lo (Un + up))o,,
so we find

Dy (Un, 0n) — Pu(un, va) = 0(vp, Ln(Un + un))o, — (U + vh, Lpun)a,
= 6(un, Latn)o, — 0(Vn, Lrun)a,
= 0(vp, Lpup + 0Lpvp)q, — 0{vp — OLpup, Lrun)a,
= 52<vh,£hvh)gh + 6 (Lrup, Lrup)q, > 0.

Due to our assumption, we know that (vj, Lpvp)q, > 0 holds for all v, € Go()
with (vn, Apvp)q, = 0 if and only if v, = 0, so we have to conclude that the explicit
Euler scheme increases the total discrete energy unless we encounter the wvery special
case up = vy = 0.

75



4. Finite difference methods for hyperbolic equations

Exercise 4.6 (Implicit Euler method) Let § € R>qo. Let up, v, € Go(Q,), and let
up = up, + Ovp, vp = vp — 0Lpup
denote the approximations constructed in one step of the implicit Fuler method. Prove
& (Un, Th) — P (un, va) = =8| Lrtin I3y, — 0% (Tn, LuTh)q, < 0.

The implicit Euler method decreases the total discrete energy, and this is also not a
desirable property.

Lemma 4.7 (Crank-Nicolson method) Let § € R>g. Let up, vy, € Go(Q), and let

B 5 » 1) ~
Up, = Up + §(Uh + Uh): Uh := Vp — §£h(uh - uh)

denote the approximations constructed in one step of the Crank-Nicolson method. We
have

Qp, (un, vn) = Pp(un, vp)-

Proof. By the third binomial equation, we have

- - - 1) ~ ~
o018, — lvalld, = (©n — v, O + vi)a, = —§<£h(uh + up), Up, + vn)qy
(n, Lnup)a, — (un, Lrun)a, = (Wn — up, Ln(p + up))q,
. "
= 5(% + vn, Ly (un, + up))a,,

so we find

S ) ~ ~
O (Un, vn) — Ppun, vp) = 5( — (Un + vn, La(Un + un))a,
+ (U, + vn, Li(ap, + un))a,) = 0.
| |

This is a very encouraging result: the Crank-Nicolson method conserves the total
discrete energy, just like the original wave equation conserves the total energy.

4.8. Consistency and stability

In order to prove convergence of a time-stepping method used to approximate the solu-
tion of ([4.5)), we should try to establish consistency and stability of the method for the
given problem.

We would like to re-use the previous results for the parabolic case, and these results
rely on the property

(ft,z) — f(t,y),z—y) <0 for all t € R>p, z,y € V.
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4.8. Consistency and stability

In our case, we have V = Go(Q,) X Go(Q4), and the obvious candidate

I Y1
<<$2) ’ <y2>> = <xlayl>ﬂh + <x27y2>ﬂh for all T,y eV

for an inner product for V would lead to

(ft,x) = f(t,y),x —y) = (2 — Y2, 71 — Y1),
—(Ln(r1 — Y1), 22 — Y2)q, for all z,y € V,

and it is not clear at all why this term should be non-positive.
A very elegant approach relies on the energy inner product

() (2 )0a5= o unta, + e for all 2, € V.
L2 Y2
This inner product gets its name from the fact that
Op(x) = (z,2)4 for all x € V,
i.e., the energy norm corresponding to the energy inner product, defined by

lz]|a ==/ {z,z)a for all z € V,

is just the square of the energy functional.
For the energy inner product, we find

(f(t,z) = f(t,y),x —y)a = (2 — y2, Ln(x1 — y1))q,
+(—L(x1— 1), 22— y2)q, =0 forallt € Rsg, z,y €V,

and consistency of our time-stepping methods is guaranteed by Lemma Lemma [3.9
and Lemma 3.10l

Stability is guaranteed by Lemma for the implicit Euler method and by Exer-
cise [3.19] for the Crank-Nicolson method.
For the explicit Euler method, we can take a look at the eigenvalues.

Lemma 4.8 (Explicit Euler, wave equation) Let ¥ denote the time-step function
of the explicit Fuler method for our model problem @, and let

Cy:=V14+022 e < 1+ e/ Amaz-

We have

||\Il(t’ 67$) - \Ij(tv 5a y)HA < C\p”l' - yHA fO’f’ all t € Rz()a de RZO? T,y € V.
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4. Finite difference methods for hyperbolic equations

Proof. Let t € R>p, 6 € R>0, and z,y € V. We let

~ . xr1 + 6$2

T :=Y(t,0,x) = (332 B 5£h$1> ,

~ Y1 + 0y2
=Vt d,y) = .

Y (t,9,9) <y2 B 5£hy1>

Due to Lemma we can find (o ),eq1:n)2 and (By),epi:n2 such that

Iy = Y Gueh, Ta—y2= Y Bl

ve[1:N]? veE[1:N]?
We obtain
Fi-i= (@ —y)+0@m2—y2) = > (o +05B)enw,
vE[1:N]?
To — Yo = (v2a —y2) — 0Lp(x1 — 1) = Z (By — 0 M) en s
ve[l:N]?
(@1 — 1, Lp(ZT1 — 1)), = Z CQ)\h,u(Oéy + (551/)2,
ve[l:N]?
|72 — %H?}h = Z (B — 502)\]1,1,0@)2,
ve[l:N]?
”5 - ﬂ”i = Z C2)‘h,u(au + 5/81/)2 + (/61/ - 5C2>\h,vau)2
vE[1:N]?
= Y (Aol + 270N By + P52 N B
ve[l:N]?

+ BZ — 2025)\h7l,ayﬁ,, + 6452)\%“,0[12,)

= 3 1+ 8AM) ANl + (14 2820,,) 62
ve[l:N]?

S Y Eanal+ g
ve[l:N]?

= C3(llz2 — v2lld, + (@1 — y1, Lalz1 — v1))a,)
= C3 |z — ylA-

This is the first estimate. We conclude by observing

V14622 A pax < \/1 + 25cv/ Amax + 02¢2 A max = \/(1 + dcv/ Amax)? = 1+ dev/ Amax-

We can see that this estimate cannot be improved, since we have equality for x —y =
(eh7(N,N), eh7(N7N)). This means that we can only expect a stable method if we ensure

62 < ! ~ h—Q
~ A hpax | 8c2’

5 < h.
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4.9. Finite volume discretization

This is similar to the Courant-Friedrichs-Lewy condition for the heat equation:
explicit time-stepping schemes for the wave equation also require that the time steps
become smaller as the grid is refined.

In a way, the wave equation is less demanding than the heat equation: while the heat
equation requires § € O(h?), we only need § € O(h) for the wave equation.

As in the case of the heat equation, both implicit methods are unconditionally stable
and therefore require no bound for the time steps.

4.9. Finite volume discretization

Conservation laws are frequently expressed in terms of integrals, and this gives rise to
an important class of discretization techniques: finite volume methods split the compu-
tational domain into subsets and formulate conditions that have to be satisfied in each
of these subsets.

A simple example is Darcy’s model of groundwater flow, described by two quantities.

The flur f: Q — R? corresponds to the flow of water in the domain  C R?. Roughly
speaking, the inner product (g, f(x)) describes the amount of water flowing in direction
q € R? in point = € Q.

The pressure p: 2 — R corresponds to the force exerted, e.g., by gravitation.

Darcy’s law states

f(z) +kVp(z) =0 for all x € Q, (4.7)

i.e., groundwater flows from high-pressure into low-pressure regions. The permeability
k € Ry describes how rapidly the water can flow in response to the pressure.

In order to obtain a reasonable model, we have to add a second set of equations
describing the conservation of mass, i.e., that water is not created or destroyed. This
property is described by the equation

V-f(x)=0 for all z € Q. (4.8)

Given a subdomain w C  with exterior normal vectors n: dw — R2, the Gauf theo-

rem [4.3] yields
0= [ V-s@an= | (nie). f@)a.

i.e., the total flows into and out of w are balanced and therefore the total amount of
water is conserved.

The idea of the finite volume method is to split the domain into a finite number of
subdomains and formulate equations that have to hold for each of these domains. We
once again consider only the unit square Q = (0,1) x (0,1), choose n € N, let h := 1/n,
and define sub-squares

Wy = [(21 — 1)h, Zlh] X [(22 — 1)h,’i2h] foralli e T := [1 : n] X [1 : n]
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4. Finite difference methods for hyperbolic equations

Applying the Gaufl theorem to these squares yields

O:/AV-f(x)dx:/é) {nfa), F(@)) da for all i € T,

The boundaries of the squares consist of edges

ez = [(i1 — 1)h,i1h] x {izh} for all i € Z, :=[1: n] x [0 : n]
in z direction and edges

ey := {i1h} x [(ia — 1)h, izh] forall i € Z, := [0: n] x [1: n]

in y direction. For these edges we fix the unit normal vectors

e (1) e ()

For ¢ € Z, the boundary of w; consists of the edges e, €z in—1, €y,i» and €y 1.
With respect to this squarem the vector n, is an exterior normal vector on e;; and an
interior normal vector on e; ;, ;,—1, while n, is an exterior normal vector on e, ; and an
interior normal vector on ey ;, —1,, so that the boundary integral takes the form

0= [ ina). f(@)ds
:/ .fz(x)dx— fg(x)da:—i—/ ‘fl(x)dx— fi(z) dzx.

ez,il,igfl ey,ilfl,ig

We use these edge integrals as the first set of degrees of freedom in the discrete system,
i.e., we let

Jzi = / fa(z) dz for all i € Z,,

fyi = / fi(x)dx for all i € T,
Ey’i

and observe that the exact conservation of mass in each square corresponds to the
equations

fgm' — fx,il,igfl + fy,i — fyﬁ'lfl@ =0 for all 1 € 7. (4.9)

Now we have to consider Darcy’s law. Let i € [1 : n] x [1 : n — 1]. Multiplying Darcy’s
law (4.7)) by the normal vector and integrating along the edge e, ; yields

Op

—(x)d
€x,i 8132 (:C) !

0= [ (o f@) + 1p(a)) da = [ (s, () do +

3

i1h 8])
= '—l—k/ ——(s,19h) ds.
fm,z (1) 81‘2( 2 )
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4.9. Finite volume discretization

Since we cannot handle equations of this kind directly, we have to employ a numerical
approximation. For the derivative, we can rely on the central difference quotient (cf.

Lemma , i.e.,

(o Pl5sliz = 1/2R) —pls, (o £ 1/2)0)
8:132 2 - h

for all s € [(i1 — 1)h,i1h)].
The integral, on the other hand, can be approximated by a quadrature rule.

Lemma 4.9 (Midpoint rule) Let h € R~ and g € C?*[—h,h]. We can find n €
(—h, h) with

h 3
2hg(0) = [ gls)ds =o' (0).

Proof. We define
g: [-1,1] = R, s+ g(sh),

and apply a change of variables to obtain

/};g(s) ds = h/l1 g(s) ds.

We introduce ¢(s) := (s — 1)2/2 and observe ¢/(s) = s — 1 and ¢”(s) = 1. Partial
integration yields

Due to ¢(s) > 0, we can apply the mean value theorem to find ny € (0,1) with

1 1
| et as =g [ ots)ds = 5l o).

Reflecting g by zero gives the complementary result
0 ! / ]‘ "
[ s = [ at-91ds = 30) = 301/ + i)
-1 0

with n— € (—1,0). Adding both equations leads to

/1 §(s)ds = 24(0) + ;Q”(m) ;Q”(n_)

i
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4. Finite difference methods for hyperbolic equations

and the intermediate value theorem yields 7 € [n—,n4] C (—1,1) with

) g// 77 +§// n_
g//(n> _ ( +) : ( )7

and the chain rule leads to the desired result

h 1 A . hA . h3
/hg(S) ds = h/l 9(s) ds = 2hg(0) + 34" (1) = 2hg(0) + 9" (n)
if we choose n = hn) € (—h,h). [ |

We approximate Darcy’s law by

i1h 6]?
0:fm+k/ ——(s,12h) ds
(i1—1)h 8x2( zh)

~ fxz + k/ilh p(37 (7'2 + %)h) —p(s, (12 - %)h) ds
' (i1—1)h h

& foi + k(((in — 3, (o + 3)R) = p((i1 — D), (i2 — L))

and conclude that we only need the values of p in the midpoints of the squares. This
leads us to introduce the second set of degrees of freedom as

pi = p((i1 — $)h, (ia — 3)h) forall i € 7.

Performing the same approximation steps for the y edges as well and dividing by the
constant k leads us to the following approximation of Darcy’s law:

X 1 fai + Disig+1 — Di foralli € Z, :=[1:n] x [1:n—1], (4.10a)
0~ 1fyi+ Piris — Di forallieZ,:==[1:n—1] x [1:n]. (4.10b)

Together with the conservation equations and conditions for boundary edges f;;
with i € 0L, := I, \Z, = [1 : n] x {0,n} and f,; with i € 8T, := Z,\Z, = {0,n} x [1 : n]
yields a linear system that can be solved as long as the boundary conditions ensure that
the inflow for 2 equals the outflow, since this is obviously necessary in order to have an
equilibrium state.

The solution is not unique, since the pressure is only determined up to a global con-
stant. This problem can be solved in various ways, e.g., by including an equation that
forces the mean pressure to be zero or by using a suitable iterative solver like Uzawa’s
method.
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5. Variational problems

While finite difference methods work quite well in a variety of applications, they are not
very flexible when it comes to irregular geometries or solutions with limited differentia-
bility.

Variational techniques can handle these situations far better: variational formulations
of partial differential equations can lead to weak solutions where no classical solutions
exist, and the Galerkin method offers a straightforward discretization scheme that pre-
serves many of the original problem’s properties.

5.1. Variational formulation

We consider the Poisson equation

—Au(z) = f(z) for all x € Q, (5.1a)
u(z) =0 for all x € 00 (5.1b)

in a bounded domain Q C R? with a right-hand side function f € C(Q) and a solution
u € C(Q) with u|g € C%(Q).

Unfortunately, there are domains 2 and right-hand sides ¢ such that no twice differ-
entiable solution exists, and these are not particularly pathological examples but appear
in real applications.

Since our differentiability requirements is “too strong”, we consider weaker formula-
tions. We construct these formulations in a way that ensures that a solution of the
original problem is still a solution of the weaker problem, but that the weaker problem
may have solutions where the original problem does not.

In a first step, we replace point-wise equality by averaged equality: we multiply
by test functions v € C(2) and integrate. This leads to the following weaker formulation:

Find u € C(Q) with u|q € C%(Q) such that

—/ v(x)Au(x) dr = / v(x)f(x)dz for all v € C(92), (5.2a)
Q

Q
u(x) =0 for all x € 99. (5.2b)

Obviously a solution of is also a solution of .

Next we get rid of the requirement that u has to be twice differentiable in : if v
is continuously differentiable, we can apply partial integration and shift one derivative
from u to v. By introducing

ClQ) :={ueC() : ulgeCH), ulgq =0},
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5. Variational problems

we can also incorporate the boundary conditions.
Let now v € C§(9). Due to Reminder partial integration yields

- /Q o) Au(z) do = — / 0(@)V - Vu(z) dz

Q

—/<Vv(x),Vu(a:))2dx—/ v(z)(n(z), Vu(x))s dx.
Q

o0

By definition, we have v|pq = 0, so the boundary integral vanishes and we conclude

_ /Q o(z) Au(z) dz / (Vo(z), Vu(x))s da.

Q

The right-hand side requires u only to be differentiable, not twice differentiable, and
since C3(2) already includes the boundary conditions, we find the following weaker
formulation:

Find u € C}(Q) such that

/(vu(x),vu(m)>2dm= / (@) f(z)de  forallve CLQ).  (5.3)
Q Q

Once again, our construction ensures that a solution of the original problem (/5.1]) is also

a solution of (5.3)).

This is called a variational formulation of the original equation, since the equation
has to hold for varying test functions v € C(€2).

Unfortunately, the requirement that w is once continuously differentiable is still too
strong. We have to generalize what it means for a function to be differentiable.

5.2. Sobolev spaces

A closer look at suggests that we actually do not need Vu(z) to be continuous, it
only has to be integrable. This suggests that we could weaken the definition of differ-
entiability in the same way we have weakened the problem formulation: by multiplying
by a test function an integrating.

Reminder 5.1 (L?(Q2) and L2(Q,R%)) We denote the space of real-valued square in-
tegrable functions by

L*(Q) = {u :Q — R : wis Lebesgue-measurable, /

; u(z)? de < oo}

and the space of vector-valued square integrable functions by

LY(Q,RY) = {u Q= R ¢ ||ul|y is Lebesque-measurable, / |w(z)||3 dz < oo}
Q
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5.2. Sobolev spaces

Both are Hilbert spaces with the inner products

(v, u)2 = /Qv(a:)u(a:) dx for all v,u € L*(Q),

(v,u)r2 == /Q<v(x),u(m)>2 dx for allv,u € L*(Q,RY)
and the corresponding norms

lullz2 == v/ (u, u) 2 for all u € L*(Q) or u € L*(Q,RY).
Hoélder’s inequality yields the Cauchy-Schwarz inequality

(v, u)r2]| < ||vll 2 llu||r2 for all u,v € L*(Q) or u € L*(Q,RY). (5.4)

As usual in this context, we treat functions that differ only on a null set as equal.

Partial integration allows us to shift derivatives between factors in an integral, and
we plan to move all derivatives to the test function. This means that we should require
the test function to be infinitely differentiable, and it means that we should also ensure
that no boundary integrals appear during the partial integration.

Definition 5.2 (Support) Let u:Q — R oru: Q — R The support of u is defined
by

supp(u) :={z € Q : u(z) # 0}.

This definition implies u|o\supp(u) = 0, S0 in order to ensure that u and (possibly its
derivatives) vanish on the boundary of €2, we have to keep supp(u) and 92 disjoint.

Lemma 5.3 (Compact support) Let K C R? be a compact set, and let || - || denote
a norm for R%.
If K CQ, there is a § € Rsq such that

|z =yl >6 forallz € K, y € 0.

Proof. Let K C €.
If K =0, our claim is trivially satisfied since there is no z € K.
Let now K # (). We denote open balls in R by

B(x,r):={yeR? : |ly—z| <r}, for all 2 € RY, r € Rug.
Since €2 is an open set and K C €2, we can find an ¢, € Ry for each z € K such that
B(x,3¢;) C Q2 for all x € K.

Then
C:={B(z,e;) : € K}

85



5. Variational problems

is an open cover of K. Since K is compact and non-empty, there is a finite and non-empty
subset A C K such that

K C| J{B@ &) : T A}

We define § := min{ez : T € A}.

Let now x € K and y € 0f). We have seen that we can find T € A such that
S B(flf\, 63;).

Since y is a boundary point, each open ball centered at y intersects the complement of
Q, i.e., we can find z € B(y, e3)N(R4\Q). Due to B(Z, 3¢z) C Q this means z € B(Z, 3¢z),
and the triangle inequality yields

17—yl > |z — z[l = [z — yll > 36z — ez = 2¢5.
We can apply the triangle inequality again to obtain
lz =yl > 12—yl = [z = Zl| > 26z — ez = &z = 0.

