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1. Introduction

Differential equations have been established as one of the most important representations
of the laws governing natural phenomena, e.g., the movement of bodies in a gravitational
field or the growth of populations.

If all functions appearing in the equation depend only on one variable, we speak of
an ordinary differential equation. Ordinary differential equations frequently describe the
behaviour of a system over time, e.g., the movement of an object depends on its velocity,
and the velocity depends on the acceleration.

Ordinary differential equations can be treated by a variety of numerical methods, most
prominently by time-stepping schemes that evaluate the derivatives in suitably chosen
points to approximate the solution.

If the functions in the equation depend on more than one variable and if the equation
therefore depends on partial derivatives, we speak of a partial differential equation. Par-
tial differential equations can be significantly more challenging than ordinary differential
equations, since we may not be able to split the computation into discrete (time-)steps
and have to approximate the entire solution at once.

A typical example is the potential equation of electrostatics. Given a domain Ω ⊆ R3,
we consider

∂2u

∂x2
1

(x) +
∂2u

∂x2
2

(x) +
∂2u

∂x2
3

(x) = f(x) for all x ∈ Ω,

where ∂νu
∂xνi

denotes the ν-th partial derivative with respect to the i-th variable.

Explicit solutions for this equation are only known in special situations, e.g., if Ω = R3

or Ω = [a1, b1] × [a2, b2] × [a3, b3], while the general case usually has to be handled by
numerical methods.

Since computers have only a finite amount of storage at their disposal, they are
generally unable to represent the solution u as an element of the infinite-dimensional
space C2(Ω) exactly. Instead we look for an approximation of the solution in a finite-
dimensional space that can be represented by a computer. Since the approximation is
usually constructed by replacing the domain Ω by a grid of discrete points, the approx-
imation of the solution is called a discretization.

A fairly simple discretization technique is the method of finite differences: we replace
the derivatives by difference quotients and replace Ω by a grid Ωh such that the difference
quotients in the grid points can be evaluated using only values in grid points. In the case
of the potential equation, this leads to a system of linear equations that can be solved
in order to obtain an approximation uh of u.

We have to investigate the discretization error, i.e., the difference between uh and u in
the grid points. This task can be solved rather elegantly by establishing the consistency
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1. Introduction

and the stability of the discretization scheme: consistency means that applying the
approximated derivatives to the real solution u yields an error that can be controlled,
and stability means that small perturbations of the forcing term f lead only to small
perturbations of the solution uh. Once both properties have been established, we find
that the discretization scheme is convergent, i.e., that we can reach any given accuracy
as long as we use a sufficiently fine grid.

For time-dependent problems like the heat equation and the wave equations, it is a
good idea to treat the time variable separately. An attractive approach is the method
of lines that uses a discretization in space to obtain a system of ordinary differential
equations that can be treated by standard time-stepping algorithms.

Since the Lipschitz constant arising in this context is quite large, it is a good idea to
consider implicit time-stepping schemes that provide better stability and do not require
us to use very small time steps in order to avoid oscillations.

The wave equation conserves the total energy of the system, and we would like to
have a numerical scheme that shares this property. If we replace the total energy by
a suitable discretized counterpart, we find that the Crank-Nicolson method guarantees
that the discretized total energy indeed remains constant.

In order to prove consistency of finite difference methods, we frequently have to assume
that the solution u is quite smooth, e.g., a standard approach for the potential equation
requires u to be four times continuously differentiable. This is an assumption that is only
rarely satisfied in practice, so we have to consider alternative discretization schemes.

Variational methods are particularly attractive, since they are based on an elegant
reformulation of the partial differential equation in terms of Hilbert spaces. We can
prove that the variational equation has a unique generalized solution in a Sobolev space,
and that this generalized solution coincides with the classical solution if the latter exists.
Variational formulations immediately give rise to the Galerkin discretization scheme that
leads to a system of equations we can solve to obtain an approximation of the solution.

If we use a finite element method, this system has a number of desirable properties,
most importantly it is sparse, i.e., each row of the corresponding matrix contains only
a small number of non-zero entries. This allows us to apply particularly efficient solvers
to obtain the approximate solution.