Applying this result to K = supp(u), we conclude that if a function has compact
support, the support has to have a positive distance to the boundary, and therefore the
function must be zero in an open neighbourhood of the boundary. In particular, not
only the function vanishes in this neighbourhood, but also all of its derivatives.

This leads us to the definition

Ce°(Q) := {u € C®(R%) : supp(u) is compact and supp(u) C Q}.

Let us consider the j-th partial derivative for j € [1: d]. Let u € C*(Q) and ¢ € C5°(Q),
and let $ € C*(9,R%) be given by

. o ifk=j,
O = for all kK € [1:d].
b {O otherwise [ ]

Applying partial integration (cf. Reminder , we find

0= [ u@in(o). Fo)s

/u daz+/Q<Vu(x),cﬁ($)>2d:c

ou
/Qu &EJ x)dx + ( Yo(z) dz

Q

o)

and conclude

/Qaaai(ar)go(m) dx = —/Qu(x)g;:(x) dx. (5.5)
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This equation suggests a generalization of the derivative: if we can find a square-
integrable function v € L?(§2) such that

Oy .
/Qv(x)w(x) dr = — /Q u(:):)a—x](x) dx for all ¢ € C§°(Q),

we can use v as a “weak” j-th partial derivative of u.
In order to make handling higher derivatives easier, we introduce the set N& of multi-
indices and write

V| :=v1+ ...+ vy for all v € N¢,

8V1 a’/d

for all v e N&, uw e C"(Q), z € Q.

Using ((5.5) and our definition of the L?-inner product, a straightforward induction yields
(Byu, )2 = (=), 8,0) 12 for all v € N&, uw e C(Q), p € CF(Q).
Definition 5.4 (Weak derivatives) Letu € L?(Q2) and v € N&. Ifv € L%(Q) satisfies

(v, 0) 12 = (=1)"(u, By) 12 Jor all ¢ € CF(9), (5.6)

we call v a v-th weak derivative of u.

We have already seen that for classically differentiable functions the derivative is also
a weak derivative, so the weak derivative is a generalization. In order to be able to work
with it (almost) as if it were a proper derivative, we have to ensure that it is uniquely
determined by our definition.

Reminder 5.5 (Smooth approximation) For u € L?() and ¢ € Rq, there is a
function uw € C3°(2) such that
lu — |72 <e.

Lemma 5.6 (Uniqueness of weak derivatives) Let u € L*(Q) and v € Ng.
Let v,w € L?(2) be weak v-th derivatives of u. Then we have ||v — w2 = 0, i.e.,
v=w.

Proof. Due to Reminder we can find ¢ € C§°(Q) such that
[(v—w) —pllz <e
By the definition of the inner product, we get
[v = w72 = (v —w,v —w) 2 = (v —w, )2 + (v —w, (v = W) = ¢) 2.
Since v and w are both weak derivatives of u, we have

<,U7§0>L2 = (_1)‘V|<uv 8I/('10>L2 = <w7(10>L27
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and therefore (v — w, )2 = 0 and
lv = wllf2 = (v —w, (v —w) — @) 2.
Using the Cauchy-Schwarz inequality yields
[v = w72 < llo = w2l (v = w) — @] 2,
o= w2 < [[(v—w) —lL2 <e

Since we have proven this estimate for arbitrary € € R, we conclude ||[v —w|;2 =0. =

Remark 5.7 (Orthogonality) The proof of Lemma uses a fairly common ap-
proach: in order to bound v—w, we require that v—w can be approximated in a subspace,
in this case CG°(Q2), and that it is orthogonal on this subspace, i.e., (v—w, )2 =0 for
all o € C§°(2). Combining both properties yields an estimate for v — w.

Definition 5.8 (Sobolev space) Let u € L?(Q) and v € Nd. If u has a v-th weak
derivative v € L?(Q), it is unique by Lemma and we denote it by Oy,u := v.
Let m € Ng. The space

H™(Q) = {u € L*(Q) : weak derivatives d,u exist for all v € N¢, |v| < m}

is called the Sobolev space of m times weakly differentiable functions.
We equip this space with the norm

1/2
[ull = ( Z ||auUH%2) for all v e H™(Q),

veN
lv|<m

the semi-norm

1/2
|u| gm = ( Z ||8,,u|\%2) for allu e H™(Q),
veNd
lv|=m

and the corresponding inner product

(v, u)gm = Z (Opv, Oyu) 2 for all u,v € H™(Q).
veNgd
v|<m

The Cauchy-Schwarz inequality carries over to this norm and this inner product.

Exercise 5.9 (Completeness) Let m € Ny. Prove that H™ () is a complete space,
i.e., a Hilbert space.

Hint: the fact that L*(Q) is a Hilbert space can be used to construct limits for Cauchy
sequences. The Cauchy-Schwarz inequality can be combined with @ to prove
that the limit of the v-th weak derivatives of a sequence of functions is the v-th weak
derivative of the limit of the sequence.
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Definition 5.10 (Weak gradient) The weak gradient of u is given by

9(1,0,...,0)U
Vu = : for all u € H*(S).
90,...,0,1) U

For u € CY(Q), it coincides with the gradient introduced in Definition .

Using the weak gradient, we can generalize the variational formulation , but there
is a minor obstacle: due to Reminder we can approximate an arbitrary function in
L?(2) by functions that are zero in a neighbourhood of the boundary and therefore
vanish on the boundary. This implies that we cannot define the restriction u|gq in the
usual way for functions u € L?(Q).

For continuous functions we can introduce the trace operator

v: C(Q) — C(0%), u > ulpn (5.7)
that maps functions in C(Q) to their boundary values in 0.

Theorem 5.11 (Trace operator) Let Q = (0,1)2. The trace operator v satisfies
v (W)llL2o0) < 2llullzz + 2/ ull2[Vul L2 < 3jull for allu € C'(Q).

Proof. Let u € CY(Q). Let y € (0,1) and define

fO: [Oal] — R, :B»—)(l—:l:)u(:z:,y)Q,
fi:]0,1] = R, z— zu(z,y)?

We have
, 9 ou
fO(x) = —u(m,y) + 2(1 - LL‘)U(@',y)%(CB,y),
F(w) = ule,u)? + 2eu(e, ) oo (2, 9) for all z € 0,1

and

fo(0) = u(0,y)*, fo(1) =0, f1(0) =0, A1) =u(l,y)*

Using the fundamental theorem of calculus, we find
0
0.0 = 50) = o)~ [ fierde = [ ue)? 201~ aate. ) 3o,
! 0
s/o e, 0)? dx+2/ (1= Dlate )l |G|
0
u(1,y)? = fi1(1 /fl dx—/ (x,y)2—|—2xu(x,y)8—;t(w,y)dx
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5. Variational problems

< /Olu(:v,y)2dm+2/01x|u(:c,y)| ’gz(x,y)' dz.

Adding both estimates and applying the Cauchy-Schwarz inequality (5.4)) yields

ou

1 1
w2+ a1 <2 [ atep?de 42 [ el Ghe| ds

1 1 1/2 1 ou 1/2
< 2/ u(z,y)? dz + 2 </ u(z,y)? dx) </ —(z,y)* dw) .
0 0 o Oz

Integrating both sides and applying the Cauchy-Schwarz inequality again gives us

1 1 1
/ w(0,9)% + u(l,y)? dy < 2 / / w(y)? d dy
0 0 0

1 1 1/2 1 9w 1/2
+ 2/ (/ u(x,y)de> (/ —(z,y)? dx> dy
0 0 o O

< 2][ull

+2 </01 /Olu(x,y)Qd:vdy)l/Q (/01 /Ong(x,y)Qd:rdy>

= 2[[ullZ> + 2[lul 2

1/2

ox

L2
Applying the same arguments with z and y exchanged results in

ou

Jy

9

1
| 07 4 ula, 12 do < 2l + 2l
0

L2
and adding both estimates and using a + b < 2v/a? + b2 leads to

oull o
ox oy

) < 4llulla + Allull 2 |Vl .

L2 ‘ L2

() 2590 < A2 + 2]l ('
Due to vVa+b < \/mz\/a—i-\@, we find
v (@)l L200) < 2l|ullz + 2V [ull 2]Vl 2,
and 2ab < a® 4 b? gives us the final estimate
Y@l L200) < 2lullzz + llullz + [Vull L2 < 3llull 4.
]

This result can be generalized: for any Lipschitz domain (2, there is a constant C,
such that

Iv(W)llL2a0) < Cyllullm for all u € C'(9).

In order to obtain a similar result for u € H(£2), we make use of the following extension
of the approximation result of Reminder
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5.2. Sobolev spaces

Theorem 5.12 (Meyers-Serrin) Let u € H™(Q2) and € € Rsg. There is a function
u e C®(Q) such that ||u — u|lgm <e.
Proof. cf. [§] [

Applied to m = 1, this result means that for any u € H'(Q), we can find a sequence
(up)9; in C*°(Q) such that
lim [Ju — uy| g1 = 0.
— 00

Due to Theorem we have that (y(u,))S%; is a Cauchy sequence in L?(9f), and
since L2(92) is complete, it has to be convergent. We define

7(w) = lim ()

n—oo

and thus obtain the extension
v HY(Q) — L*(69)
of the trace operator satisfying
v (W)l z200) < Cyllullm for all u € H'(€).

We could now use
HY() = {u € H'(Q) : (u) =0}

to define the weak counterpart of C3(€2). This definition would immediately imply
C3(Q) C HE(Q), but it would make the proofs of some results, particularly Friedrichs’
inequality (cf. Lemma a little complicated.

Therefore we use a more general approach: since the space of infinitely differentiable
functions is a dense subset of H™(£2), we can define HJ"(£2) as the closure of C§°(£2) with
respect to the H™-norm. For m = 1, this is equivalent to the definition given above,
but this statement will not be proven here.

Definition 5.13 (Homogeneous boundary conditions) Let m € Ny. The space
H'(Q) :={ue H™(Q) : for all e € Rsq there is a ¢ € CG°(Q) with ||u — ¢||gm < €}

is called the Sobolev space of m times weakly differentiable functions with Dirichlet
boundary conditions.

Exercise 5.14 (Completeness) Let m € Ny. Prove that HJ'(Q) is a complete space,
i.e., a Hilbert space.

Now we are ready to introduce the final variational formulation of our model problem,

the Poisson equation (5.1): we replace C&(Q) by HE(Q) and the gradient by the weak
gradient.

91



5. Variational problems

Find u € H}(Q) such that
(Vo,Vu)rz = (v, f)r2 for all v € HY (). (5.8)

Proving that a solution of is also a solution of requires two steps: first we
have to demonstrate that u € C3(2) implies u € HZ (), and second we have to show
that testing with function v € HE(Q) instead of CZ () will not change the validity of
the equation.

We have already completed the first step: we have C1(Q) C H'(Q) due to partial
integration, and u € C$ () implies v(u) = 0 and therefore u € HZ ().

The second step is a simple consequence of the Cauchy-Schwarz inequality: assume
that holds, and let v € H} (). For each € € Rs, we can find v € C§°(£2) with
||lv — 0| g1 < e by Definition . Due to 0 € C§°(2) C C} (), we have

<V5, VU>L2 = <5, f>L2
and obtain

[(Vo,Vu) 2 = (v, f) 2| = [(Vo, Vu) 2 — (VO,Vu) 2 + (0, f 2 — (v, f) 2]
=[(V(v—"20),Vu)r2 + (v — v, f) 2]
< [(V(v—0), Vu) 2| + [(v — v, f) 2]

Now we can apply the Cauchy-Schwarz inequality ([5.4) to find

Vo, Vu)r2 — (v, frz| < V(v =0)|| 2| Vullp2 + [0 — vl 2| fl| 2
< ellVullpz + el fll 2

Since this holds for all € € Ry, we conclude
(Vv, VU>L2 = (’U, f>L2,

i.e., the (5.8) holds for arbitrary test functions v € H} ().

5.3. Solutions of variational problems

We investigate the existence and uniqueness of solutions of variational problems of the
form (5.8)) in a general setting: let V be a R-Hilbert space with the inner product (-, )y
and the norm

|- [lv:V = R, w i /(u,u)y.
We write a general variational problem in the following form:
Find u € V such that

a(v,u) = B(v) for all v € V. (5.9)
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5.3. Solutions of variational problems

Here a : V x V — R is a bilinear form and 5 : ¥V — R is a linear mapping.

Definition 5.15 (Dual space) A continuous linear function A : V — R mapping V
into R is called o functional.
The space of all functionals is called the dual space of V and denoted by

Vi={\:V =R : \isa functional}.

If is usually equipped with the dual norm

| ly: V' — R, AHsup{m : UEV\{O}}.

This is well-defined, since a linear continuous function is always bounded.

Lemma 5.16 (Right-hand side) The right-hand side of our model problem (5.8) is
given by

B(v) = (v, f)re2 forallv €V = HL(Q).
This is a functional, i.e., we have § € V', and the dual norm satisfies ||B|y < || fllz2-

Proof. For the model problem, we have V = H} ().
Due to the Cauchy-Schwarz inequality (5.4), we have

B)| = 1{v, 2l < [ollzz fllze < ol fllzz = [ollvllfllz - for all ve V = Hy(%).

This implies

[A(v)]
81 =sup (ot < vV {0})
o (ol Al o)
= Sup HUHV . UEV\{ } - ||f||L27
so ( is bounded, and therefore also continuous. [

Definition 5.17 (Positive definite bilinear form) A bilinear form a : V xV — R
18 called positive definite if

a(u,u) >0 for allu € V '\ {0}.

Definition 5.18 (Symmetric bilinear form) A bilinear forma : VxV — R is called
symmetric if

a(v,u) = a(u,v) for all u,v € V.
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5. Variational problems

Lemma 5.19 (Minimization problem) Let 8 € V', and let a : V xV — R be a
symmetric positive definite bilinear form. We define the function

J: V=R, v = a(v,v) — 25(v).
Let u,v € V. We have
J(u) < J(u+ tv) forallt € R (5.10a)
if and only if
a(v,u) = B(v). (5.10Db)

In particular, uw € V s a solution of (@ if and only if it is a global minimum of J. In
this case, it is the only global minimum.

Proof. If v = 0 holds, the equivalence is trivial. We assume v # 0.
We start by observing

J(u+tv) = a(u+ tv,u + tv) — 26(u + tv)
= a(u,u) + ta(u,v) + ta(v,u) + t*a(v,v) — 28(u) — 2tB(v)
= J(u) + 2t(a(v,u) — B(v)) + t?a(v,v) for all t € R.
Now assume holds. It implies
J(u+tv) = J(u) + t2a(v,v) > J(u) for all t € R,

and this is ([5.10al).
Now assume ([5.10a)) holds. We choose

a(v,u) - Bv)

b= a(v,v)

(we look for a minimum of ¢ — J(u + tv), i.e., for a zero of its derivative) and find
0 < J(u+tv) — J(u) = 2t(a(v,u) — B(v)) + t2a(v,v)
v a(v,u) — B(v))?
SERCORES.C) S CORES 00

v)
_ 2
(o) - B _
a(v,v) -
Due to a(v,v) > 0, this implies (a(v,u) — B(v))? = 0, and (5.10b)) holds.
Let now ((5.10b)) hold, and let w € V be a solution of

a(v,u) = B(v) for all v e V.

Then we have
a(v,u —u) = a(v,u) —a(v,u) = f(v) — B(v) =0 for all v eV,

and choosing v := u —u yields a(v,v) = 0. Since a is positive definite, this implies v = 0,
ie., u=u. [
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5.3. Solutions of variational problems

Definition 5.20 (Bounded bilinear form) A bilinear form a : V x V — R is called
bounded if there is a constant Cg € R>o such that

la(v,w)| < Cllolvlluly for all v,u € V.

Definition 5.21 (Coercive bilinear form) A bilinear form a : V x V — R is called
coercive if it is bounded and there is a constant C'x € Rsq such that

Crllul|3 < a(u, ) for all u e V.

Theorem 5.22 (Riesz) Let € V', andleta:V xV — R be a symmetric and coercive
bilinear form. Then there is exactly one u € V such that

a(v,u) = B(v) forallv eV,

and we have

S8 < luly < 7118l
Proof. According to Lemma we only have to find a global minimum of
J: V=R, v = a(v,v) —26(v)
to find a solution of . Since a is coercive and [ is bounded, we find

J(v) = a(v,v) = 28(v) = Cx|[vll% = 2[1Bllw[|v]ly

1815 11813
Ck Ck

SO ey ) R S
= kllvlly = V1/Ck||Bllv ) — Cx > = O or all v e V.

This implies that

= Ck vl = 2018l llvlly +

V

w:=inf{J(v) : veV}

is a real number, i.e.,
0> p>—||Bl3/Cx > —oo.

By the definition of the infimum, we can find a sequence (u,)52; such that
J(up) <p+1/n for all n € N.
We will now prove that this is a Cauchy sequence. Let n,m € N. We have
a(Up — UmyUp — Up) = 20(Up, Up) + 20 (U, Un) — AUy, + Upy, Up, + Uy
= 27 (un) + 48(tn) + 2J (1) + 4B () — 42" +2 tm J; )
= 2J(up) + 48(un) + 2J (um,) + 46 (um)
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5. Variational problems
Uy, + U, Up + Um
_4J< 2 )_85< 2 )
= 2J (upn) + 48 (upn) + 2J (um) + 45 ()

B 4J(WTum> —4B(up) — 48 (um)
= 2J (un) + 2J (upm) — 47 (WTum>

<2+ 1/n)+2(p+1/m) —4p=2/n+2/m.

Let € € Ryg. We can find ng € N such that C}fno < €. For all n,m € N with n,m > ny,
we have just proven

2/n+2/m 4
||un - um”%) < 704(“71 — Um, Un — um) < / CK/ < CKTLO

Ck

<€,

50 (up)5; is indeed a Cauchy sequence. Since V is complete, it converges to a vector

ue V.
Let € € Ryg. We can find n € N such that 1/n < € and ||u — uy,||y < e. Since a and S
are bounded, we find

a(u,u) — 25(u)

a(Un, Up) + a(u — Up, up) + a(u,u — up) — 28(uy) + 26(up — u)
J(un) + a(u — up, un) + a(u, u — uy) + 26(un — u)

< J(un) + Cllu — unllvl[unlly + Callulv]lu = unlly + 2| Bllv|[u — unllv
< p+ e+ COpellunlly + Cpellully + 2¢[| Bl

< p+ e+ Cpellully + Cpellun — ully + Cpellully + 2¢| 8[|

< pi+ e(1+2C3 ully + 218l + Cpe).

J(u)

Since e can be chosen arbitrarily small, we conclude J(u) = p, i.e., the function J is
minimal at the point w.

Due to Lemma u is the unique solution of (5.9)).
We have

Cxllull} < alu,w) = Bu) < [|Bllvllullv,
and this implies ||ully < |B|y/Ck.
Let € € R5g. By definition, we can find v € V \ {0} such that

v a(v,u Callv|ly||w
8l < PO el | Cololily L o
[olly [ollv [olly
and since € can be chosen arbitrarily small, this implies |8y /Cp < ||uly. |

Remark 5.23 (Lower bound) In the first part of the previous proof, we rely on the
estimate

J(v) > —||8lI}/Ck for allv € V.
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5.3. Solutions of variational problems

to ensure that the infimum of J is finite.
For the solution u of the variational problem, we obtain

J(w) = au,u) = 26(u) = —p(u) > | Bllvl|ully > |8l /Cx

using the stability estimate provided by the Theorem i.e., the lower bound can be
sharp for a suitable choice of B and a.

Corollary 5.24 (Riesz representation theorem) The mapping
Uy: Y — ), u— (-, u)y,
18 bijective and satisfies
[Wyully = [[ully for allu e,
i.e, it is an isometric isomorphism between V and the dual space V'.

Proof. The mapping ¥y is obviously linear.
Let w € V. Then we have

[l = (u,u)y = [(Tyu)(u)] < [yully|ully,
and this implies
ully < [[$yully for all u € V.

The Cauchy-Schwarz inequality yields

|[(Yyu)(v)]
[olly

Jwvully = sup { ;v eV \ {0}

:SUP{W : vEV\{O}}

gsup{M : UEV\{O}}:HUHV for all uw € V.
[ollv

We conclude that ¥y is injective and isometric.
Let 8 € V'. Applying Theorem to

a(v,u) = (v,u)y for all u,v € V

yields v € V with Uyu = 5, so Uy is also surjective. [

In order to apply Theorem to our model problem, we have to establish that it it
coercive.

Lemma 5.25 (Friedrichs’ inequality) Let B := [a,b] x R be given such that Q C
B, and let R:=b—a.
We have

lul| 2 < R||Vul| 2 for all u € HL(Q).
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5. Variational problems

Proof. We first consider u € C§°(£2). Let 2 € Q. Due to the fundamental theorem of
calculus, we have

/ . (y,z2,...,2q)dy, (5.11)
and due to u € C3°(€), we also have u(a
Introducing
Z2
=1 for all z € Q,
Zq

~

Q:={z : z€Q},
we can write (5.11)) in the shorter form

u(z) = e —(y,2) dy for all z € Q.

Squaring, integrating, and the Cauchy-Schwarz inequality (5.4)) yields

1 ou
2 _
Julite = | u(w? d:c—/( a &61(@/, #)dy)’ da
// 1dy/ Y, T dydac
// y, dydﬂv
=R ,A ddAd
/// i (0) dviz
// e :1: dxdz
1
—R/ ou

aixl L2
ull 2 < R||Vul 2 for all u € C§°(S).

ou

dz = R?
axl L2

< B[ Vul..

We have proven

Let now u € H}(Q), and let € € R~g. Due to Definition we can find © € C§°(2)
such that
lu—ul|g <e

Since we have already proven the desired estimate for all functions in C5°(2), we can
use the triangle inequality to find

lullz < [ullz2 + [lu = tll2 < R|Vaul|: + €
< R|[Vull 2 + R|V (@ — u)| 2 + ¢ < R||Vu 2 + Re + .

This holds for all €, so our proof is complete. [
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5.3. Solutions of variational problems

Corollary 5.26 (Model problem) Let R be chosen as in Lemmal[5.25 The bilinear

form
a: H} (Q) x HY(Q) = R, (v,u) = (Vo,Vu) 2,
satisfies
0w, )] < V0l 2| Vall o < [l el for all v,u € H'(9)
a(u,u) > 1—1—1R2HUH%{1 for all u € H} ().

i.e., it is bounded and coercive.
Proof. Let v,u € H'(Q). Due to the Cauchy-Schwarz inequality (5.4)), we have
la(v,u)| = Vv, Vu) 2| < [Vl 2|Vl 2 < [Jofl g llull o

S0 a is continuous with the continuity constant Cp = 1.
Let u € H}(2). By Friedrichs’ Lemma we have

lull> < BZ[Vulja,
lullf = lullZe + 1Vullze < REIVullze + [ Vel
= (14 RY|IVulfz = (1+ R%)a(u, u),

and this implies
1

1+ R?

S0 a is coercive with the coercivity constant Cx = 1/(1 + R?).

lullfr < alu,w),

We can interprete this result as a norm equivalence: on the subspace HE(2) with

homogeneous Dirichlet boundary conditions, the semi-norm

lul g1 = ||Vul| for all u € H(Q)

is in fact a norm, and equivalent to the norm ||u||g:. This is obviously not the case
without the boundary conditions, since we can choose u = 1 and obtain [|[Vu|z2 = 0

and [[ul g = [Jullz2 = /|22 > 0.

Riesz’ Theorem [5.22] requires the bilinear form a to be symmetric, and this property
is not guaranteed for all partial differential equations we might want to investigate. We

now consider a generalization of this existence result.
If a is bounded, we can define the operator

AV =V, u s a(-,u),

and write ([5.9)) in the compact form
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5. Variational problems

Due to
la(v, )|
|| Aully» = sup ( ol cveV\ {O})
C
< sup (IW} cveV\ {O}) < Cg|lully forallu € V,
1%

the operator A is well-defined and bounded, i.e., continuous.

Lemma 5.27 (Bounded inverse) Let A be invertible. The inverse is bounded if and
only if there is an a € Rsq such that

ja(v, u)
[ollv

allully < || Aulyr = sup{ tveV\ {0}} for allu e V. (5.12)

In this case, we have || A7 |y vy < 1/a.
Proof. We assume that A" is bounded, i.e.,
AT vy < oo
By definition, this implies
AT Ay < AT v Al

A
= | A7 |pyr sup {|||1§|1|J1)2| cveV\ {0}} for all A € V'.

Let now u € V and X := Au. We obtain

|(Au)(v)|
[v]lv

la(v, u)|
[vllv

lully < A vy sup{

: veV\{O}}

- ||A1\|M/sup{ : vev\{O}},

and this implies

< sup {0
Aoy = P Ulelvllully

Assume now that (5.12)) holds. Let A € V' and u := A~'\. We have
|a(v, u)

[ollvllully

: UEV\{O}}.

all Ay = aluly < sup { oev\ ()

:sup{'“”)' - veV\{O}}zuAnw,

[ollvllully

and this implies
_ 1
AT Al < =[[Ally.
Q
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5.3. Solutions of variational problems

By definition of the operator norm, this is equivalent with ||A=!|ly vy < 1/a. [ |
The condition ([5.12)) is frequently written in the form
0<a::inf{sup{‘a(v’u>‘ : UEV\{O}} : ueV\{O}}

[ollvllully

and called an inf-sup condition.
Although this condition does not guarantee the invertibility of A, it ensures two other
important properties.

Lemma 5.28 (Closed range) Let a be continuous and satisfy . Then A is in-
jective and the range

R(A) :={Au : ueV}

is a closed subspace of the dual space V'.

Proof. We prove injectivity by contraposition: let u € V' \ {0}. Applying (5.12)) yields
|a(v, u)|

|phmV/:sup{
Tollvlfuly

i.e., Au # 0. Therefore Au = 0 implies © = 0 and A has to be injective.
Let now (A\,)52; be a convergent sequence in R(A). By definition, we can find a
sequence (uy)o; with

Aup = A for all n € N.
Let n,m € N. We apply (5.12) to find

al|un — umlly < AU — um)llv = [|Aun — Aumllyr = [[An — Amllyr.

:veV\mﬁwwvzmww>a

Since (An)o2, is convergent, it is also a Cauchy sequence. We have just proven that the
same holds for (uy)22, so there is a u € V with

u = lim u,.
n—oo

Since A is continuous, we have

lim A\, = lim Au, = A lim u, = Au € R(A),

n—oo
i.e., R(A) is a closed subspace. ]
In order to ensure that A is surjective, we need a criterion for checking R(A) =V'.

Lemma 5.29 (Orthogonal projection) Let S C V be a closed subspace. There is a
linear mapping

s:V—>3S§
such that
(v, su)y = (v,u)y forallueV, ves. (5.13)
If § #V, we can find w € V with w # 0 and
(v,w)y =0 forallv e S.
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5. Variational problems

Proof. Let
Ty: V=V, u = (- u)y,
Us: S — Sl, u — <~,u>y,

denote the Riesz isomorphisms on V and S. Since S is a closed subspace of the Hilbert
space V, Corollary guarantees that both are isometric isomorphisms
Since S and V share the same norm, we have V' C &’ and can define

s = U5 0y,
Let now u € V and v € S. We have
(v, IIsu)y = (Tyu)(v) = (v, u)y.

Assume S # V. This implies that we can find z € V\ S. Let w := z — IIgz. Due to
z ¢ S and [Igz € S, we have w # 0, and ([5.13)) yields

(v,wyy = (v, 2z — Mgz)yy = (v,2)y — (v,1s2z)y =0 for allv e S.
[ |
Remark 5.30 (Adjoint operator) LetV and W be R-Hilbert spaces, and let A: YV —

W denote a bounded operator.
For every w € W, the mapping

Aw: V= R, v = (w, Av)w,

is a functional in V'. Using the Riesz isomorphism Wy, we define a new operator
AW =V by

A w = \Ilgl)\w for allw e W
and observe
(w, Av)y = Ay(v) = (A" w, v)y forallveV, weW.

We call A* the adjoint of A.

Denote the range of A by S := R(A) C W and the null space of A* by N(A*) :=
{weW : A*w =0}, and assume that the range S is a closed subspace.

Let w € W. Using the orthogonal projection lls introduced in Lemma |5.2Y, we can
define wy = llsw and wy := w — wy. By definition, we have wy € R(A). Due to
Lemma [5.29, we have

0= (w— lsw, Av)yy = (w2, Av)yy = (A wa, v)w forallveV,

and therefore A*wy = 0, i.e., wo € N(A*).

We conclude that W is the orthogonal direct sum of R(A) and N (A*).

In particular, this means that if a vector w € W is orthogonal with respect to the null
space N (A*), it belongs to the range R(A) of A.
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5.4. Galerkin methods

Theorem 5.31 (Babuska-Lax-Milgram) Let a be continuous and satisfy the inf-sup

condition .

If for each w € V \ {0} there is a w € V such that a(w,u) # 0, the operator A has an
inverse satisfying || A7 |y < 1/a.

Proof. Due to Lemma[5.27] we know that if an inverse exists, it has to be bounded. Due
to Lemma we know that R(A) is a closed subspace and that A is injective.

We prove our claim by contraposition: assume that A does not have a bounded inverse.
We have already seen that this can only be the case if it is not surjective, so R(A) # V'
holds. Applying the Riesz isomorphism yields that

X = U (R(A))
is a closed proper subspace of V. Lemma gives us a w € V \ {0} such that
(v,w)p =0 for all v € X.
Since the inner product is symmetric, we can apply the definition of X’ to find
0= (w, T, \)y = A(w) for all A € R(A)
and by definition

0 = (Au)(w) = a(w,u) for all u € V.

5.4. Galerkin methods

In order to solve a variational problem of the form , we have to make it finite-
dimensional, i.e., discretize it.

A particularly elegant and general approach is the Galerkin discretization: we fix a
finite-dimensional subspace V,, C V and solve the following finite-dimensional variational
problem:

Find u,, € V,, such that
a(vp, up) = B(vy) for all v, € V. (5.14)

Let n € N denote the dimension of V,.

The most important property of any discretization scheme is, of course, that it yields
an approximation of the original problem that can be actually be solved. In the case of
the Galerkin method, we can translate the discretized variational problem into a
system of linear equations that can be solved by standard algorithms.
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5. Variational problems

Lemma 5.32 (Linear system) Let (¢;)!' be a basis of Vy,, and let A € R™"™ and
b € R™ be defined by

aij := a(pi, ;) bi = B(ei) for alli,j € [1:n).
Let x € R™ and

Up, = ijgoj. (5.15)
j=1
We have Ax = b if and only if u, is a solution of .

Proof. Assume first that Az = b holds. Let v, € V,,. Since (¢;)I~, is a basis of V,, we
can find coefficients y € R™ such that

n
Up = Z Yipi
=1

and obtain

n n n n
a(vnvun) = a(zyiwiv Zﬁj@j) = Zzyia(soiv@j)xj
i=1 j=1

i=1 j=1

=3 giagz; =Y yi(Az); = (y, Az)y = (y,b)2

i=1 j=1 i1
_Zyzbz—zyz w;) = <Zyz§01>: n

Since this holds for arbitrary v, € V,,, we have proven (5.14]).
Let now u,,, as defined in (5.15)), be a solution of (5.14)), and let ¢ € [1 : n]. Due to
©; € Vy, we have

Zaljl.j Z 801790] (‘Pz; Zx]S%) = (Puun) = ﬂ(@z) = b;.
7=1

Since this holds for all i € [1 : n], we have Az = b. n

Since V), is a Hilbert space, just like V, we can apply the results of the previous section
to establish existence and uniqueness of solutions of ([5.14]).

Corollary 5.33 (Existence and uniqueness) If there is an o, € Rso such that the
bilinear form a satisfies the discrete inf-sup condition

ap||un|ly < sup {W D Up €V \ {0}} for all uy, € V,, (5.16)
n{lV

and if for each w, € V, \ {0} there is a u, € V,, such that a(wy,u,) # 0, the discrete
variational problem has a unique solution.
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5.4. Galerkin methods

Proof. Since V), is finite-dimensional, the linearity of 3 already implies 5 € V). For the
same reasons, the bilinear form a is continuous in V,, X V,.
Now we can simply apply Theorem to V), instead of V. [

Corollary 5.34 (Coercivity) If a is coercive, the discrete variational problem
has a unique solution.

Proof. Let a be coercive with
a(u,u) > Crllul? forallu e V

for 0 < Cg < Cp.
Let u, € V, \ {0}. We have

Cx < |a(tn, un)|
= unllvllunlly’
and this immediately implies
0<CK§sup{|a(vn’un)| : vnEVn\{O}}.
[onllvllun(ly

We have proven that the discrete inf-sup condition (5.16)) holds, and Corollary yields

existence and uniqueness of the solution. [

Lemma 5.35 (Matrix properties) Let A be the matriz defined in Lemma .
If the bilinear form a is symmetric, the matriz A is symmetric.
If the bilinear form a is positive definite, the matrix A is positive definite.
If the bilinear form satisfies , the matriz A is invertible.

Proof. Assume that a is symmetric. We have
aij = a(pi, vj) = al@j, ¢i) = aj; for all 4,j € [1: n].
Assume that a is positive definite. Let z € R™ \ {0}. We define u,, as in (5.15) and

observe u, # 0, since (¢;)_; is a basis.
We have

(x, Az)o = Z Z ZiQijTj = Z Z zia(pi, @) x;

i=1 j=1 i=1 j=1
n n
= a(ingoi, ijgoj> = a(up, up) > 0.
i=1 j=1

Assume that (5.16]) holds. Let x € R™\ {0}, and define u,, as in (5.15)). Due to (5.16)),
we find v, € V,, \ {0} such that

|a(vn, un)| = Ckllonllvllually > 0.
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5. Variational problems
Since (p;)}, is a basis, we find y € R™ \ {0} such that

n
Un = it
=1

and obtain

(0 el = | 3 oy -

i=1 j=1

= la(vp, uy)| > 0,

n n
a( > iy xjst)
i=1 j=1

which implies Az # 0. Contraposition yields that Ax = 0 implies x = 0, i.e., A is
injective and therefore invertible. [

Of course, we are also interested in finding estimates for the accuracy of the approxi-
mate solution u,, provided by (5.14]). A key property of Galerkin discretization methods
is the Galerkin orthogonality.

Lemma 5.36 (Galerkin orthogonality) Let u € V be a solution of (@), and let
Up, € Vy, be a solution of . We have

a(vp,u —up) =0 for all v, € V. (5.17)
Proof. Let v, € V,,. We have

a(vp, u — up) = a(vp, u) — a(vy, uy) = B(vy) — B(vy) =0

due to (5.9) and ([5.14)). ]

Galerkin orthogonality allows us to compare the discretization error u — u, to any
approximation error u — u, for u, € V,. The standard result is that u, is “almost as
good” as the best possible approximation of w.

Depending on the properties of the bilinear form, we can obtain different estimates
for the discretization error.

Theorem 5.37 (Discretization error) Let a be continuous with the continuity con-
stant Cp € R>o and let the discrete inf-sup condition hold with the constant
ay € Ryg.

Let uw € V and uy, € V, be solutions of @) and , respectively. We have

C ~ ~
lu — unlly < <1 + 04B> |lu — ||y for all w, € V,.

n

Proof. Let u, € V,. With the triangle inequality, (5.16), the Galerkin orthogonality,
and the continuity, we find

[ = unlly < flu—unlly + [[un — unllv

{|a(vn,ﬂn —

[[onlv

- 1
< |lu —tp|ly + —sup
«o

n

un)l vnEVn\{O}}
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5.4. Galerkin methods

{Ia(vnﬂn —u)]

[[onllv

D Up eVn\{O}}

_ 1
= |lu — Uplly + — sup
(079

~ 1 Cgllv u—u
< Hu—unly—i—sup{ Bllnllvl nllv : vnEVn\{O}}
Qn [vnllv

- Cp -
= |lu =ty + —lu = Unllv,
7%

and this is the desired estimate. []

Lemma 5.38 (Céa’s lemma, general case) Let a be coercive with the continuity
constant Cp € R>q and the coercivity constant C'x € Rg.
Letu € V and uy, € V, be solutions of (5.9) and , respectively. We have

Cp . -
”u - unHV < CiKHu - unHV for all u, € V.

Proof. Let u, € V,. Using the Galerkin orthogonality (5.17)), we obtain

1 1 -
llu — un||]2, < @a(u — Up, U — Up) = @ (a(u — Up, U — Up) + a(Uy — Up,u — un))
1 C -

~ B
= @a(u — U, t — Up) < a”u = Un|ly|[u = unlly,

and dividing by ||lu — uy||y yields our estimate. ]

We can obtain an improved result if the bilinear form a is symmetric.

Lemma 5.39 (Energy norm) Let a be symmetric and coercive with the continuity
constant Cp € R>g and the coercivity constant Cx € Rso. The energy norm is defined

by

ulla == a(u,u) for allu e V.
It satisfies
VCikllully < [[ulla < VCallullv for allu €V,
i.e., it is equivalent to the norm || - ||y.

Proof. Since a is symmetric and coercive, it is an inner product for V), so the energy
norm is indeed a norm.
Let w € V. We have

Crllully < a(u,u) = |[ulhy = alu, u) < Cpllull?,

and taking the square roots yields the equivalence of the norms. [
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5. Variational problems

Lemma 5.40 (Céa’s lemma, symmetric case) Let a be symmetric and coercive
with the continuity constant Cp € R>q and the coercivity constant Cx € Rx.
Let u € V and uy, € V,, be solutions of (5.9) and , respectively. We have

[ = unlla < flu—tnl|a,

/C - -
lu — un|ly < C—BHU — Up|ly for all w, € V.
K

Proof. (cf. [3]) Since a is symmetric and coercive, it is an inner product for the Hilbert
space V, and we have the Cauchy-Schwarz inequality at our disposal.