In order to be able to approximate the solution even with fairly weak regularity as-
sumptions, we investigate the approximation properties of averaged Taylor polynomials
and obtain the Bramble-Hilbert lemma, a generalized error estimate for these polynomi-
als, and the Sobolev lemma, an embedding result for Sobolev spaces that allows us to
use standard interpolation operators to construct the finite element approximation.

Acknowledgements

I would like to thank Jens Liebenau, Alexander Dobrick, Mario Santer, Nils Krütgen,
and Jonas Lorenzen for corrections and suggestions for improvements of these lecture
notes.

6



2. Finite difference methods

This chapter provides an introduction to a first simple discretization technique for elliptic
partial differential equations: the finite difference approach replaces the domain by a grid
consisting of discrete points and the derivatives in the grid points by difference quotients
using only adjacent grid points. The resulting system of linear equations can be solved
in order to obtain approximations of the solution in the grid points.

2.1. Potential equation

A typical example for an elliptic partial differential equation is the potential equation, also
known as Poisson’s equation. As its name suggests, the potential equation can be used
to find potential functions of vector fields, e.g., the electrostatic potential corresponding
to a distribution of electrical charges.

In the unit square Ω := (0, 1)× (0, 1) the equation takes the form

−∂
2u

∂x2
1

(x)− ∂2u

∂x2
2

(x) = f(x) for all x = (x1, x2) ∈ Ω.

In order to obtain a unique solution, we have to prescribe suitable conditions on the
boundary

∂Ω := Ω ∩ R2 \ Ω = {0, 1} × [0, 1] ∪ [0, 1]× {0, 1}

of the domain. Particularly convenient for our purposes are Dirichlet boundary conditions
given by

u(x) = 0 for all x = (x1, x2) ∈ ∂Ω.

In the context of electrostatic fields, these conditions correspond to a superconducting
boundary: if charges can move freely along the boundary, no potential differences can
occur.

In order to shorten the notation, we introduce the Laplace operator

∆u(x) =
∂2u

∂x2
1

(x) +
∂2u

∂x2
2

(x) for all x = (x1, x2) ∈ Ω,

and summarize our task as follows:

Find u ∈ C(Ω̄) with u|Ω ∈ C2(Ω), and

−∆u(x) = f(x) for all x ∈ Ω, (2.1a)

u(x) = 0 for all x ∈ ∂Ω. (2.1b)
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2. Finite difference methods

Solving this equation “by hand” is only possible in special cases, the general case is
typically handled by numerical methods.

The solution u is an element of an infinite-dimensional space of functions on the domain
Ω, and we can certainly not expect a computer with only a finite amount of storage to
represent it accurately. That is why we employ a discretization, in this case of the domain
Ω: we replace it by a finite number of discrete points and focus on approximating the
solution only in these points.

Using only discrete points means that we have to replace the partial derivatives in the
equation by approximations that require only the values of the function in these points.

Lemma 2.1 (Central difference quotient) Let h ∈ R>0 and g ∈ C4[−h, h]. We can
find η ∈ (−h, h) with

g(h)− 2g(0) + g(−h)

h2
= g′′(0) +

h2

12
g(4)(η).

Proof. Using Taylor’s theorem, we find η+ ∈ (0, h) and η− ∈ (−h, 0) with

g(h) = g(0) + hg′(0) +
h2

2
g′′(0) +

h3

6
g′′′(0) +

h4

24
g(4)(η+),

g(−h) = g(0)− hg′(0) +
h2

2
g′′(0)− h3

6
g′′′(0) +

h4

24
g(4)(η−).

Adding both equations yields

g(h) + g(−h) = 2g(0) + h2g′′(0) +
h4

12

g(4)(η+) + g(4)(η−)

2
.

Since the fourth derivative g(4) is continuous, we can apply the intermediate value the-
orem to find η ∈ [η−, η+] with

g(4)(η) =
g(4)(η+) + g(4)(η−)

2

and obtain

g(h)− 2g(0) + g(−h) = h2g′′(0) +
h4

12
g(4)(η).