Let u, € V,. Using the Galerkin orthogonality and the Cauchy-Schwarz in-
equality, we find

Ju— unHZA = a(u — Up, u — Up) = a(u — Un,u — up) < [[u—tn|lallu—unlla,
and dividing by |lu — up||4 yields
[u = unlla < |lu—tn] a.
Dividing by a(u — ty, u — uy)'/? and squaring yields

a(t — Up, U — Up) < a(t — Up, U — Up).

Lemma [5.39| gives us the second estimate. [
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6. Finite element methods

The idea of Galerkin’s discretization technique is to replace the Hilbert space V under-
lying the variational problem by a finite-dimensional subspace V,,. If we choose a basis
of V,, the variational problem is equivalent to a linear system of equations, and this
system inherits many important properties like symmetry or coercivity from the original
problem.

Now we consider how we can construct finite-dimensional subspaces and choose bases
in a way that allows us to handle the resulting linear systems efficiently.

6.1. Triangulations

Before we can start to construct a space of functions, we first have to find a description
of the domain of these functions. Our approach is to describe polygons or polyhedra as
disjoint unions of triangles or tetrahedra following certain rules.

Definition 6.1 (Simplex) Let d € N and k € [0:d]. A sett CR? of cardinality k + 1
is called a k-dimensional vertex set in d-dimensional space if there is a w € t such that

{v—w : vet\{w}}

1s linearly independent.
The set of all k-dimensional vertex sets in d-dimensional space is denoted by Sg.
For allt € S¢, the sets

W ;:{Zavv : Zav:L Yvoet : aU€R>0},

vet vet
wt::{Zavv : Zavzl, Yvet : avERZO},
vEL veEL

are called the corresponding open and closed simplices.
Two-dimensional simplices are called triangles, three-dimensional simplices are called
tetrahedra.

Lemma 6.2 (Linear independence) Letd € N, k € [0:d], andt € SI. Let w € t.
Then

{v—w : vet\{w}} (6.1)

1s linearly independent.
For all s Ct we have s € Sg with £ := #s < k.
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6. Finite element methods

Proof. By definition we find w € ¢ such that

(- : vet\{d)} (6.2)

is linearly independent. Let oo € RY. We have

Yo o ww-0)= Y av-w) - D (@ —w)

vet\{@} vet\{@} vet\[@}
= Y a-w) - Y a@-w)= Y Bv-w)
vet\{w,w} vet\{w} vet\{w}
with
Ba = — Z Qs By = for all v € t\ {w, w}.
vet\{@}

We conclude that the span of (6.1)) contains the span of (6.2]). Since the latter is k-
dimensional, (6.1)) has to be linearly independent. [

Lemma 6.3 (Barycentric coordinates) Let d € N, k € [0:d], t € SZ, and
F; ::{Zavv : Zavzl, Yv et : avER}.
vet vet
There are unique mappings (Aew)ver such that
T = Z Atw(z)v, Z Atw(z) =1 for all x € F.
vet vet

For a point x € Fy, the vector (Ay())vet is called the vector of barycentric coordinates
of x with respect to t.
Forvet,neN, and x1,...,x, € F; we have

/\t,v (Zl 5,13,) = Z; [5’,~)\t7v(:ci) fO’f’ all ,81, e ,571 c R wz’th Zﬁl =1. (63)

i=1
Proof. Let x € F;. By definition, we can find (ay)yer with
Zavv:x, Zavzl.
vet vet

We would like to define ¢, (z) := o, but this is only admissible if the coefficients are
uniquely determined by x.
We fix a second family (f3,)yer of coefficients also satisfying

Zﬁvv:m, Z/BU:L

Vet Vet
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6.1. Triangulations

and have to prove a, = 3, for all v € ¢.
By definition, we can find w € t such that

{v—w : vet\{w}}

is linearly independent. We have

w:Zavv:aww—i- Z aq/u:(l— Z a,,)w—i— Z QU

vEL vet\{w} vet\{w} vet\{w}
=w+ Z ay(v — w),
vet\{w}
r=w-+ Z Bu(v —w).
vet\{w}

Subtracting both equations yields

0= Z (av - ﬂv)(v - w),
vet\{w}

and linear independence yields «, = 3, for all v € ¢ \ {w}. Due to

ay =1~ Z oy, =1-— Z By = Buw,

vet\{w} vet\{w}

we have proven uniqueness, so the mappings )¢, are well-defined.
Let neN, z1,...,x, € F}, and f1,..., 08, € R with

Z/Bi =1
i—1

We have

T = Z/Bixi = Zﬂi Z Atw(zi)v = Z <Z ,Bi/\t,v(xz‘)> v,
i=1 i=1

vet vet \i=1
l= Zﬁz’ = Zﬁz‘ Z At () Z <Z /Bi/\t,v(ﬁvz‘)) :
i=1 i=1 et vet \i=1

Since barycentric coordinates are unique, we conclude

At (Z ,Bi37i> = Ao(x) = Z Birt.v (i) for all v € t.
=1 i=1

This is (6.3)). ]
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6. Finite element methods

Lemma 6.4 (Representation of barycentric coordinates) Let d,k,t, F, and the
barycentric coordinates be given as in Lemma[6.3 Let k > 0. Let v,w € t with v # w,
and let z € Fy — w with

(z,u—w)2 =0 for allu e t\ {v,w}.
Then we have (z,v —w)9 # 0 and

Atv(z) = {2z = w) for all x € F;.
’ <Z,1}—U)>2

Proof. We first address the existence of z with the stated properties. Due to Lemma [6.2
the set {u —w : w €t\ {w}} is a basis of a k-dimensional subspace V C RY, therefore
{u—w : wet\{v,w}} is a basis of a (k — 1)-dimensional subspace W C V. We can
choose z € V \ W to be orthogonal with respect to W.

(z,v —w)y = 0 is impossible, since this would imply that z € V' \ {0} is perpendicular
on the entire space )V spanned by W and v — w.

Let now = € F;. We have

T = Z Atu(T)u, 1= Z Atu()

uet uet

by definition and therefore

r—w=Ay(x)w—w+ Z Atu(T)u

uet\{w}
=11- Z AMu(z) | w—w+ Z Atu(T)u
uet\{w} uet\{w}
= > Malr)(u—w).

uet\{w}

Due to our choice of z, we find

(z,x —w)y = Z Atu(2)(2,u —w)o = A () (2,0 — w)a.
uet\{w}

Dividing by (z,v — w)9 yields the desired equation. [ |

Definition 6.5 (Triangulation) Let Q C RY. A finite set T C S% is called a triangu-
lation of € if

w N W forallt,s €T, (6.4a)

Il
&l
o~
2
vy

2
Il
-
m
o~
€l
—
o
e
o
S~—
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6.1. Triangulations

Figure 6.1.: Triangulation of a two-dimensional domain

Lemma 6.6 (Disjoint simplices) Let Q C RY, and let T be a triangulation of Q. If
there are t,s € T with wy Nws # 0, we have t = s.

Proof. Let t,s € T with w; Nws # 0. Let x € wy Nws.

Due to (6.4al), we have

x € (I)t ﬂ@s == wtﬂs-

We define

forallvet

Mnso(z) ifvetns,
Oy = )
0 otherwise

and have

T = E avvzg Q0.

vELNS vet

Due to Lemma the barycentric coordinates are unique, so x € w; implies «,, > 0 for
all v € t. The definition of «, yields t N's = ¢, and with #t = d + 1 = #s this already
gives us t = s. [

Lemma 6.7 (Neighbouring simplices) Let Q C R?, and let T be a triangulation of
Q. Lett,s,reT. IftNns=tNr and #(tNs)=d, we have s = r.

This means that t can share a face or an edge with at most one other element of the
triangulation.

Proof. Let tNs=tNr and #(tNs) =d.

We first consider the case d > 1. In this case, we can find x € wyns. This implies
Mnso(z) >0 forall v e tNs.
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6. Finite element methods

Figure 6.2.: Neighbouring simplices in the proof of Lemma

Since #t =d+ 1 and #(t N's) = d, we can find u € ¢\ s such that ¢t = {u} U (t N s).
By the same argument, we can also find w € s\ ¢ such that s = {w} U (¢ N's). Due to
T € wyns, the uniqueness of barycentric coordinates yields A, () = 0 = Ag () and

At () = Mnsw(x) >0, Asw(T) = Msp(x) >0 forallv e tNs.

Since the barycentric coordinates are continuous due to Lemma [6.4] we can find an
€ € Ryg such that

ly—zll2 <e=VYvetns : Mo(y) >0AAs0(y) >0 for all y € RY. (6.5)

Let y € R? with ||y — z|s < e. If \iu(y) > 0 holds, (6.5) yields y € wi. If A y(y) =0
holds, we have y € wins. If A\, (y) < 0 holds, we let y := = — (y — =) and use (6.3) to

find that
y+y  yt+ar—y+ax

2 2 -

gives us

+y 1
0= )\t,u(x) = )‘t,u (y 9 Y ) = i(At,u(y) + )\t,u(y/))v

i.e., Au(y’) > 0, so (6.5) again gives us y € w;. Due to Lemma [6.6] this implies i’ & ws
and therefore g ,,(y") < 0. We use (6.3) again to get

y+y 1
0= )\s,w(x) = )\s,w < 9 > = §(As,w(y) + )\s,w(yl))y

i.e., Asw(y) > 0 and therefore y € w,. To summarize, we have

Y € wy if )\m(y) > 0,
Y Ewpns  if Auly) =
Y € Ws if Awuly) <

)

0
0.
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6.2. Piecewise polynomials

We have x € wins = winr C @y, so any ball centered at x has to intersect w,.. This means
that we can find y € w, such that ||y — z|2 < e. We cannot have Ay, (y) = 0, since this
would imply y € Oins € wr.

We cannot have A ,,(y) > 0, since this would imply y € w; Nw,, and Lemma would
yield ¢t = r, although we have #(tNr) =d < d+ 1 = #t.

This leaves only A, (y) <0, ie., y € ws. Lemma yields r = s. |

6.2. Piecewise polynomials

Given a triangulation that describes the domain (), we can now investigate suitable
discrete spaces V,, that may be used in Galerkin’s method.

A simple approach would be to use polynomials. We define multidimensional mono-
mials by

14

V=t for all v € N¢, = € R?
and introduce the spaces

¢ ::{xr—> Z a,z’ ¢ a, €R for all v € N, |V|§m} foralld e N, m € Ny

m
veNG

of d-dimensional polynomials of m-th degree.
A first approach could be to use

Vi = {p’Q : pEHgn}

for a suitable degree m € Ny. According to Theorem we can only expect to be
able to approximate solutions u of the variational problem that are close to polynomials,
i.e., “almost” infinitely differentiable. This would be a severe limitation of the resulting
discretization.

A better approach is to use piecewise polynomials, i.e., to fix a triangulation T and
consider the space

1%, == {u € L*(Q) : uly, €I for all t € T}

of square-integrable functions that are polynomials on each simplex of the triangulation.
By definition, this is a subspace of L?(€2). For our variational problem, we need a
subspace of H}(f2), and it is possible to prove that HdT,m is not a subspace of H' ().
This is due to the fact that an element of HdTm can have “jumps” at the boundaries
of the simplices w;. Our goal is to prove that if we can get rid of these jumps, we obtain
a subspace of H1(Q).
Let T be a triangulation of 2. We define the set of faces of a simplex

E:={e:eCt #e=d} CS¢
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6. Finite element methods

and the set of faces of the entire triangulation

Er:={e :ec&, tecT}CSI,.

For d = 2, the elements of & correspond to the edges between triangles. For d = 3, they
correspond to the triangular faces of tetrahedra. The boundary of a simplex is given by

8wt:U®e forallt e T.
e€&

We denote the outer unit normal vector of w; by
ng : Owy — RY.

Due to Lemma [6.7] there can be at most two ¢t € T with e C ¢.

A face e € &p is called a boundary face if there is exactly one t € T such that e C ¢.
A face e € &p is a boundary face if and only if w. C 92 holds.

For each e € &, we fix a unit normal vector n. € R% If e is a boundary face, we
require n, to be the outer normal vector.

If e € & is not a boundary face, the normal vector n, has to be an outer normal
vector for one of the two simplices sharing e as a face, i.e., there is exactly one simplex
t € T such that e C ¢t and n¢|,,, = n.. We denote this simplex by t. ..

There is exactly one other simplex t € T with e C t, and for this simplex, we have
Ntlw, = —ne. We denote this simplex by ¢, .

Theorem 6.8 (Continuous piecewise polynomials) Let m € Ny and denote by

Prm ={uecC() : ue H%m}

the continuous piecewise polynomials of degree m.

We have Pr, C HY(Q) and
(Opt)|w; = Ou(tlw,) forallteT, veNd v =1.

Proof. Let w € Pr,, and v € [1:d]. Due tou € HdT,m, we can find polynomials u; € I1%,
such that

Ulw, = Utw, forall t € T.

Our candidate for a weak derivative is the function v € L?(Q) given by

Qs
o0z,

We have to verify that (5.6) holds. Let ¢ € C§°(€). Using partial integration (cf.
Reminder , we find

O (x)u(x)dx = Z/ Op (z)uy(z) dz

q 0x, P ox,

|os for all t € T.

V|, 1=
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6.2. Piecewise polynomials

_Z/a Nty (@ u(z )dfv—/wso(x)ggfj(m)dx

teT

55 / SRR S

teT ecty

Due to ¢|spn = 0, we can discard all integrals for boundary edges and get

>3 [ et dx_zz/nw Do) do

teT ec&y e€ér tET

= Z Z/ ne () p(x)u(z) de

ecEr teT
we 2N eCt

Since w is continuous, we have

and conclude

e€E:
we ZON

This implies

0
[ Gewuta) e == [ p(e)ola) da,

so v is indeed the weak derivative of u. ]

The space Pr g is not of interest to us, since a continuous piecewise constant polynomial
is just constant. If we take our boundary conditions into account, only the zero function
would remain.

The space Pr,1, on the other hand, is very useful and probably the most frequently
used finite element space. Its popularity is largely due to the fact that we can construct
a very convenient basis.

Theorem 6.9 (Barycentric basis) Let t € S4. Then we have F; = RY, and the
barycentric coordinates (M\ip)ver are a basis of 11 with

1 ) =
Atw(w) = ifw ?}’ for all v,w € t, (6.6a)
0  otherwise
p= Zp(v))\t,v for allp € Hﬁl. (6.6b)
vet
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6. Finite element methods

Proof. Due to Definition [6.1], we find w € t such that

{v—w : vet\{w}}

is a basis of R%. Let 2 € R?, and let (Bu)ver\fw) be chosen such that

vet\{w}
We find
T=w+ Z BU(U_w):w"i_ Z 5117)_( Z /8U>
vet\{w} vet\{w} vet\{w}
= (1= Bo ) w+ Bo v=>) ayv,
( UE%{:’UJ} >, veg{:w}\:g: UZE;

and conclude = € F}, i.e., F, = R%
Let now v € t. Lemma yields that A;, is a linear polynomial.

Due to Lemma we have . Let o € R4, and let
p = Z QA p-

vEL

Due to , we have

Qyy = Zav)\t,v(w) = p(w) for all w € t.
vet
This is , and since p = 0 implies a = 0, we also obtain that (A, )es is linearly
independent. Its span is a subspace of Hcll of dimension #t = d+ 1, and since d+1 is also
the dimension of H‘f, we have established that the barycentric coordinates are indeed a
basis. ]

This Theorem allows us to characterize a function u € Pr; entirely by its values in
the vertices of the simplices: let ¢t € T, and let w € Pr,; be another function such that

u(v) = u(v) for all v € t.

Due to Theorem we have uly, = u|,,. If u and @ have identical values in all vertices,
they have to be identical.

Now let us consider the reverse question: given values in all vertices, can we find a
function u € Pr 1 that takes these values? Theorem allows us to define a function in
H‘l’l, but in order to ensure continuity, we have to extend the result.

Corollary 6.10 (Local representation) We have

p(z) = Z P(V) Ains,o () forallp € §, t,s € T, x € Dyns.
vELNSs
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6.2. Piecewise polynomials

NN
b o

Figure 6.3.: Nodal basis function (left) and its support (right) for a two-dimensional
triangulation

Proof. Let p € Hcf, t,s €T, and = € Wins.
Due to Theorem we have

p= Zp(v)/\t,"u-

vet

Due to Lemma [6.3] and = € &;ns, we have

) for all v € ¢,
0 otherwise

A v if tNs,
)\m(m):{m’(x) ifve s

and combining both equations yields

p(@) = p()Aeu(@) = D po)Mins(2)-

vEL vELNSs

Definition 6.11 (Nodal basis) We denote the set of nodes of the triangulation T by

Np:=|J{t : teT}.

For each v € Ny we define ¢, € Pr1 by

Atwlo fv et
Polay = tole 30 , forallt€T. (6.7)
0 otherwise

The set (@y)veny s called the nodal basis of Pr .

Lemma 6.12 (Nodal basis) We have ¢, € Pry for all v € Np. (¢y)veny is a basis
of Pr1 satisfying

1 ifw =
op(w) = if w ?}’ for all v,w € N, (6.8a)
0  otherwise
u= Z u(v)py for allw € Pry. (6.8b)
’UENT
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6. Finite element methods

Proof. Let v € Np. By definition, we have ¢,, € I1¢.
We have to prove that ¢, is well-defined and continuous. Let ¢,s € T with v € t and
@t N@s # (. Due to Definition 6.5 we have wins = @; N, # 0, and this implies tN's # 0.
If v € tN's, Corollary yields

)\tzv|@tﬂs = )\tﬂS,ULZIth = >\S,’U |a-’tﬁs °

If v € t\ s, the uniqueness of the barycentric coordinates (cf. Lemma [6.3]) yields
)\tyv‘wtﬁs = 0

We conclude that ¢, is well-defined and continuous.
To prove (6.8a]), let v,w € Np. By definition, we find ¢t € T with v € ¢t. If w ¢ ¢,
Definition immediately yields ¢,(w) = 0. Otherwise, we have v,w € t and

yields (6.8al).

To prove that {¢, : v € Nr} is linearly independent, let a € RNT and

U= Z QP

’UENT

Due to , we have

Qy = Z Ay (w) = u(w) for all w € Np. (6.9)
UENT

In particular, v = 0 implies a = 0, so the nodal basis functions are linearly independent.
Let now u € Pr,;. We define

ay = u(v) for all v € Np,
and yields
U, = ZU(U))‘t,v|wt = Z APy wy = Z 0Py | forallt €T,

= vet vENT
and therefore
i= 3" o
’UGNT
We conclude that the nodal basis spans Pr 1, and gives us (6.8b). ]

For our model problem, we require a finite-dimensional subspace of H&(Q), so we have
to include our boundary condition. Since a function in Pz ; can only be non-zero on the
boundary if it is non-zero in at least one vertex on the boundary, we can include the
boundary condition by discarding all boundary vertices. This leads to the subspace

Vpi=span{y; : i€Z} ={u€Pr1 : ulpo =0}, Z:={icNp : igIQ}.
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6.3. Assembly of the linear system

We have already seen in Lemma that finding the solution u,, € V,, of the discretized
variational problem

a(vp, up) = B(vy) for all v, € V),
is equivalent to solving the linear system
Az =b
with A € RT*T and b € R? given by
aij = a(pi, j), bi = B(i) for all i,j € T.

In the case of nodal basis functions, we have

0= [ (Vo) Ves@ade =3 [ (Vi) Vey(oada,
Q teT YWt
b= [ elas@a=Y |

vi(z)f(x) dx forall i,5 € Z.
teT ¥

By our definition, ¢;|,, # 0 holds if and only if i € ¢, so we can elimininate most of the
simplices and obtain

b = Z/ oi(2) f(z) dz for all i,j € T.

In theory, we could evaluate the entries of A and b by these equations, but it would be
challenging to obtain an efficient implementation: in order to avoid quadratic complexity
for A, we would have to ensure that for each i € 7 we can quickly find all t € T with
1 € t, e.g., by keeping suitable lists.

A far more elegant way is to assemble the matrix and the vector incrementally: we
start with a zero matrix and a zero vector and then add the contributions of the individual
simplices associated with ¢ € T'.

Definition 6.13 (Element matrix and vector) Let t € T. The matriz Ay € R!
given by

Qg ij = / (Vpi(z), Vej(x))2 dx foralli,j et

is called the element matrix for t.
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6. Finite element methods

The vector by € Rt given by

by = / vi(z) f(x) dx foralliet
is called the element vector for t.
We find
aij = Z Qt 5, b, = Z bm foralli,jeZ
teT teT
4,J€L i€t

and perform the assembly of the matrix A and the vector b by the following algorithm:

procedure assemble;
A+ 0
b+ 0;
for t € T' do begin
Compute A; and by;
for¢,5 €t do
Ajj £ Qij + Ot i
for i €t do
by <= b; + b
end

This is a very elegant approach: we compute only the entries we need (with the
exception of a small number of boundary nodes), and we never touch entries of the
matrix that correspond to indices not sharing the same simplex.

Unless the function f has very special properties, we may not be able to evalute by ;
directly. We can avoid this problem by using a quadrature formula.

Lemma 6.14 (Edge midpoint quadrature) Let t € S¢ with d > 2. We denote the
midpoint of the edge opposite the vertex v € t by

1
my =g Z w for allv e t.
wet\{v}
The edge midpoint quadrature rule is given by

. o 1S
vEL

where |wy| denotes the Lebesgue measure of the set wy.
Since the weights are positive, we obtain the optimal stability estimate

|Q¢(w)| < fwi] ||l oo w for all u € C(wy).
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6.3. Assembly of the linear system

We also find

QM) = / Nw(@)dz, QiAo = / Nw(@ (@) dz for all v,w € t,
Wi w

t

and this implies that all quadratic polynomials are integrated exactly by Q.

Proof. Left to the reader as an exercise. It may be a good idea to transform to a simple
triangle like £ = {(0,0), (1,0), (0,1)} to evaluate the exact integrals. ]

If we use the edge midpoint quadrature rule to approximate b; ;, we can take advantage
of the uniqueness of barycentric coordinates to obtain

1/2 if
Atw(Mw) = { / ifw# o, for all v,w € t,

0 otherwise

i.e., evaluating the nodal basis functions ¢;|,, = Atilw, in the edge midpoints is partic-
ularly simple.

In order to compute A;, we require the gradients of the basis functions. A simple
approach can be based on the determinant: let ¢ € Z and ¢t € T with i € £. By definition,
we have ¢;lu, = AMilw,. Let t = {vo,...,vq}, where vy = v, and consider

_ det(z —v,v2 —v1,..., 04 —v1) for all 2 € R?

() :

det(vo — V1,V2 — Vl,...,04 —Ul)

Due to Lemma the denominator is non-zero, so p is well-defined, and we have
p(vg) = 1. Since the determinant is multilinear, we have pu(v;) = 0 and p is a linear
polynomial. Since the determinant is alternating, we have p(vy) =0 for all £ € [2: d].
This means that p and )\, coincide in all vertices v € ¢, and Theorem @ yields
n= )\t,v-
For d = 2, i is of the form

_det(z —v1,v2 — v1)

~ det(vg — v1,v2 — 1)

(w1 —v1)(v22 —v12) = (2 —v12)(v21 — V1)
det(vg — v1,v2 — v1)

()

= (x — v1,Gu)2 for all z € RY,

where we use

. 1 V2.2 — V12
gy = :
det(vg — vy, v —v1) \v1,1 — V2,1

This representation immediately yields VA, = Vu = g,.
For d = 3, we have

det(x — vy, v2 — v1,v3 — V1)

plz) = det(vg — v1, vy — v1,v3 — V1)
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6. Finite element methods

1 Vg2 — V12 V32 — V12
= (xl — ’1)1,1) det ’ ’ 3 ’
det(vg — v1, vy — v1,v3 — V1) V23 — V1,3 V33— VL3

V21 — V1,1 V31 — V11
— (IL’Q — ’U172) det ’ ’ 3, ’
V23 — V1,3 V33— U13

V91—V v31 — v
+ (23— v1.3) det ( 2,1 1,1 V31 1,1) >

V22 —V12 V32 — V12

( —v1, (v2 —v1) X (v3 —v1))2

= = (z — vy, for all 2 € RY,
det(vg — vy, vy — v1,v3 — V1) (z =1, 900 orate
where the cross product is defined by
CLng — a3b2
axb:=|azb; —abs for all a,b € R3
albz — a2b1

and the vector g, is given by

gy = (vg —v1) X (v —v1)
v det(vo—vl,vg—vl,vg—vl)'

For d > 3, we can generalize this approach by using Laplace’s formula and using cofactors
to construct g,.

Remark 6.15 (Cyclic evaluation) In order to construct Ay, we require the gradients
gy for all v € t. We can reduce the number of operations by taking advantage of the
properties of the determinant: assume that we have already computed det(vy — vy, vy —
Vly.neyU4—1 — V1, Uq —v1) and now have to compute the determinant for cyclically shifted
vectors, i.e., det(vy — v, v3—vg, ..., vg—V2,v9—v2). Since the determinant is alternating
and multilinear, we can add the first argument vy — vy to all other arguments without
changing the result and get

det(vy — vg,v3 — V2, ..., Vg — V2,v9 — v2) = det(vy — vo,v3 — V1,...,Vg — V1, Vg — V]).
Since the determinant is linear in the first argument, we can change the sign to get
det(vy — va,v3 —va,...,vq — V2, Vg — v2) = — det(ve — v1,U3 — V1,...,Vq — V1, Vg — V1).

Now we can again use the alternating property to switch the columns d —1 and d, then
d—2 and d—1, and so on until we have performed d — 1 switches and arrive at

det(vy — vo,v3 — Vg, ..., Vg — V2, Uy — V2) = (—l)ddet(vo —V1,VU2 — Vl,...,0q — V1).

This means that every cyclic shift of the vertices only changes the sign of the determinant
(and its reciprocal) by (—1)?, so we only have to compute it once and just flip the sign
appropriately.
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6.4. Reference elements

Until now, we have only considered domains that can be split into simplices, e.g., poly-
gons and polyhedra. In order to treat more general domains, we replace the simplices
by images of a fixed reference simplex under suitable diffeomorphisms. This approach
allows us to handle, e.g., curved domains.

Let T be a triangulation of a domain Q@ C R% and let ¢t € T. We enumerate the
vertices in ¢, i.e., we fix vg,...,vq € t such that t = {vg,...,vq}. Due to Lemmal6.2} we
know that

{v1 —wo,...,v4 —vo}
is linearly independent, so the matrix
F = (vl—vo vd—vo) € R9xd
is invertible, and the mapping
®,: R —» RY, T v+ F2,

is bijective. We define the reference simplex by

d
ZD::{@ERd : Z@gl, @-ZOforalliG[lzd]}
i=1

and observe

@t(@):{vo—l—Fiﬁ'\ : @\EC/J}

d d
:{UO—FZ(Uj—Uo)fU\j : Z@-gl, Z; € Ryg forall i € [1:d]}
j=1 i=1

d d
= {(1—Z§i>vo+2vjfj : 1—2@ >0, x; € Ryp for all i € [1:d]}
L J

i=1 =1 i=1
d d
:{Zvjffj : Zﬁc\jzl, @ERZOforall’iG[O:d]}:wt,
=0 =0
where we have introduced zZp = 1 — 25:1 Z; in the last step.

Remark 6.16 (Barycentric coordinates) Since the barycentric coordinates for an
element t € T are uniquely determined by

Z Aep(z)v = ) Z Atp(z) =1 for all z € RY,
vet vet
our equation allows us to compute these coordinates by using
Aty (z) d
: =&, Y (z) = F 1z — ), Mwlx)=1- Z Mw;(T)  forallw € RY.
vy () j=1
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e

&)

Figure 6.4.: Mapping the reference simplex @ to w

Since ®; is a bijective diffeomorphism mapping & to ws, we can use the transformation
of variables equation to obtain

| w@s@a= [ L @) = [ 146t D, (@) (@) 1 (01(2)) d

for ¢ € t. We can see that
i = pi o Py
is a linear polynomial, since ¢; is a linear polynomial and ®; is a linear transformation.
We denote the vertices of the reference simplex by

0 1 0 0
N 0 N 0 N 1 R 0
Vo ‘= ) U1 = . ) V2 1= ) ’ Vq ‘= )
0 0 0 1
introduce the vertex set  := {7, ..., 04}, and observe
D, (v;) = v; for all € [0 : d].

Due to , we have

Lo
B for all 4,7 € [0: d],

Ptv; (V) = 0, (P1(V))) = pu, (vj) = .
0 otherwise

and (6.6b) yields that & ,, is the barycentric coordinate A; ;. corresponding to the ref-
erence simplex.
This means that the nodal basis functions can also be defined by

N-o® ! ifi=®,0) forvet
§0i|wz:{tm0t ifi=2,(0) for e, for all i € N,

0 otherwise

and this definition can be generalized: we assume that a set ($;),.7 of basis functions
on @ is given and that we have a general invertible diffeomorphism

d:0—=w
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with w C RY. We define mapped basis functions by

pi = Pio®! for all i € 7,
and consider the element vector and the element matrix given by
bui = / vi(z)f(x)dx for all i € Z,
w
Qi = /(Vgpi(x), Vj(x))sdx for all 4,j € 7.
w

By applying our transformation, the element vector can be easily evaluated (or at least
approximated) due to

b i= / oi(2) () de: = / |det DB(2)] 01(3(2)) /(B (7)) di
:[dmp@@)@(f)f(@@))di for all i € 7

if we have a suitable quadrature rule for the reference simplex & at our disposal and can
efficiently evaluate the Jacobi matrix

pa@) = (2@ ... @)

for all quadrature points.
Evaluating the element matrix is a little more challenging, since it requires the gradi-
ents of the mapped basis functions. Due to the chain rule, we have

Vii(z) = Dgi(z)* = D(@; 0 @ ')(2)" = (DZi(@~ ! (x)) (@) (2))"
= (D@i(@ ™ (2)) D (2)™")" = (D8(2™(2)) 1) (DFi(@ ™ (x))
= (DP(® Y(2))"1)'VEi(® Hz))  forallzcw, i€l
If we use the transformation ® again, we only have to be able to evaluate V;(®(7)),
which is given by
Vii(®(2)) = (D) H*VEi(2) forall 7 €®, i € 1.
We can see that we only need the gradient of the basis function @; on the reference
simplex and the transposed matrix of the inverse of D®(Z), and the latter can be easily

computed if we have D®(Z) at our disposal.
The entries of the element matrix are given by

uis = [ (Veia), Ty da
= [ |det DB(@)| (Vi(®(@)), Vios (B(7)))2 4

:/A|detD<I>(5E)|<(D<I>(E)1)*V@(§),(D<I>(E)1)*Vs5j(5?)>2d§ for all i,j € Z.

By using a suitable quadrature rule, we only have to be able to evaluate D®(Z) and
V@i(Z) in all quadrature points to find an approximation of a,, ;.
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6.5. Averaged Taylor expansion

We have already seen that the error ||u — uy,||y introduced by the Galerin discretization
can be bounded by ||u — v, ||y for all v, € V,, so in order to obtain a practical bound,
we only have to find some element of V,, that approximates u reasonably well.

In the one-dimensional setting, this can be accomplished by using a simple interpolant:
we define the interpolation operator

31t C2—h,h] — 114, u <a: — h;h%(—h) + h;h%(h)> ,
and observe that it is stable, i.e.,
191 ullloo,f—nn) < lulloo,(—n.n for all uw € C*[~h, h], (6.10)
and that it is a projection, i.e.,
Jilp)=p for all p € I1;. (6.11)

In order to obtain an estimate for the interpolation error, we employ the linear Taylor
polynomial

T1: C?[—h,h] — 114, u (:U — u(0) + xu'(O)),

and note that Taylor’s theorem allows us to find an n € [—h, h| for each = € [—h, h] such
that

" "
u(z) = u(0) + zu'(0) + 222 2(77) = T [u](x) + 22 2(77)
holds, and this implies
h2 " 2
Hu - Sl[”]”oo,[—h,h] < ?Hu Hoo,[—h,h] forall u e C [—h, h] (6.12)
Using %1[u] € 113, (6.11)), and (6.10), we find
llw = T1ullloo,(—nn = llv = F1[u] = Tifu — T fu]ll|co (—n,h)

< lu — Fafullloo,j=n,n) + 11T1[u — Fa[u]]l oo, (= b 4

<|lu=T1[ullloo,[=h,h)
< 2llu — T1[u]ll oo, [—n,n)
< B2 | oo (=) for all u € C*[—h, h).

In order to approximate by continuous piecewise linear polynomials, we interpolate in the
vertices of the sub-intervals. This guarantees continuity, and the Taylor error estimate
yields an error bound for each sub-interval.

Our goal is now to generalize this approach, first to the multi-dimensional setting with
classically differentiable functions, then to weakly differentiable functions.
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6.5. Averaged Taylor expansion

Let t € S¢, and let

Jp: C(wp) — TIE, u (w = At,v(x)u(v)> :

denote the nodal interpolation operator.
Lemma 6.17 (Nodal interpolation) We have

19¢[ulllco. < llulloo.@ for all u € C(&y),, (6.13a)
Jip] =p for all p € TI4. (6.13b)

Proof. Since x € @w; is equivalent to A, (z) > 0 for all v € ¢, we have

Z |Atw(z)| = Z Atp(z) =1 for all x € &y.

vEL vEL

and this implies

[Fa[ul(@)] = | Avw(@)u()] <Y [Ap(@)] |u(v)]
vet veEt
<D D@ ulloog = [ullcg — forallu € C(@), = €@,

vEt

and this implies the stability estimate (6.13a). Due to (6.6b), we have
Jilp] = Zp(v))\w(w) =p for all p e I1¢.
veEt

This is the projection property ((6.13b)). [

We are left with the task of developing a suitable multi-dimensional counterpart of
the Taylor expansion.
Let w C R? be a bounded domain, let z,y € w be such that

1—-s)y+srecw for all s € [0,1]

holds, and let v € C™*1(w). To construct a Taylor expansion centered at y, we introduce
the function

f:10,1] = R, s u(y + s(x —v)),

such that f(0) = u(y) and f(1) = u(x). Applying Taylor’s theorem yields

m ) | (1) 5
u(e) = fay =3 120 +/0 (1— syl ) g (6.14)

m!
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In order to express this equation in terms of the derivatives of the function u, we once
again use multi-indices with the notations

V| =v1 + 1o+ ...+ 1y,
o o ol

0, = 2V =M. e
Y Ozt 0xh? o 1 ¢’
v V!
vi=uvl!l -y, (M)ZM'(V—M)' foralll/,,ueNg,,ugy, zeRY,

where the relation v < y is defined by
v<p <= YVie[l:d : v <py for all v, u € N&.

Lemma 6.18 (Multi-indices) We have

(r+y) = Z <:> by H for all z,y € RY, v e N, (6.15a)
u<v
¥ < ||z} for allz € R, v e NE, (6.15b)
1 dam
> = for all m € Ny. (6.15¢)
veNd '
\1/|:72L

Proof. We prove by induction for the dimension d.

Base case. If d =1, is just the generalized binomal equation.

Induction assumption. Let d € N be such that holds.

Induction step. Let xz,y € R4 and v € Ng“. We define ¥ := (z9,...,2441),
U:=(y2,---,Yq+1), and U := (va,...,V4+1), and use the induction assumption to get

(z+y)" = (z1 + 1) @ +7)”

148 S
VI p1, vi—m <V> SHAU—1
Ty ~ Y
2 <u1> b 2 i

p1=0 p<v
_ Z Vl!/y\! I(”l’ﬁ) (v1—p1,0—1)
Tl (v — ) (5 — 70)! Y
i<y M 0 = )T = )
v! _ v _
= me”y” r=3 ( >x“yy g
p<v w: H): n<v K

The estimate (6.15b)) is a direct consequence of |z;| < ||z||2 for all i € [1 : d].
We prove again by induction for the dimension d.
Base case. If d =1, |v| = m implies v = m.
Induction assumption. Let d € N be such that holds.
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6.5. Averaged Taylor expansion

Induction step. We have

Z ,}v:i Vll,/l muz Z

ueNg'H ’ v1=0 DeNd v1=0 veNd
lv|=m [Pl=m—u1 |u|:mw1
]. u ' dm—l/1 lljldm vy
_mlzoyl!(m—yl) _m'z<1/1>
V1=
1 d+1)™
m: m:

Using multi-indices, we can now derive explicit representations of the derivatives of
the auxiliary function f in terms of the partial derivatives of w.

Lemma 6.19 (Derivatives) Let m € Ny and u € C"(w). We have

) (s) = Z T:!! (x —y)’Ouly + s(z —y)) for all s € [0, 1]. (6.16)

lv|=m

Proof. By induction.
Base case: For m = 0, the identity is trival.
Induction assumption: Let m € Ny be such that holds for all u € C"™(w).
Induction step: Let u € C™(w), and let u; € {0,1}¢ be defined by

1 ifj =1, o
i)j = for all 4,5 € [1:d|.
(1) {O otherwise jel ]

Applying the chain rule to the induction assumption yields

ARECEDY ™ —x)”éw sy + s(x — )
_ IZ mf@_x)vi(y—xw Dy psu(y + sz — y))
— |§—: Ej;m!!(y—w) O, Ly + s(z — )
- zz; vj=m nz:/(f/:)ll)( )" Oppuly + s(z — )
:il.wzm:“ "0y — 2 Opuly + sz — )
L
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B

i -
27 NEHZ s

SN

(FT S
:::’:i:':‘ltll......%::..;:#
Z—7

KA TS A ZTT ]
O (ST TSI AT A
0.5 ................... 0
{77~

=3 3 " bty + sla - )

i=1 |D|=m+1
H! 5
_ (m;)(y 2 Ouly + sz — ) for all s € [0, 1],
[D]=m+1 ’
m

Applying this result to (6.14]) yields

uw)= 3 Py (6.172)

lv|<m

1 _
+(m—|—1)/0(1—s)m 3y Qruly 5@ =y) (. w g (6.17b)

!
v
lv|=m+1

Since we are interested in working with weakly differentiable functions, we cannot use

the classical derivatives of u in x to define an approximation, so instead we use multiple

centers of expansion and take an average. Our construction closely follows [I, Chapter 4].
Let o € R% and r € R~ and denote the ball of radius r centered at xg by

Bayyr:={y € R? : lly — zoll2 < 7}

Definition 6.20 (Star-shaped domain) A domain w C R? is called star-shaped with
respect to a ball B if

(1-s)y+srecw foralz ecw, yeB, sel0,1].