Dividing by h2 gives us the required equation.

Exercise 2.2 (First derivative) Let h ∈ R>0 and g ∈ C2[0, h]. Prove that there is an
η ∈ (0, h) such that

g(h)− g(0)

h
= g′(0) +

h

2
g′′(η).

Let now g ∈ C3[−h, h]. Prove that there is an η ∈ (−h, h) such that

g(h)− g(−h)

2h
= g′(0) +

h2

6
g′′′(η).
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2.1. Potential equation

Applying Lemma 2.1 to the partial derivatives with respect to x1 and x2, we obtain
the approximations

2u(x1, x2)− u(x1 + h, x2)− u(x1 − h, x2)

h2
=
∂2u

∂x2
1

(x) +
h2

12

∂4u

∂x4
1

(η1, x2), (2.2a)

2u(x1, x2)− u(x1, x2 + h)− u(x1, x2 − h)

h2
=
∂2u

∂x2
2

(x) +
h2

12

∂4u

∂x4
2

(x1, η2), (2.2b)

with suitable intermediate points η1 ∈ [x1− h, x2 + h] und η2 ∈ [x2− h, x2 + h]. Adding
both equations and dropping the h2 terms leads to the approximation

∆hu(x) =
u(x1 + h, x2) + u(x1 − h, x2) + u(x1, x2 + h) + u(x1, x2 − h)− 4u(x1, x2)

h2

(2.3)

für alle x ∈ Ω, h ∈ Hx

of the Laplace operator, where the set

Hx := {h ∈ R>0 : x1 + h ∈ [0, 1], x1 − h ∈ [0, 1], x2 + h ∈ [0, 1], x2 − h ∈ [0, 1]}

describes those step sizes for which the difference quotient can be evaluated without
leaving the domain Ω. The approximation (2.3) is frequently called a five point star,
since the values of u are required in five points in a star-shaped pattern centered at x.

In order to quantify the approximation error, we introduce suitable norms on function
spaces.

Reminder 2.3 (Maximum norm) For real-valued continuous functions on a compact
set K, we define the maximum norm by

‖u‖∞,K := max{|u(x)| : x ∈ K} for all u ∈ C(K).

For vectors with a general finite index set I, we let

‖u‖∞ := max{|ui| : i ∈ I} for all u ∈ RI .

Lemma 2.4 (Consistency) If u ∈ C4(Ω̄) holds, we have

|∆hu(x)−∆u(x)| ≤ h2

6
|u|4,Ω for all x ∈ Ω, h ∈ Hx, (2.4)

where we use the semi-norm

|u|4,Ω := max

{∥∥∥∥ ∂ν+µu

∂xν1∂x
µ
2

∥∥∥∥
∞,Ω̄

: ν, µ ∈ N0, ν + µ = 4

}

on the right-hand side that is defined by the maximum norm of the fourth derivatives.
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2. Finite difference methods

Figure 2.1.: Grid for N = 9

Proof. We add the equations (2.2) and bound the fourth derivatives by |u|4,Ω.

Compared to the differential operator ∆, the difference operator ∆h offers the advan-
tage that only values of the function in a small number of discrete points are required.
We can use this property to replace the domain Ω by a finite set of points that is far
better suited for computers.

Definition 2.5 (Grid) Let N ∈ N, and let

h :=
1

N + 1
,

Ωh := {(ih, jh) : i, j ∈ {1, . . . , N}} ⊆ Ω,

∂Ωh := {(ih, 0), (ih, 1), (0, jh), (1, jh) : i, j ∈ {0, . . . , N + 1}} ⊆ ∂Ω,

Ω̄h := Ωh ∪ ∂Ωh.

We call Ωh, ∂Ωh and Ω̄h grids for the sets Ω, ∂Ω and Ω̄.

Restricting the estimate (2.4) to the grid Ωh yields

| −∆hu(x)− f(x)| = | −∆hu(x) + ∆u(x)| ≤ h2

6
‖u‖4,Ω̄ for all x ∈ Ω,

and this property suggests that we look for a solution of the equation −∆hu = f , since
we may hope that it will approximate the “real” solution u. Since the evaluation of ∆hu
in x ∈ Ωh requires only values in points of Ω̄h, we introduce functions that are only
defined in these points.
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2.2. Stability and convergence

Definition 2.6 (Grid function) Let Ωh and Ω̄h grids for Ω and Ω̄. The spaces

G(Ωh) := {uh : uh maps Ωh to R},
G(Ω̄h) := {uh : uh maps Ω̄h to R}

are called spaces of grid functions from Ωh and Ω̄h, respectively, to R. The space

G0(Ω̄h) := {uh ∈ G(Ω̄h) : uh(x) = 0 for all x ∈ ∂Ωh}

is called the space of grid functions with homogeneous Dirichlet boundary conditions.

The difference operator ∆h is obviously a linear mapping from G(Ω̄h) to G(Ωh), and
we can approximate the differential equation (2.1) by the following system of linear
equations:

Find a grid function uh ∈ G0(Ω̄h) such that

−∆huh(x) = f(x) for all x ∈ Ωh. (2.5)

Since this system of linear equations (each point x ∈ Ωh corresponds to a linear equation
that uh has to satisfy) is defined on the set Ωh of discrete points instead of the continuous
set Ω, we call (2.5) a discretization of the potential equation (2.1). In this particular case,
all differential operators are replaced by difference quotients involving a finite number
of values, giving this approach the name finite difference method.

2.2. Stability and convergence

Merely formulating the discrete system (2.5), is not enough, we also have to investi-
gate whether this system can be solved, whether the solution is unique, and whether it
approximates the continuous solution u.

If is easy to see that −∆h is a linear mapping from G0(Ω̄h) to G(Ωh) and that

dimG0(Ω̄h) = dimG(Ωh) = N2

holds. In order to prove that the system (2.5) has a unique solution, it is enough to
prove that −∆h is an injective mapping.

A particularly elegant way of proving this result is to use the following stability result
for the maximum norm:

Lemma 2.7 (Maximum principle) Let vh ∈ G(Ω̄h) denote a grid function satisfying

−∆hvh(x) ≤ 0 for all x ∈ Ωh.

There exists a boundary point x0 ∈ ∂Ωh such that

vh(x) ≤ vh(x0) for all x ∈ Ω̄h,

i.e., the grid function takes its maximum at the boundary.
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2. Finite difference methods

Proof. We define the sets of neighbours of points x by

N(x) := {(x1 − h, x2), (x1 + h, x2), (x1, x2 − h), (x1, x2 + h)} for all x ∈ Ωh.

The distance (with respect to the grid) from a grid point to the boundary is denoted by

δ : Ω̄h → N0, x 7→

{
0 if x ∈ ∂Ωh,

1 + min{δ(x′) : x′ ∈ N(x)} otherwise.

We denote the maximum of vh by

m := max{vh(x) : x ∈ Ω̄h}

and intend to prove by induction

(vh(x) = m ∧ δ(x) ≤ d) =⇒ ∃x0 ∈ ∂Ωh : vh(x0) = m (2.6)

for all d ∈ N0 and all x ∈ Ω̄h. This implication yields our claim since δ(x) is finite for
all x ∈ Ω̄.

The base case d = 0 of the induction is straightforward: if x ∈ Ω̄h with vh(x) = m
and δ(x) = d = 0 exists, the definition of δ already implies x ∈ ∂Ωh, so we can choose
x0 = x.

Let now d ∈ N0 satisfy (2.6). Let x ∈ Ω̄h be given with δ(x) = d+ 1 and vh(x) = m.
This implies x ∈ Ωh and we obtain∑

x′∈N(x)

h−2(vh(x)− vh(x′)) = 4h−2vh(x)−
∑

x′∈N(x)

h−2vh(x′) = −∆hvh(x) ≤ 0.

Since m = vh(x) is the maximum of vh, none of the summands on the left side of this
inequality can be negative. Since the sum cannot be positive, all summands have to be
equal to zero, and this implies

m = vh(x) = vh(x′) for all x′ ∈ N(x).