Let w C R be star-shaped with respect to a ball B = Bzy,r- Then we can apply 1)
to all expansion points y € B.
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6.5. Averaged Taylor expansion
In order to obtain an average, we introduce a mollifier function, i.e., a function @ €
C>®(R%) such that

P(x) >0 for all z € R?,
supp() € {y € R? : |lyll2 < 1},

/]Rd o(x)dr = 1.

An example is the function
1 .
(z) = xp <— 1*||$H§> if flzl2 <1 for all z € R?,
0 otherwise

shown in Figure [6.5
We require a function with support in B, so we shift and scale ¢ to define

0: R 5 R, x = r7((x — x0) /1),
and observe supp(p) C B and
/ o(x)de = / =43 ((x — x0) /1) dz = / o(x)dxr = 1.
Rd Rd Rd
Using (6.17)) gives us

= /BsO(y)ayu,( e— (6.18a)

! s(x —
+ (m + 1)/6/0 o(y)(1—s)™ Z dpuly +s(z —y)) (x —y)” dsdy, (6.18b)

V!
lv|=m+1

and the right-hand side only involves integrals of 0, u, but no point evaluations anymore,
so we can define the averaged Taylor polynomial by

Tpn: H™(w) — 119, urr |z Z /Bgo(y)ayzl(y) (x—y)dy | . (6.19)

lv|<m

In order to prove that T,,[u] is well-defined, i.e., that the integral on the right-hand side
is a polynomial of degree not higher than m, we have to show that we can split the
powers (x — y)¥ into powers of x and powers of y.

Lemma 6.21 (Averaged Taylor polynomial) Let u € H™(w). We have

— 20)H
u(z) = Z auM for all x € RY,

!
lul<m e
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Figure 6.6.: Construction of the averaged Taylor expansion

where the coefficients are given by

AR
a, = Z /Bgo(y)a,,u(y)% dy for all p € Ng, |u| < m. (6.20)

Proof. (cf. [I, Proposition (4.1.9)]) Let z,y € R? and v € Nd. Applying (6.15a]) to (6.19)
yields

sl = 3 [ oW OY) (o 2y 4 29—y dy

!
v<m .
dyuly v e
= % LS () a0 -
v|<m B Cou<lv H
opu(y v! b
=2 % [y o)
i <m vi<m* B v
- pv
To—y) ' H T — xo)¥
D I S B
i <m v|<m B s H
p<v
—xa)H
_ Z au(l" f'EO) ,
w!
|| <m
so the averaged Taylor polynomial is indeed a polynomial in H%. [

A closer look at (6.20)) reveals that we can define averaged Taylor polynomials even
for u € L?(w) by using partial integration.

Lemma 6.22 (Generalization) We define

(0 — y)*

o o(z) for all € N4

gou:Rd—HR, Y
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6.5. Averaged Taylor expansion

The coefficients satisfy

a, = 1) / Ovou—pu(y)uly) dy for all p € N4, |p| < m,

W<m
n<v

and we can extend Tp, to a linear operator such that we have

[ Tm[u]lloow < Ctapllull 22 for all u € L*(w)

with a constant Cgap € Rsg.

Proof. (cf. [I, Proposition (4.1.12)]) Let u € H™(w), and let € N& with |u| < m. Since
Yy is in C§°(B), we can apply partial integration due to Definition and get

ay = Z /901/ w\Y au )dy— |V|/8V90V u\Y )dy,

[v|<m \1/|<m
58% n<v

so using the Cauchy-Schwarz inequality (5.4]) yields

0l < S 1000l ull o for all € N, |1 < m.
[v]<m —.C
p<v T
We define
— )P
Yy w— R, xHM, for all € N&, |u| < m.
!

Using Lemma and the triangle inequality, we obtain

[T [ulfoow < Z lapll[Yplloow < Z Cullullz2[[¥pllocw < Cstabllull L2

lu|<m lul<m
with
Cstab = Z Cp||¢u||oo,w'
[p|<m
Since C*°(w) is dense in H™(w) due to Theorem H™(w) is dense in L?(w), so we
can indeed extend the operator T,, continuously to L?(w). |

In order to obtain an estimate for the approximation error, we have to consider the

remainder (6.18b|) given by
0y —
R [u](x) := (m+1) // )(1—s)™ Z uly + s( y))(az—y)”dsdm

v!
|v|=m+1
for all w € H™ (W), z € w.

We would like to bound this quantity in terms of d,u, so we have to look for a variable
transformation that replaces y + s(z — y) with a new variable z.
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6. Finite element methods

Exercise 6.23 (Polar coordinates) Let d € N. We define

cos(zy) L
sin($1)> fd=1,

@d:Rd%Rd“, T foralldeN

cos
) ~ (z1) otherwise
sin(z1)®g—1(x2,...,24q)

and
dy: RT — RY, xr—>x1</13d_1(x2,...,zd).

Prove that EI\>d maps
. {[0,277) ifd=1,

[0,7)41 x [0,27)  otherwise

bijectively to the unit sphere {x € R4t ||z|jy = 1}.
Prove that ®3 maps (0,7) x Qq_1 bijectively to {x € R? : ||z||2 € (0,7)}, is differen-
tiable, and satisfies | det D®y(z)| < ¢ for all x € RY.

Lemma 6.24 (Riesz potential) Let p,q € R with 1 < p,q < oo and 1/p+ 1/q = 1.
Let Q C R? be a domain and o € Ry.
There is a constant Crs € Ry depending only on d such that

1 diam ()4~
/adx<0r51am() for all z € Q)
o llz— 2|13 d—a

and for all f € LP(QY), the Riesz potential of f defined by

g(z) = /Q @) dx for all z € Q

e — =13

satisfies g € LP(Q2) and
lgllze < Crs diam(w)® | f ]| o

Proof. (cf. [, Lemma 4.3.6]) We start by considering

[ llo = 2157 ds
Q

for a given z € Q. Let r := diam(f2), and define the ball (without center)
Ci={zeR? : 0< ||z —z|]2<r}

For d = 1, we obtain

T ylfa T,lfa
/|x—z|_°‘dm§/ |y|_°‘dy:2/ y_o‘dy:2[ } =2
Q (_7’77”)\{0} 0 1- « y=0 1-— (e}
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6.5. Averaged Taylor expansion

and let Cys := 2. For d > 1, we use Exercise with C = z 4+ ®4((0,7) X Qg_1), so we
can apply a change of variables to find

[he—slztars [le-sptars [ s e
(9] C (071”)><Qd 1

r
- / 18 d7 = 01| / Y dy.
(Ovr)XQdfl 0

We let 8 :=d—1— «, observe > —1, and obtain

/r 8 gy — [yﬁﬂy B yB+1 B rd—a
G IC Y IS R

so we may conclude

d—a d—a

/Q||:U—2H2ada:§ ]Qd_1|§_a :Crsd—a for all z € Q2 (6.21)

with Cig := |Qq_1].
We apply Holder’s inequality to find

p
o8y = [ lo@Pdz = [ ([ 156@lle =215 as) " az
p
= [ ([ 1@t =z = 2157 ) a:
Q Q

1/ Val?
S/Q [(/ngf(:p)]P’]x—z“;adx) p(/QH.%'_zHQ_adx> q] .
rd—oz p/q B
<o) [ yente-szaras

Due to (6.21)) and v € LP(Q2), we can apply the Fubini-Tonelli theorem to obtain

p/q
ooy < (G ; ) [ o= sl sy da
p/q+1 d—a
< — /|f \pdx—< rsc,lr ) HfHLP(Q

using p/q+1=p(1/q+1/p) =p. u

Q

Lemma 6.25 (Error representation) Let u € H™ ! (w) and v € w. Let
Coi={y+s(zx—y) : yeB, se[0,1]}.

We have
R fu](x) = (m+1) Z/ v(x,2)0u(z) dz

lv|l=m+1
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6. Finite element methods

with

r—z

ky(z,2) = (V!)k(ac,z) forallv e N&, |v|=m+1

for a function k satisfying
d
|k(x, 2)| < Cn <1+”x$0”2> |z — x|~ for all z € Cy
T

with Cyx depending only on @ and d.

Proof. (cf. [1, Proposition (4.2.8)]) Since it is more convenient to deal with a singularity
at s = 0 instead of s = 1, we first apply the transformation s — 1 — s and get

' (z—y)”
R [u](x) = (m+1) (y)s™ E Opu(z + s(y — x)) dsdx
/B/O o el V! Y

duwetoy+(1—s)(z—y)=y+(1—-s)z—(1-s)y=x+ s(y — z).
We want to focus on one term of the sum and fix v € Nd with || = m + 1.
We define the transformation

®: RY % (0,1] = R? x (0,1], (y,s8) = (x + s(y — ), s).
In order to compute its inverse, we let (z,s) € R? x (0, 1] and find

z=z+s(y—z) <= z—zrx=sy—z) < (z—x)/s=y—=x
— (z—x)/s+x=y.

This means that (y, s) := ®~!(z,s) € B x (0, 1] holds if and only if
(z,s) € A:={(2,5) e RYx (0,1] : ||(z —x)/s+x — z0|]2 < T}

In this case we have

z=z+s(y —x) € Cy, (6.22a)
(x—y)'=(x—(z—2)/s—x)" = s_(m+1)(:17 —2)Y, (6.22b)
s lz—zll2 Iz — zll2
[(z=x)/sll2  [[(z—x)/s = (w0 — 2) + (x0 — @)l
Iz ol Iz~ 6920

T z—x)/s+x—aolla + [|[wo —xll2 T A [lwo — 2

We conclude that
®:Bx(0,1] - A

is a bijective differentiable mapping with

det D®(y, s) = det (SOI (v I m)) =g for all (y,s) € B x (0,1],
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6.5. Averaged Taylor expansion

Yz, 8) = ((z—2)/s +,5) for all (z,s) € A,

so we can apply a change of variables. Using ((6.22b|), we find

// )au(x—i-s( 2)) ds dy

—/ \wmwmwwm“ W o u(@(y, s)) d(y.
Bx(0,1] v!

= /A ol(z — 2)/s + )5 s~ T2 5 oy s)

V!

:/gp((z—:ﬂ)/s—l—@ ~-1 (T~ y @2 5 () d(z, ).
A

Due to (6.22a]), we have
Ace, x(0,1].

We introduce the characteristic function
14:Cy x (0,1] - R,
1 if (z,8) € A,
m@H{ iz ¢)

0 otherwise,

and use Fubini’s theorem to get

// ()5 & ) Ju(z + sy — x)) ds dy

/ s)p((z —x)/s + x)s’diluﬁyu(z) d(z,s)
CIX(O 1] V!
/ 1a(z,8)0((z —x)/s 4+ x)s 9 1z = )8u()dsdz
Ce JO V!
(x Z) ! 1 _ —d—1
Az, 8)p((z —x)/s + x)s dsdz.
0
The second term does not depend on u, so we define
1
k(z,z) = / 1a(z,8)p((z — ) /s +x)s L ds for all z € C,
0
and obtain

1 — X
/:/wwﬁmawx+“y )%w—w”%dy
BJO

v!

—mewm@M
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6. Finite element methods

Figure 6.7.: Dependence of the chunkiness parameter on the domain’s shape: « is small
in the left domain and large in the right domain

Rl (1) = (m+1) 3 / o (2, 2)Oyu(2) dz.

|[v|=m+1
To obtain a bound for k(z, z), recall that (6.22c|) implies that for z € C, we have

s>80::M>0 for all s € R with (z,s) € A.
o+ flzo — 2

We find

! 1
k‘(:c,z):/o 1a(z,8)0((z — ) /5 + x)s 41 ds:/ o((z —z)/s +2)s 4 ds

S0

—d11 —d
; ot 1) _ Dl
<llele | 25 :usonoo(gl —E>§ s
s=sq

_ llolloo =& lloo

d —d —d
7+ llwo —zll2) le — 23 = ——==(r + f|zo — zl|l2)|z — 2|
>~ d
_ “QPHOO 1+ on - xHQ ||£L' _ Z”_d
d r 2
We complete the proof by choosing Cx 1= ||$||c0/d. ]

Definition 6.26 (Chunkiness parameter) Let w C R? be a domain. We define

Tmag = sup{r € Rso : w is star-shaped with respect to By, , for an xy € w}

(with the convention sup ) = —oo) and call
di .
00 otherwise

the chunkiness parameter of w.
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6.5. Averaged Taylor expansion

For a convex domain w, rmax is the radius of the largest ball contained in w.

Theorem 6.27 (Bramble-Hilbert lemma) Let w C R? be a domain with chunkiness
parameter v < oo, and let m € Ng. If B is chosen appropriately, there is a constant
Ch, € Ry depending only on d, @, and vy, such that

Cbhdm—i-l

1)l diam(w )m+1’U|Hm+l(w) for all w € H™(w).

lv = Fm[ulll 2wy <

Proof. (cf. [I, Lemma 4.3.8]) Let u € H™*(w) and ¢ := diam(w). By definition of v,
we can find a ball B C w of radius r > diam(w)/(2v) such that w is star-shaped with
respect to B. Applying Lemma to this ball, we have

o = Slulll 2wy = [l 2y < (41D | S /wc ) 18,u(z)] d

[v[=m+1 L2(w)

[ e s

< (m+1) Z

[v|l=m+1

L2 (w)
d m+1—d‘al/u(z>‘
< Cx(m +1)(1 + 2v) | IZ 1 /llz—-||2 — ¢
v|l=m+

/” ”m+1 d’al/u'( )’ dz
12

L2 (w)

=Ci(m+1)

lv|=m+1 L2 (w)

with C; := Ox(1 + 27)¢. Now we can use Lemma with @« = d — (m + 1), the
Cauchy-Schwarz inequality, and the equation (6.15¢c|) of Lemma to obtain

5m+1 1
o= Sz < Crlm+DCro— 37— oullze
lv|=m+1
1/2 1/2
1
<CiC™ Y g > lovulz
lv|l=m+1 v |[v|=m+1
1/2
1
<CIC™ ST = D 0uulz
lv|l=m+1 v [v|=m+1
1/2
m—+1 dm+1 2 /
= ClCrsfs m Z HaVUHLQ
v|l=m+1
Cbhdm—H
=T M,
where C,s is the constant of Lemma and Cyy, := C1Crs = On(1 + 29)%Chs. [

141



6. Finite element methods

This result allows us to construct approximating polynomials on star-shaped domains,
and since a triangulation consists of such domains, we can also construct piecewise
polynomial approximations.

Exercise 6.28 (Approximation of derivatives) Let w,~y, m be as in Theorem .
Let p € N& with |u| < m, and let £ := m — |u|. Prove

0uTmlu] = F¢[0,u] for allu € H™(w).
Combine this result with Theorem [6.27 to prove

Cbhdf—i-l

100w — 0y T[]l 2wy < Wl

diam(w)”l\ummﬂ(w) for allu € H™ M (w).

In order to obtain the continuous piecewise polynomial approximation we require, we
can employ interpolation. Unfortunately, standard interpolation relies on the evaluation
of the interpolant in the interpolation points, and functions in L?(Q) are only defined
up to null sets.

This problem can be solved by the Sobolev’s lemma: if a function has weak derivatives
of sufficiently high order, it is continuous, so evaluation in interpolation points is possible.

Lemma 6.29 (Stability) Let w C R? be a domain with chunkiness parameter v < 0,
and let m € N.

If B is chosen appropriately, there is a constant Cs € Rsq depending only on @, v, d,
and m with

Tl llcow < Oy max{diam(w _d/Q,diam W)™ Y2 |y o) for allu € H™(w).
; (w)

Proof. Let B C w be a ball of radius r» > diam(w)/(2v) such that w is star-shaped with
respect to B.

Let u € H™(w) and z € w.

We have

-y / =95 uty) dy

[v|<m

by definition. We also have ||¢]|oow = 77%|@]|oo re by construction.
Let v € NZ with |v| < m. Using the triangle inequality and (6.15b)), we obtain

Lo ouman < | o) =Y )
B : B

- _ dlam
< 181122 / VoI o ) dy
/2 =412 diam(w)” / —V“”,y\ayuwd
B V!

= 1@l ga””
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6.5. Averaged Taylor expansion

Now we can apply the Cauchy-Schwarz inequality (5.4) to get

(x —y)” 1/2 /2 g Iv] ply) ,\"?
[ o 0ty do| < 181 i) ( [ Zyan)  owulzac

1/2 . 1
= [|Bll L ™ dian ()~ 1, 2

Let 6 := max{diam(w)~%?, diam(w)™%?}. We have

/2 diaun(w)"’| — /2 diam(w)d/2 diaum(w)'”‘_d/2
< =22y diam (w) V142
= (29)%2 diam(w) V1792 < (24)%/2,

and due to the Cauchy-Schwarz inequality, we find

D < 3 181 a2y d/%—na ull 12(w)

[v|<m
1/2 1/2
~ 1
<11 a0 | > OB Y llovulag,
lv|<m > lv|<m

—~ 1
<1815 ™5 | D0 = | llullame.

v|<m
We let
) 1/2 1
Cor = 18I a2 | 2
[v|<m
and conclude
[T [u](2)] < Csd|ull grm e for all u € H™(w), = € w.

This is equivalent to the required estimate. ]

Lemma 6.30 (Maximal approximation error) Let w C R? be a domain with
chunkiness parameter v < 0, and let m € N with m +1 > d/2.