Due to δ(x) = d+ 1, there has to be a x′ ∈ N(x) with δ(x′) = d, and since we have just
proven vh(x′) = m, we can apply the induction assumption to complete the proof.

The maximum principle already guarantees the injectivity of the differen operator
−∆h and the existence of a unique solution.

Corollary 2.8 (Unique solution) The system of linear equations (2.5) has a unique
solution.

Proof. Let uh, ũh ∈ G0(Ω̄h) be given with

−∆huh(x) = f(x) for all x ∈ Ωh,

−∆hũh(x) = f(x) for all x ∈ Ωh.

12



2.2. Stability and convergence

We let vh := uh − ũh and obtain

∆hvh(x) = ∆huh(x)−∆hũh(x) = −f(x) + f(x) = 0 for all x ∈ Ωh.

The requirements of Lemma 2.7 are fulfilled, so the grid function vh has to take its
maximum at the boundary ∂Ωh. Due to vh ∈ G0(Ω̄h), we have vh|∂Ωh = 0, and therefore

vh(x) ≤ 0 for all x ∈ Ωh.

We can apply the same argument to the grid function ṽh := ũh − uh = −vh to obtain

vh(x) = −ṽh(x) ≥ 0 for all x ∈ Ωh,

and this yields vh = 0 and uh = ũh. We have proven that ∆h is injective.

Due to dimG(Ωh) = dimG0(Ω̄h), the rank-nullity theorem implies that ∆h also has
to be surjective.

Since Lemma 2.7 only requires ∆hvh not to be negative in any point x ∈ Ωh, we can
also use it to obtain the following stability result that guarantees that small perturbations
of the right-hand side of (2.5) are not significantly amplified.

Lemma 2.9 (Stability) Let uh ∈ G0(Ω̄h) a grid function with homogeneous Dirichlet
boundary conditions. We have

‖uh‖∞,Ωh ≤
1

8
‖∆huh‖∞,Ωh .

Proof. (cf. [7, Theorem 4.4.1]) The key idea of our proof is to consider the function

w : Ω̄→ R≥0, x 7→ x1

2
(1− x1).

Since it is quadratic polynomial, we have |w|4,Ω = 0, and we can combine

−∆w(x) = 1 for all x ∈ Ω

with (2.4) to obtain

−∆hwh(x) = 1 for all x ∈ Ωh

with the grid function wh := w|Ω̄h ∈ G(Ω̄h).

We denote the minimum and maximum of −∆huh by

α := min{−∆huh(x) : x ∈ Ωh},
β := max{−∆huh(x) : x ∈ Ωh}

and define

u+
h := whβ.

13



2. Finite difference methods

This implies

−∆hu
+
h (x) = −∆hwh(x)β = β for all x ∈ Ωh,

so we also have

−∆h(uh − u+
h )(x) = −∆huh(x)− β ≤ 0 for all x ∈ Ωh.

Let x ∈ Ωh. Lemma 2.7 yields a boundary point x0 ∈ ∂Ωh such that

uh(x)− u+
h (x) ≤ uh(x0)− u+

h (x0).

Due to the Dirichlet boundary conditions, we have uh(x0) = 0 and conclude

uh(x) ≤ u+
h (x)− u+

h (x0).

It is easy to prove 0 ≤ w(z) ≤ 1/8 for all z ∈ Ω̄h, which implies u+
h (x)− u+

h (x0) ≤ β/8.
Since x is arbitrary, we have proven

uh(x) ≤ 1

8
β for all x ∈ Ωh.

Since −uh is bounded from above by −α, we can apply the same arguments to −uh to
get

uh(x) ≥ 1

8
α for all x ∈ Ωh.

Combining both estimates yields

‖uh‖∞,Ωh ≤
1

8
max{|α|, |β|} =

1

8
‖∆huh‖∞,Ωh .

Combining this stability result with the consistency result of Lemma 2.4 we can prove
the convergence of our discretization scheme.