If B is chosen appropriately, there is a constant Co. € R~ depending only on @, 7,
d, and m with

U — T[]l s < Copdiam(w)™ =42y, HFml(y for all w € H™ Y (w).
. (w)

Proof. Let B C w be a ball of radius r» > diam(w)/(2v) such that w is star-shaped with
respect to B.
Let u € H™(w) and = € w. Denote the diameter of w by § := diam(w).
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6. Finite element methods

Lemma yields

[u(z) — T[ul(z)| = [Rm [u](2)]
<(m+1) > MCRQ + 27)4|x — z[|5¢|0,u(z)| dz
= I/! 2 14

lv|=m+1 w

mt1—d |Ovu(z
=Co(m+1)(1+27)" /H:U—ZHz ! d'y,”'dz-

lv|=m+1"% '

By our assumption, we have 2(m+1)—d > 0 and a := 2d—2(m+1) < d, and Lemma|6.24]

yields
rs (Sd a
/ ||m_ZH2 =a-

ie., ||z — -H?’H*d € L*(w).
Let v € Ng with [v| = m + 1. With the Cauchy-Schwarz inequality (5.4)), we obtain

1/2 1/2
Lo =clipstouias < ([ o= 215" 0as) ([ aute)paz )
c 1/2
< S Sd—a 2
< d—a5 (/w|8yu(z)] dz>

Crs m+1-d/2
“Vamrn=a ol
Combining the terms yields
u(2) — Tolu)(@)] < Con(m + (1 + 29)y G _gmer-az 3 [0l
" =" VN oamt2—d o

v|l=m+1

We let O := Cn(1 + 27)%/Cys/(2m + 2 — d) and use the Cauchy-Schwarz inequality

and (6.15c]) to find

ull 20
u(z) — Tulul(@)] < Cym 4+ Doz 3 10l
pl=mt1 7
1/2 1/2
m41— 1
< Cy(m+ 1)gm+=a2 (%" o > 1ol
v|=m+1 " v|=m+1

1
< Cum+ D)2 T S fulme)

lv|= m+1

m dam
CO”+D5+1W%‘:3TWMMNM
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6.5. Averaged Taylor expansion
dm+1
= Cl diam(w>m+17d/2w’U‘Herl(w)

We complete the proof by choosing

dm+1
Cer = Cl

m)!

and observing that C7 depends only on Cx, v, d, and m, while Cyx depends only on ¢
and d. [
Remark 6.31 (Maximum norm vs. L?-norm) The factor diam(w)~%? in the esti-
mate of Lemma [6.30 might seem a little disappointing, since it means that the estimate
will go to infinity if we let the diameter go to zero.

A closer look suggests that this factor might be necessary: we can find a constant C
such that |w| < Cdiam(w)? holds for all domains, e.g., by choosing C as the Lebesgue
measure of a ball with radius diam(w). We have

lull 2y < w2 ulloow < C diam(w)®?|[uflos for allu € C(w),

—d/2

so if the mazimum norm estimate would not involve the factor diam(w) , we would

get a higher power of diam(w) in the Bramble-Hilbert lemma. A comparison with the
standard Taylor expansion suggests that this is unrealistic.

Theorem 6.32 (Sobolev’s lemma) Let w C R? be a domain with chunkiness param-
eter v <0, and let m € N with m > d/2.

There is a constant Cs, € Rsq depending only on @, v, d, and m such that all functions
u € H™(Q) are in u € C(Q) with

[ulloow < Coodllull grm(wy),
where § := max{diam(w)~ %2, diam(w)m—d/Q},

Proof. (cf. [1l, Lemma 4.3.4]) We first prove this result for v € C*(w). Let w C RY
be star-shaped with respect to a ball B C w of radius r > diam(w)/(27). The triangle
inequality yields

ulloow < N1Tm—1[ullloow = llun — FTm—1[u]llcow-
For the first term, Lemma, yields
1 [u] oo < Cot max{diam(w) %2, diam(w)™ =42} grm-1 ()
< Cy max{diam(w) %2, diam(w)™ ™2 }|[ul| grm (o)

With § := max{diam(w)~%?, diam(w)™ %2}, we can write this estimate in the short
form
||‘3:m71[u]||00,w < Cst(sHuHHm(w)-
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6. Finite element methods

For the second term, Lemma [6.30] yields

v — Tm—1[ullloow < Cerdlulgrm ()
< Ceré”“”HW(w)-

Combining both estimates yields

ulloow < Cstd |l gm (wy + Cerdlw|l grm (w)
< (Cst + Cer)d||ull rm () = Csod ||l rm ()

with
Cso := Cgt + Cer.

This completes the proof for u € C*°(w).
Now let w € H™(w). Due to Theorem we can find a sequence (uy)22; in C°(w)
with
lim[u — ta pmey = 0.

This implies that (uy,)2; is a Cauchy sequence with respect to the H™-norm. Due to
our previous result, it is also a Cauchy sequence with respect to the maximum norm.
Since C'(w) is a complete space if equipped with the maximum norm, we find u € C'(w)
such that

lim [|& — tp||cow = 0.
n—oo

The domain w is bounded, so convergence in the maximum norm implies convergence in
the L2-norm, i.e.,

lim ||[@ — up||72¢,) = 0.

Jim_ ] nllL2(w)

By our definition, the sequence (uy)22, also converges to u in the L?-norm, so we have
|u =l r2() = 0, i.e., u and u are identical up to a null set.
The norm estimate for u follows immediately from the estimates for (u, )5 ;. u

Remark 6.33 (C(w) and L?(w)) The statement of Theorem is a little ambiguous,
since uw € H™(w) is only defined up to null sets, but the mazimum norm takes the point-
wise marimum.

The proof of the theorem suggests the correct interpretation: in the equivalence class
of functions u that differ only on a null set, there is a continuous function, and this
continuous function satisfies the estimate.

In fact, this continuous function is unique, since continuous functions that are identical
up to null sets already have to be identical.

6.6. Approximation error estimates

In view of Theorem we require d € {1,2,3}. Let Q C R? and let 7 C Sg be a
triangulation of 2.
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6.6. Approximation error estimates

Corollary 6.34 (Sobolev’s lemma) Assume that there is a family (€%;)5_, of subdo-

mains such that ,
o=Jo,
i=1

and that the subdomains §2; are star-shaped with respect to suitable balls.
Then there is a constant Cso0 € Rsq such that

[ulloo,0 < Csoallull g2 for all u € H*(R).

Proof. For each i € [1 : /], the domain 2; has finite chunkiness by definition. Since
2> 3/2 > d/2, we can apply Theorem to find that u|q, is continuous and that its
maximum norm can be bounded by a constant times ||u||z2.

We can complete the proof by defining Cs, o as the maximum of the constants for the
subdomains. ]

Under the assumptions of Corollary we can define the nodal interpolation oper-
ator

Jr: HQ(Q) — Pr1, U Z u(v)py,
UGNT

since u € H%(Q) ensures that u is continuous, so the pointwise evaluation is well-defined.
Lemma 6.35 (Stability) Under the assumptions of Corollary we have
197[ulllco, < Cso0llull 2 for all u € H*(Q).

Proof. Let t € T. Due to Lemma [6.17, we have

137 [u]llocwe = 1T¢[u]llocwe < llullocw: < Csonllullme for all u € H*(Q).
Due to (6.4b)), this implies our claim. ]

In order to obtain an estimate for the interpolation error, we can apply the Bramble-
Hilbert lemma (cf. Theorem [6.27)) to all simplices in the triangulation. We introduce
the mazrimal meshwidth by

hr := max{diam(w;) : t € T},
denote the chunkiness of w; by <, and define the maximal chunkiness by
v :=max{y : t€T}.

Lemma 6.36 (Inverse estimate) Let t € S, and let v > 0 denote the chunkiness
parameter of we. We have

[Vpll2 < 7 diam(wy) ™ |p|looyw for all p € TI¢.
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6. Finite element methods

Proof. Let p € H‘f. If Vp = 0, the estimate is trivial.
Assume now Vp # 0. Let € € Ryg. Let B C w; be a ball of radius » > diam(w;)/(v+e€)
centered at zg. We let

o= L, Y= x9 + aVp, z:=x9 — aVp,
Vpll2
and have
ly — zolls = | Vplla =, |2~ zoll = o[ Vplla =1,

and since B C w; holds, we conclude y, z € @;. This implies

2[|plloow: > [p(y) —p(2)| = (Vp,y — 2)2| = (Vp, 2aVp)s|

2r
= 2a Vp 2_ = Vp 2:27‘ Vp 2,
IVpll2 Vol IVpllz = 2r|[Vp|
and we find ) N
v +e

Vplla < = < :

[Vpll2 < THPHOOMt > diam(wt)HpHOO’wt
Since this estimate holds for all € > 0, we get the final result. ]

Theorem 6.37 (Interpolation error) Under the assumptions of Corollary we
can find Cy, € Rsg with

|lu — T[]l 2 < Cih|ul g2, (6.23a)
|lu = JIr[u]||l g1 < Cinhrlu| g2 for all u € H*(Q). (6.23b)

Proof. Let u € H?(QQ), and let t € T. By definition, we can find a ball B C w; of
radius r > diam(wt)/(2yr). Let ¥; denote the corresponding averaged Taylor expansion
operator of degree m =1 and let p := ¥;[u].

Due to (6.13Db)), we have

lw = I7[ulll 2w = llv = Te[ulll 2we = lu — P+ Telp] — Te[u]ll L2 ()
< lw = pll 22 + 1Tefu = plll 20, -

We can apply the Bramble-Hilbert lemma (cf. Theorem [6.27]) to the first term to get
= pllr2(w) = llu — T1[u]llr2(w,) < Cr diam(wy) ™ |ul gmsy,)

with a constant C7 depending only on d, @, 7, d, and m.
For the second term, we use

1/2
1340 = P2 = ( [ —p1<x>2dw) < 1ol = oo
Wt
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6.6. Approximation error estimates

We can find a constant Cs depending only on d such that
lwe| < Cy diam(wt)d,
and combining with Lemma yields
194 = Pl 2y < Co” diam ()2 (341 = pllloc, < Co'* diam ()2 = plloo

< C21/2 diam (w;)¥2Ce; diam (w,)™ =42 (U] frm+1 ()

= Cy/* Cox diam (we) ™ u] prm+1 (- (6.24)
Combining the estimates for u — p and J;[u — p| gives us

o =3[ 2y < Cs limm(n)™ ul 2 (6.25)

with C3 := Cy + (), /2. This gives us a local version of 1’
In order to get a similar result for (6.23b), we fix ¥ € N with |v| < m and use

Exercise [6.28 to find
100 (u = Te[u])[| 2wy = 100 (v = p) + 0 Te[u — plll L2(r)
<10 (u = P)ll 2wy + 100 Te[u = plll 12w
= [|0vu — To[Ovu]| L2 (wy) + 100 Te[w — Pl L2(0y)-
We can again apply the Bramble-Hilbert lemma to the first term to get
100 (u — p)l| L2(w,) < Cadiam(wy)™ O u|grm () < Cadiam(we)™ |u] mt1(y,)-
For the second term, we can use Lemma and to find
10,34 [t — pll| 12y < Co”” diam(we)¥?(10,3:[u — bl oo on
< 3%y diam(w) | 34w — plloo
< Cy/*Cer diam(we) ™ ul g1 (o)
and combining the two estimates yields
190 (= T [u]) 200y < O liam(on)™ful g (6.26)

wt)

with Cy := Cy + 7Co/*C.
Now we only have to combine the local estimates to obtain the global results. Due to

Lemma the local estimate ([6.25)) gives rise to

2 3 2(m+1),,12
lu = Jr[ull 720y = D llu = Irfulllfz(,) < Y C3 diam(w) ™ Vuffs,
teT teT
2 2(m+1 2 +1
< O3 Y h ™ Vlulipagy = C3hE™ Pl
teT
We take the square root to get the first estimate (6.23a)).
For the second estimate (6.23b]), we can apply the same reasoning to (6.26]). [
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6. Finite element methods

Corollary 6.38 (Discretization error) Let V = H}(Q) and V,, = Pr1 N HL(Q). Let
u €V be the solution of the variational problem @, and let u, € V, be the solution
of the discretized variational problem .

If u € H?(Y) holds, we have

o\ /2
o=l < Coo (G2 o lule

where Cyy, is the constant from Theorem [6.37, Cp is the continuity constant of the
bilinear form a (in this case Cp = 1), and Ck is the coercivity constant (in this case

Ck > 1/(1 + diam(Q2)?) due to Corollary .

Proof. Let U, := Jr[u]. Due tou € H%(), we can apply Theorem to find u € C(9),
and u € H} () yields u|gq = 0. Since we use a nodal interpolation operator, this implies
Up € Vn.

Now we can apply Céa’s Lemma [5.40| and Theorem to get

Cg ~ Cp
|u — un |l g < CT{H“ — Un|lm <y @CinhTMH?-

Definition 6.39 (H2-regularity) A wvariational problem with V C HYQ) is
called H?*-regular if for f € L*(Q) and

B(v) = (v, f)r2 for allv ey
the solution u € V satisfies u € H*(Q) and
ullzrz < Crllflz2 (6.27)
with a constant Cr depending only on the bilinear form a and the domain €.

If the variational problem (5.9)) is H?-regular, Corollary takes the form

C
Hu — unHHl < CRCin\/ghT HfHL?’

i.e., we can bound the discretization error in terms of the L?-norm of the right-hand
side.

Compared to error estimates like the one provided by Theorem that guarantee
that the error falls like h? for a finite difference discretization, it is a little disappointing
to get only hr in the case of the finite element method.

A closer look reveals that the two estimates are not really comparable: in the finite
difference case, we only get a bound for the maximum of the error, while in the finite
difference case the derivatives of the error are also controlled.

Our goal is now to prove that the L2-norm of the error does indeed converge like h%.
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6.6. Approximation error estimates

Lemma 6.40 (Aubin-Nitsche) Let a be symmetric, bounded, and coercive with re-
spect to the H'-norm. Let the variational problem be H?-reqular, and let f € L?(2).

There is a constant C4 such that the solutions u € V and u,, € V,, of (@ and
satisfy

lu = unllz2 < Cahrllu = un||z,
lu = w2 < CahZ || f] 2

Proof. The proof relies on Nitsche’s trick: we consider the functional
AV =R, v (U, U — Up) 2.
Due to the Cauchy-Schwarz inequality , it is an element of V' with
Ay < flu = unl| 2.

The Riesz theorem yields that we can find a solution e € V of the variational
problem

a(e,v) = A(v) for all v e V,
and that this solution satisfies |le||y < ||A||y/Cr. We have
Ju—un|Fs = AMu — uy) = ale,u — uy).
We let e, := Jp[e] and take advantage of Galerkin orthogonality (cf. Lemma |5.36) to
get

[u— un||2L2 =ae,u—up) = ale — en,u —un) < Cplle —enlly[u — ually.

Now we can apply Theorem and (6.27) to obtain

le —enlly < Cinhrlle]| gz < CinCr by ||u — up |12

and thus
[ — un||72 < CCinCr Ay [Ju — unl| g2 ||u — unly.

Dividing both sides by ||u — uy||f2 yields the first estimate.
Applying Corollary to ||u — up|y gives us

VCs

|u = unlly < CinCr~== hr || f| L2,

VCk

and combining this with the first estimate yields

[u = un|| 2 < CpCinCrhr|lu — unlly < CpCHC ho || fl e

SRAY:
R /CK
Now we choose

32

C4 := max {C’BC’inCR, CianI%L ?2}
o/
K

to complete the proof. [
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6. Finite element methods
Remark 6.41 (Unsymmetric case) If the bilinear form a is not symmetric, we can
still derive a version of the Aubin-Nitsche lemma if the adjoint problem
Find e € V such that
a(e,v) = A(v) forallvey
is H?-regular.

Remark 6.42 (Residual error estimator) If the bilinear form a is symmetric, con-
tinuous, and coercive, the energy norm satisfies

llu — uplla = a (%,ufuh) :sup{W v € V\{O}}
due to the Cauchy-Schwarz inequality. The functional a(-,u — uy) is called the residual
for the solution uw and its Galerkin approximation uy,. If we can find a bound for the
dual norm of the residual, we have a bound for the error in the energy norm.
Let v € V, and let vy, € V,, be a suitable approximation. We denote by up = up|,, and
vy = Uplw, the element-wise polynomials. Using the Galerkin orthogonality and partial
integration, we obtain

CL(’U,U - Uh) = (I(U — Uph, U — Uh) = a(v - ’Uh,U) - a(v — Uh, Uh)

= [0 = @) do = afo = vn,m)
—Z/ v —vp)( )dx—/ (V(v—wvp)(z), Vup(z))2 dx

teT
_; . (v —vp)( )dx—/am(v—vt)(a;) (n(x), Vug(z))s
+ v — ) () Auy(x) d.
>/

Since ug 18 a linear polynomial, we have Auy = 0 for allt € T, and the last term vanishes.
We can write Ow; again in terms of the edges of T and find

a(v,u — up) Z/ v —v)(@) (ne(@), V(ue, , — g, _))2dw

eelr

+Z/ v — ) (z) f () da.

teT

With suitable local mesh width parameters he and hy for all edges e € Ep and all simplices
t €T, we can use the Cauchy-Schwarz inequality to get

a(v,u—up) < Y o= vill2ge) | (ne, V(ue, . = ue, ))all 2
e€Er
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6.7. Time-dependent problems

+ Z v = vell 2o 1 f 1 22 (@)

tET
= f v = vellL2(e) vV hell{ne, V(ue, , —ue,))2llz2e)
eelr
+ Z *||U — vt L2y Pell fll L2 o) -
e

Using the Clément interpolation operator, we can find vy such that [[v—vi||p2(ey /v he and
|[v — vellp2(s)/ e can be bounded in terms of v g1, and we can use the Cauchy-Schwarz
inequality again to conclude

1/2
av,u =) < [0l (3 hell e, Vun, o =, Nl + 32 a) -

e€Er teT

Dividing by ||v|| g1 yields an upper bound for the residual norm.

6.7. Time-dependent problems

We consider the heat equation

ou
T —(t,x) = g(t,x) + Agu(t, x) for all t € R>p, z € Q.

For the finite element discretization, we multiply by a test function v € Hg(Q), integrate,
and apply partial integration to get

/ v(x )gt (t,z)dx = /Qv(x)g(t, x) dx—l—/ﬂv(x)Axu(t, x)dz,
d
8t/ﬂv(:z:)u(t,:v) d:cz/gv(@g(t, x) dz:/ﬂ(Vv(x),Vu(t,x)}g dz,
O v ult, iz = .00tz — alvo,ult, ) for all € o, v € HY(Q),
where a(-, ) denotes the familiar bilinear form

a:VxV—=R, (v,u) = (Vo,Vu) e,

used already for Poisson’s equation.
Replacing V := H{ () by a finite element subspace V,, C V yields

E?t (Unyun(t, ) 12 = (Un, g(t, )Y 12 — alvp, un(t, -)) for all t € R>q, v, € V.

As before, we choose a suitable basis (¢;)!_; of V,, and represent the solution w,, by its
coefficients:

= Z Yi(t)pi for all t € R>o,
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6. Finite element methods

where
y: R>o — R", t=y(t),

is now a function of time.
Introducing the stiffness matric A € R™ ™, the mass matric M € R™" and the
forcing vector b: R>g — R" by

aij = a(pi, 9;), mij = (@i, 5) 2,
bi(t) :== (pi,g(t,")) 2 for all t € R>p, 4,7 € [1:n],

the Galerkin formulation is equivalent with

éMy(t) =b(t) — Ay(t) for all ¢t € R>g.

Since the mass matrix is always positiv definite and symmetric, we can multiply both
sides of the equation by M~! and obtain an ordinary differential equation that can be
treated by time-stepping schemes.