Theorem 2.10 (Convergence) Let u ∈ C4(Ω̄) be the solution of (2.1, and let uh ∈
G0(Ωh) be the solution of (2.5). We have

‖u− uh‖∞,Ωh ≤
h2

48
|u|4,Ω.

Proof. Due to (2.1), we have

f(x) = −∆u(x) for all x ∈ Ωh.

The consistency result of Lemma 2.4 yields

|∆hu(x)−∆huh(x)| = |∆hu(x) + f(x)|

14



2.2. Stability and convergence

= |∆hu(x)−∆u(x)| ≤ h2

6
|u|4,Ω for all x ∈ Ωh,

which is equivalent to

‖∆h(u− uh)‖∞,Ωh = ‖∆hu−∆huh‖∞,Ωh ≤
h2

6
|u|4,Ω.

Now we can apply the stability result of Lemma 2.9 to get

‖u− uh‖∞,Ωh ≤
1

8
‖∆hu−∆huh‖∞,Ωh ≤

1

8

h2

6
|u|4,Ω.

If we can solve the linear system (2.5), we can expect the solution to converge to
approximate u|Ωh at a rate of h2. In order to express the linear system in terms of
matrices and vectors instead of general linear operators, we have to introduce suitable
bases for the spaces G0(Ω̄h) and G(Ωh). A straightforward choice is the basis (ϕy)y∈Ωh

consisting of the functions

ϕy(x) =

{
1 if x = y,

0 otherwise
for all x ∈ Ω̄h,

that are equal to one in y and equal to zero everywhere else and obviously form a basis
of G0(Ω̄h). Restricting the functions to G(Ωh) yields a basis of this space, as well.
Expressing −∆h in these bases yields a matrix L ∈ RΩh×Ωh given by

(`h)x,y :=


4h−2 if x = y

−h−2 if |x1 − y1| = h, x2 = y2,

−h−2 if x1 = y1, |x2 − y2| = h,

0 otherwise

for all x, y ∈ Ωh.

Expressing the grid function uh and fh in these bases yields vectors uh, fh ∈ RΩh and
the discretized potential equation (2.5) takes the form

Lhuh = fh. (2.7)

Since (2.5) has a unique solution, the same holds for (2.7).
The matrix Lh is particularly benign: a glance at the coefficients yields Lh = L∗h, so

the matrix is symmetric. Applying the stability result of Lemma 2.9 to subsets ωh ⊆ Ωh

shows that not only Lh is invertible, but also all of its principal submatrices Lh|ωh×ωh .
This property guarantees that Lh possesses an invertible LR factorization that can be
used to solve the system (2.7). We can even prove that Lh is positive definite, so we can
use the more efficient Cholesky factorization.

For large values of N , i.e., for high accuracies, this approach is not particularly useful,
since it does not take advantage of the special structure of Lh: every row and column
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2. Finite difference methods

contains by definition not more than five non-zero coefficients. Matrices with the prop-
erty that only a small number of entries per row or column are non-zero are called sparse,
and this property can be used to carry out matrix-vector multiplications efficiently and
even to solve the linear system.

Exercise 2.11 (First derivative) If we approximate the one-dimensional differential
equation

u′(x) = f(x) for all x ∈ (0, 1)

by the central difference quotient introduced in Exercise 2.2, we obtain a matrix L ∈
RN×N given by

`ij =


1/(2h) if j = i+ 1,

−1/(2h) if j = i− 1,

0 otherwise,

for all i, j ∈ [1 : N ].

Prove that L is not invertible if N is odd.

Remark 2.12 (General domains) Finite difference discretization are particularly
well-suited for differential equations on “simple” domains like the unit square inves-
tigated here. Treating more complicated domains requires us to use more involved
techniques like the Shortley-Weller discretization and may significantly increase the
complexity of the resulting algorithms.

2.3. Diagonal dominance and invertibility

The finite difference approach can be applied to treat more general partial differential
equations: we simply have to replace all differential operators by suitable difference
quotients. While the consistency of these schemes can usually be proven by using suitable
Taylor expansions, the stability poses a challenge.

We investigate linear systems of equations

Ax = b (2.8)

with a matrix A ∈ RI×I , a right-hand side b ∈ RI and a solution x ∈ RI . A general-
ization of the stability Lemma 2.9 would look like

‖x‖∞ ≤ C‖Ax‖∞ for all x ∈ RI

with a constant C ∈ R≥0. This inequality can only hold if A is injective, i.e., invertible,
and we can rewrite it in the form

‖A−1b‖∞ ≤ C‖b‖∞ for all b ∈ RI

by substituting x = A−1b.
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2.3. Diagonal dominance and invertibility

We recall that any norm ‖ · ‖ for RI induces the operator norm

‖A‖ := sup

{
‖Ax‖
‖x‖

: x ∈ RI \ {0}
}

for all A ∈ RI×I . (2.9)

Stability therefore simply means that we have to be able to find an upper bound for
‖A−1‖∞ that is independent of the mesh parameter h.

Lemma 2.13 (Neumann series) Let ‖ · ‖ be a norm for RI , and let Let X ∈ RI×I .
If we have ‖X‖ < 1, the matrix I−X is invertible with

∞∑
`=0

X` = (I−X)−1, ‖(I−X)−1‖ ≤ 1

1− ‖X‖
.

Proof. Let ‖X‖ < 1. We define the partial sums

Ym :=
m∑
`=0

X` for all m ∈ N0.

In order to prove that (Ym)∞m=0 is a Cauchy sequency, we first observe

‖Ym −Yn‖ =

∥∥∥∥∥
m∑

`=n+1

X`

∥∥∥∥∥ ≤
m∑

`=n+1

‖X‖` = ‖X‖n+1
m−n−1∑
`=0

‖X‖`

≤ ‖X‖n+1
∞∑
`=0

‖X‖` =
‖X‖n+1

1− ‖X‖
for all n,m ∈ N0 with n < m.

Given ε ∈ R>0, we can find n0 ∈ N with ‖X‖n0+1 ≤ (1− ‖X‖)ε, and this implies

‖Ym −Yn‖ ≤
‖X‖n+1

1− ‖X‖
≤ ‖X‖

n0+1

1− ‖X‖
≤ ε for all n,m ∈ N0, n0 ≤ n < m.

We conclude that (Ym)∞m=0 is a Cauchy sequency and therefore has a limit

Y := lim
m→∞

Ym =
∞∑
`=0

X`

satisfying

‖Y‖ =

∥∥∥∥∥
∞∑
`=0

X`

∥∥∥∥∥ ≤
∞∑
`=0

‖X‖` =
1

1− ‖X‖
.

Due to

(I−X)Y = (I−X)

∞∑
`=0

X` =

∞∑
`=0

X` −
∞∑
`=0

X`+1 =

∞∑
`=0

X` −
∞∑
`=1

X` = I,

Y(I−X) =
∞∑
`=0

X`(I−X) =
∞∑
`=0

X` −
∞∑
`=0

X`+1 =
∞∑
`=0

X` −
∞∑
`=1

X` = I,

we finally obtain Y = (I−X)−1.
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2. Finite difference methods

Exercise 2.14 (Generalized convergence criterion) Let ‖·‖ be a norm for RI and
let X ∈ RI×I . Assume that there is a k ∈ N such that ‖Xk‖ < 1. Prove

∞∑
`=0

X` = (I−X)−1, ‖(I−X)−1‖ ≤
∑k−1

m=0 ‖Xm‖
1− ‖Xk‖

.

In order to be able to apply Lemma 2.13, we have to be able to find an upper bound
for the operator norm. In the case of the maximum norm, this is particularly simple.

Lemma 2.15 (Maximum norm) We have

‖X‖∞ = max

{∑
j∈I
|xij | : i ∈ I

}
for all X ∈ RI×I .

Proof. Let X ∈ RI×I and set

µ := max

{∑
j∈I
|xij | : i ∈ I

}
.

Let y ∈ RI and i ∈ I. We have

|(Xy)i| =

∣∣∣∣∣∣
∑
j∈I

xijyj

∣∣∣∣∣∣ ≤
∑
j∈I
|xij | |yj | ≤

∑
j∈I
|xij | ‖y‖∞ ≤ µ‖y‖∞

and conclude ‖X‖∞ ≤ µ.