We consider the Crank-Nicolson method as an example. The starting point is the
trapezoidal rule

tir1
My(tiv1) = My(t:) + ) My'(s)ds
~ My(t) + D(b(0) + btisr) — A(ts) — Ay(tin).
(804 54 ltesn) = M) + §1066) + btn) = Ay(e)

and we can obtain an approximation for y(¢;+1) by solving this linear system. Since
both M and A are positive definite, symmetric, and sparse, essentially the same solvers
as in the case of Poisson’s equation can be applied.
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A. Appendix

A.1. Perron-Frobenius theory

Now we can return our attention to the invertibility of a weakly diagonally dominant
matrix A. Let us take a closer look at the matrix

M=I-D'A

introduced in during the proof of invertibility for strictly diagonally dominant
matrices given in Lemma In our model problem, the off-diagonal elements of A
are non-positive, therefore the off-diagonal elements of M have to be non-negative.

In order to establish convergence of the Neumann series for M, and therefore the
invertibility of A, it is a good idea to investigate the eigenvalues and eigenvectors of
non-negative matrices. The corresponding results go back to Oskar Perron [9] and Georg
Frobenius [6].

Definition A.1 (Positive vectors and matrices) Let x,y € R and A,B € RT*Z,
We write

x<y <= Viel : z; <y,
X<y <= VieTl : z; <y,
A<B < Vi,jeT : a; <bj,
A<B <= Vi,j €Tl : a; <by,

and denote the cone of non-negative vectors by
Rgo ={xecRf : x>0}.

Our goal is to prove that — under certain conditions — a positive matrix A has a
positive maximal eigenvalue corresponding to a positive eigenvector. Since the matrices
M appearing in our convergence analysis are not strictly positive, but only non-negative,
we will also prove a generalization of this result.

Let A € RTXT be a matrix with A > 0. For our proof, we follow a rather elegant
approach introduced by Helmut Wielandt [12]. We consider the function

(AX)Z

T

r: RT\ {0} - R, xr—>min{ i eX, xZ#O} (A.1)
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A. Appendix

Lemma A.2 (Quotient function) If e € R% \ {0} is an eigenvector of A for an
eigenvalue A € R, we have

r(e) = A.
We also have
r(ax) = r(x) for all a € Ry, x € Réo \ {0}, (A.2a)
r(x)x < Ax for allx € Réo \ {0}, (A.2b)
o(A) <sup{r(x) : x€ ]Réo \ {0}}. (A.2¢c)

Proof. Let e € RZ\ {0} be an eigenvector of A for an eigenvalue A € R. Due to Ae = )e,
we have

r(e) = min {(Ae)i

€;

Aei
1€l ei#()}:min{: 1 e, ei#O}:)\.

i

Let now x € RZ\ {0} and « € R>. We have

r(ozx):min{a(AX)i ci1€e7q, xi#O}:min{(é;)i 1€, xi#O}:T(X)a

ax; i
and the definition implies
Ax);
r(x) < (Ax) , r(x)z; < (Ax); foralli € Z, z; #0.

= 7

Due to A > 0 and x > 0, the right-hand side cannot be negative, and we find
r(x)x; < (Ax); for all i € 7.

This is equivalent to r(x)x < Ax.
Let A € C be an eigenvalue of A, and let e € CT\ {0} be a corresponding eigenvector.
We define x € Réo \ {0} by

x; = e forall i € 7.

The triangle inequality yields

INzi = [Xei| = |(Ae)i| =

E aijej

jeT

<Y aijlej| = (Ax);,

jeT

so we have
Ax);
|A|gﬂ for all i € Z, a; # 0,
T;
and conclude |A| < r(x). ]
We are looking for an eigenvector of A, i.e., a vector x € Rgo satisfying the equation

r(x)x = Ax. Due to || we have r(x)x < Ax for all vectors x € Rgo. In order to
reach equality, we should therefore try to find a maximum of the function r.
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A.1. Perron-Frobenius theory

Lemma A.3 (Eigenvector) Let A > 0, and let x € Rgo \ {0} be such that

r(z) < r(x) forallz € Réo \ {0}.

Then x is an eigenvector of A for the eigenvalue r(x) and satisfies x > 0.

Proof. Let A := r(x), and let
y = Ax — \x.

Due to (A.2b)), we have y > 0.
Let z := Ax. Due to A > 0 and x € Rgo \ {0}, we have z > 0.

Since A is maximal, we obtain
Az —1r(2)z > Az — Mz = A’x — AMAx = A(Ax — \x) = Ay.
By definition, we can find ¢ € Z such that

r(z) = B2 (Ay); = (Az — r(z)z); = 0.

Zi

Due to A > 0, this gives us y = 0, so x is an eigenvector for the eigenvalue .
The definition (A.1) implies A = r(x) > 0, and Ax = Ax = z > 0 yields x > 0. [ |

All we have to do is to prove that r has a maximum in Rgo \ {0}. Due to 1} we
can restrict our attention to a compact subset

C::{XERI x>0, inzl},
i€l

since we can scale any vector in Rgo \ {0} by 1/ ,c7 x; to put it into this set without
changing the value of r.

Lemma A.4 (Upper semi-continuity) The function r is upper semi-continuous,
i.e., for each x € Rgo \ {0} and € € R-q, we can find § € Rsg such that

r(y) <r(x)+e for all y € RE, Ix — ¥]loo <.

Proof. Let x € Rgo \ {0} and € € R.
We define the set
N={ieT : z;#0}

of indices corresponding to non-zero entries in x. Due to x # 0, it cannot be empty.
We let
0 :=min{x;/2 : i€ N}

and observe that for each y € RZ with ||x — y oo < 6 we have

yi:xi—xi+yi2xi—|xi—yi|2x1—32x¢/2>0 for all s € N. (A.3)
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This means that for each ¢ € IV, the mapping

A A
{yeRT : |x -yl <0} =R, y|—>(y}'i)Z
(2
is continuous, so we can find § € (0,9) such that we have
Ay); Ax);
( y”<( X)l+e for all i € N, y € RT with ||x — yjeo < 0.

Yi X5

Let now y € R? with ||x — y||cc < 6. We have

r(y):min{(Ay)i e, yi#O}min{(AY)i : ieN}

<min{(AX)i+e : iEN}:r(X)+e.

Lemma A.5 (Maximum) There exists x € C' such that

r(z) < r(x) forallz € Réo \ {0}.

Proof. Let e € Rgo denote the vector with e; = 1 for all i € Z. Due to 1) we have

(e, Ax)y — r(x)(e,x)2 = Z(Ax)i —r(x)z; >0 for all x € Rgo,
1€

and we obtain

(e, AX>2 N <A*e,x>2

e e P

for all x € ]Réo.

Let u € Ryg denote the maximal entry of the vector A*e. We have
(A%e,x)g = Z(A*e)i:ci < ain = a(e,x)2 for all x € RZ,
1€ 1€T
so we can conclude

r(x) < <A<;ee},{;<)2 < 025367;?2 =« for all x € RZ,,.
) 2 ) 2 -

This means that the supremum
A :=sup{r(x) : xe C}

is bounded by « and therefore a real number.
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A.1. Perron-Frobenius theory

By definition of the supremum, we can find a sequence (X(m))%’zo in C satisfying
r(x™) > X —1/m for all m € N,

and since C' is compact, this sequence has a limit point x € C'. We only have to prove
r(x) =\
Let € € Ryg. Due to Lemma we can find § € R+ such that

r(y) <r(x)+¢€/2 for all y € RT with ||y — x|[/eo < 0.
Since x is a limit point, we can also find m € N such that
[x™) — x|| <, 1/m < €/2.
Combining both estimates yields
A—e€/2<A—1/m < r(x™) < r(x)+e€/2, A —e<r(x).

Since € can be chosen arbitrarily, this implies A < r(x). Since A is the supremum of r in
C, we also have r(x) < A and therefore \ = r(x). ]

Corollary A.6 (Spectral radius) Let A > 0. The spectral radius o(A) of A is an
etgenvalue with an eigenvector x € Réo satisfying x > 0.

Proof. Lemma gives us a vector x € Réo \ {0} with
r(z) < r(x) for all z € Rgo \ {0}.

Due to Lemma this vector x is an eigenvector of A for the eigenvalue A\ = r(x) with
x > 0.

Due to (A.2¢), we have p(A) < A. Since A is an eigenvalue, we also have A = |\| <
0(A), and can conclude A = p(A). ]

Unfortunately, matrices resulting from finite difference discretization schemes tend to
be sparse, i.e., each row and column contains only a non-zero few coefficients. This
means that A > 0 is not a useful requirement for our investigation of finite difference
methods. We need another condition that can take its place.

Definition A.7 (Connections) Let A € CT*Z, and let i,j € T.
We call a tuple (i¢)}", of indices in T a connection from j to i if

j =1, 1= U, Qigip , 70 for all £ € [1:m)].
The number m € Ny is called the length of the connection.

Definition A.8 (Irreducible matrices) A matriz A € CT*7 s called irreducible if
for each pair i, j € T there is a connection of i and j. If the matriz is not irreducible, it
is called reducible.
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This definition has a geometric interpretation: we can define the graph of a matrix A
by using V := T as its vertices and

E:={(,74) : a;; #0, i,j €T}

as its edges. The matrix is irreducible if the graph is strongly connected.

In the case of a finite difference discretization, a;; # 0 holds if and only if either ¢ = j
or j is a neighbour of . A matrix resulting from a finite difference scheme therefore is
irreducible if we can reach any grid point from any other grid point by moving from one
neighbour to the next. This is typically ensured if the underlying domain {2 is connected.

Exercise A.9 (Reducible matrix) Prove that a matriz A € CT*T is reducible if and
only if there are index sets I1,Zo C T such that

T =1, UTy, 0 =1, NIy, Alz,xz, = 0.

These conditions mean that A can be written in the form
Ann A12)
A=
( A
of a block upper triangular matriz with non-trivial blocks.

For irreducible matrices, we can replace Lemma by the following more general
result.

Lemma A.10 (Eigenvector) Let A > 0 be an irreducible matriz, let x € Réo \ {0}
be such that

r(z) < r(x) forallz € Réo \ {0}.

Then x is an eigenvector of A for the eigenvalue r(x) and satisfies x > 0.

Proof. Let A :=r(x), and let
y = Ax — Ax.

Due to (A.2Db)), we have y > 0.

Since A is irreducible, we can find n € Ny such that (A +I)" > 0. Let z := (A +1I)"x.
Due to (A +1I)"” >0 and x € Rgo \ {0}, we have z > 0.
Since A is maximal, we obtain

Az —r(2)z>Az - dz=(A+Dz— A+ 1)z=(A+D)"'x - A+ 1)(A+I)"x
=A4+D"(A+Dx— A+ 1)x)=(A+D)"(Ax — \x) = (A+1I)"y.
By definition (A.1]), we can find i € Z such that

() = A (A +T)y); = (Az — r(z)2); = 0.

Zi
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A.1. Perron-Frobenius theory

Due to (A +1I)" > 0, this gives us y = 0, so x is an eigenvector for the eigenvalue \.
The definition (A.1) implies A = r(x) > 0, and

A+1D)"x=(A+D)"x=2z>0

yields x > 0. ]

Theorem A.11 (Perron-Frobenius) Let A > 0 be irreducible. The spectral radius
o(A) of A is an eigenvalue with an eigenvector x € RL )\ {0} satisfying x > 0.

o(A) is the mazimum of the function r introduced in (A.1]).
Proof. Lemma gives us a vector X € Rgo \ {0} such that
r(z) < r(x) for all z € Rgo \ {0}.

Due to Lemma this vector x is an eigenvector of the matrix A for the eigenvalue
A =r(x) >0 with x > 0.

Due to (A.2d), we have o(A) < A. Since \ is an eigenvalue, we also have A = |A| <
0(A), and can conclude A = p(A). |

Exercise A.12 (Stochastic matrix) Let A € RT*Z be a (left) stochastic matrix, i.e.,
a matriz satisfying A > 0 and

Zaijzl forall j € T.
i€l
Prove o(A) =1 (Hint: A € 0(A) <= X € a(A¥)).
Assuming that A is irreducible, show that there is a vector x € RT with x > 0 and

Ax = x, inzl.

Background: If the elements of I are the states of a Markov chain, a vector y € RT with
y >0 and Y ,.ry; = 1 corresponds to a probability distribution for the states. If the
coefficients a;; are the probabilities for switching from state j to state i, Ay gives us the
probability distribution after one step of the Markov chain.

The conditions above ensure that there is an invariant probability distribution, i.e.,
a distribution that will not change as the Markov chain progresses. If A 1is irreducible,
i.e., if it is possible for the Markov chain to reach any state from any other state with
non-zero probability, it is even possible to prove that the invariant probability distribution
is unique and that the sequence of probability distributions obtained by starting with an
arbitrary distribution and stepping through the Markov chain converges to the invariant
distribution.

Theorem provides us with the tool we need to obtain a generalized stability result
for finite difference discretizations.
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Definition A.13 (Irreducibly diagonally dominant) A matriz A € CT*7 is called
irreducibly diagonally dominant if it is irreducible, weakly diagonally dominant, and if
there is an index k € T such that

> " lakj| < lagkl-
s
Tk

Lemma A.14 (Spectral radius) Let A € CT*T be irreducibly diagonally dominant,
and let A € RTXT be defined by

aij = ]aij] foralli,jeT.

Then o(A) < o(A).

Proof. Let A € o(A), and let e € CT \ {0} be a corresponding eigenvalue.
We define € € Rgo \ {0} by

€; = e forall i € 7.

Let ¢ € Z with |e;| # 0. Then we have e; # 0 and the triangle inequality yields

(Ae);| 1 1 (A8),
Al = el - == > aijej| < gZIaszejl ==
' tljez ' jez ’
Introducing the function
- [ (Ax);
r:RéO—HR, x&—>m1n{(;{)2 1€, a:i;é()},
1
we conclude |\| < 7(€). Theorem yields that Q(;&) is the maximum of 7. ]

Lemma A.15 (Generalized maximum principle) Let A € RZ*T be irreducibly di-
agonally dominant, and let M € RT*T be defined by

. {laij!/lam if i #j,

= or alli,5 € T.
0 otherwise J J

iy —
If there is a vector x € ]Rgo such that x < ﬁx, x has to be a constant vector.
Proof. Let x € Rgo be a vector satisfying x < Mx.
Let p:=max{xz; : ¢ € I}, and let ¢ € Z be an index with p = z,.

We will prove that the existence of a connection of length m € Ny from an index i € Z
to ¢ implies z; = p by induction.

162



A.1. Perron-Frobenius theory

Base case: If there is a connection of length m = 0, from 7 € Z to ¢, we have i = ¢
and therefore z; = x4 = p.

Induction assumption: Let m € Ny be chosen such that our claim holds for all con-
nections of length m.

Induction step: Let i € Z be an index such that a connection (ig)m'H from 7 to ¢
exists. Let k := i;. Obviously, (’ig)m+l is a connection of length m from k to ¢, and our
assumption yields xy = p. Since Mx > x and since A is weakly diagonally dominant,
we have

2y < (Mx); |z < ar |Z|akg|ﬂ<ﬂ—l”k
JGZ JET
J?ék J#k
and conclude x; = p for all j € 7 with ap; # 0. Due to ay; = a;, 4, 7# 0, this implies
XTi = W. |

Lemma A.16 (Irreducibly diagonally dominant) Let A € RZ*Z be irreducibly di-
agonally dominant. Then o(M) < 1 holds for M =1 —D7'A and A is invertible.

Proof. Since A is irreducible, each row has to contain at least one non-zero element.
Since A is weakly diagonally dominant, this implies that all diagonal elements are non-
zero, so the diagonal matrix D € RT*Z given by

L ifieg,
dij =0 BT for all 4,§ € T
0 otherwise
is invertible. We consider the matrix
M:=1-D'A

and its non-negative version M € RZXT given by

R aiil/lai|  if 4 # g, ..

mij = |myj| = laij|/lai 7 J‘ for all i,j € Z.

0 otherwise

Since A is irreducible and since a;; # 0 implies m;; # 0 for all ¢,7 € Z with 7 # j, the
matrices M and M are irreducible.

Due to Theorem we can find an eigenvector x € RZ of M for the eigenvalue
g(ﬁ) with x > 0. We have to prove g(ﬁ) < 1.

Lety € R£O be a vector satisfying y < My. Due to Lemma this implies that
there is a 1 € R>¢ such that

Yi = b forall i € 7.

Since A is irreducibly diagonally dominant, there is an index k € Z such that

1
> lawg| < lanel, Br= g 2ol <1,
jez FhL jez
J#k J#k
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A. Appendix

and we find

— 1 1
p=yr < (My)g = o] D> agly; = Tl > awglp = Bu.
kkl e itk kkl eTizk

Due to 5 < 1, we can conclude p =0 andy =0. .

Since we have x > 0, this implies x £ Mx = po(M)x, i.e., o(M) < 1.

Lemma yields o(M) < Q(M) < 1. Due to Corollary the Neumann series for
M converges and I — M = D~!A is invertible, so A itself also has to be invertible. m
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Aubin-Nitsche lemma, [I51

Babuska-Lax-Milgram, [I03]
Banach space,
Barycentric coordinates, [110]
bilinear form,
positive definite,
positive semidefinite, [35]
symmetric, [34]
Bramble-Hilbert lemma,

Céa’s lemma,
CFL condition,

Characteristic curve, [67]

Consistency
time-stepping method,
Convergence

Finite difference method,
Courant-Friedrichs-Lewy condition, [56]
(S
Crank-Nicolson, [49]

Darcy’s law, [79]

Difference operator,

Dirichlet boundary conditions, [7]
Discretization, [T]]

Divergence,

Dual space,

Eigenvalue,
Eigenvector, [2]]
Element matrix, [12]]
Element vector, [121
Energy norm,
Euler method

explicit,

implicit, [49]

Finite difference method,
Finite volume method, [79]
Five-point star, [J]
Friedrichs’ inequality, [07]
Functional,

Galerkin discretization, {103
Galerkin orthogonality,
Gershgorin disc,
Gradient,

Grid,

Grid function, [I]
Groundwater flow, [79]

H?-regularity, [150
Hilbert space,

inf-sup condition, [LO1
Irreducible matrix,
Irreducibly diagonally dominant,

Jacobi iteration,

Laplace operator, [7]
finite-difference approximation, [J]

M-matrix, [30]
Mapped basis functions,
Matrix

diagonally dominant, [19]

irreducible,
irreducibly diagonally dominant, [27]

positive, 28] [I55]
sparse, [16]
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Maximum norm, [J]
Maximum principle,

Neumann series
convergence, [23|
Nodal basis, [T19]
Nodal interpolation operator,

Poisson’s equations, [7]
Polynomials, [T15]
positive semidefinite,
Potential equation,

Quadrature
Rectangle rule,
Trapezoidal rule,

Riesz isomorphism, [97]

Riesz potential,
Riesz’ theorem,

Schur decomposition,
Simplex, [109]
Sobolev’s lemma, [145
Spectral radius, [2]]
Spectrum,
Stability
Finite difference method,
time-stepping method,
Support,

Time-stepping
Crank-Nicolson,
explicit Euler, [4§]
implicit Euler, [49]

Trace operator, [89]

Triangulation, [112

Weak derivatives,
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