Now we fix i ∈ I such that

µ =
∑
j∈I
|xij |.

If we introduce the vector y ∈ RI given by

yj :=

{
−1 if xij < 0

1 otherwise
for all j ∈ I,

we find ‖y‖∞ = 1 and

µ =
∑
j∈I
|xij | =

∑
j∈I

xijyj = (Xy)i ≤ ‖Xy‖∞ =
‖Xy‖∞
‖y‖

≤ ‖X‖∞.

Using the maximum norm and the Neumann series, we can find a simple criterion that
allows us to check whether a given matrix is invertible: the diagonal elements have to
be large enough.
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2.3. Diagonal dominance and invertibility

Definition 2.16 (Diagonally dominant matrices) A matrix A ∈ CI×J with I ⊆ J
is called weakly diagonally dominant if∑

j∈J
j 6=i

|aij | ≤ |aii| for all i ∈ I.

It is called strictly diagonally dominant if∑
j∈J
j 6=i

|aij | < |aii| for all i ∈ I.

Using the Neumann series, it is possible to prove that strictly diagonally dominant
matrices are invertible.

Lemma 2.17 (Strictly diagonally dominant) Let A ∈ CI×I be strictly diagonally
dominant. Then A is invertible.

Proof. Since A is strictly diagonally dominant, we have

aii 6= 0 for all i ∈ I,

so the diagonal part D ∈ RI×I of A, given by

dij =

{
aii if i = j,

0 otherwise
for all i, j ∈ I,

is invertible. The matrix

M := I−D−1A (2.10)

satisfies

mii = 1− aii
aii

= 0 for all i ∈ I.

Since A is strictly diagonally dominant, we also have

∑
j∈I
|mij | =

∑
j∈I
j 6=i

|mij | =
∑
j∈I
j 6=i

|aij |
|aii|

=
1

|aii|
∑
j∈I
j 6=i

|aij | < 1 for all i ∈ I,

and we can conclude ‖M‖∞ < 1 by Lemma 2.15.

Now Lemma 2.13 yields that I −M = D−1A is invertible, and this implies that the
matrix A itself also has to be invertible.
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2. Finite difference methods

Remark 2.18 (Jacobi iteration) Lemma 2.17 is, in fact, not only a proof of the ex-
istence of the inverse A−1, but also suggests a practical algorithm: in order to solve
the linear system (2.8), we choose an arbitrary vector x(0), and consider the sequence
(x(m))∞m=0 given by

x(m+1) = x(m) −D−1(Ax(m) − b) for all m ∈ N0.

The difference between these vectors and the solution x satisfies

x(m+1) − x = x(m) − x−D−1(Ax(m) − b)

= x(m) − x−D−1A(x(m) − x) = M(x(m) − x) for all m ∈ N0.

Due to ‖M‖∞ < 1, we obtain

lim
m→∞

x(m) = x,

i.e., we can compute the solution of the linear system by iteratively multiplying by A
and dividing by the diagonal elements. If the matrix-vector multiplication can be realized
efficiently, one step of the iteration takes only a small amount of time.

This algorithm is know as the Jacobi iteration.

2.4. Convergence of the Neumann series

We have seen that strictly diagonally dominant matrices are invertible and that we can
approximate the inverse by the Neumann series and the solution of the linear system
(2.8) by the Jacobi iteration.

Unfortunately, the matrices associated with partial differential equations are usually
not strictly diagonally dominant: any reasonable difference quotient will yield the value
zero if applied to the constant function, and this implies∑

j∈I
aij = 0

for all grid points i ∈ I that are not adjacent to the boundary. Obviously, this means

|aii| =
∣∣∣∣∑
j∈I
j 6=i

aij

∣∣∣∣ ≤∑
j∈I
j 6=i

|aij |,

so the best we can hope for is a weakly diagonally dominant matrix, and the simple
example

A =

(
1 1
1 1

)
indicates that weakly diagonally dominant matrices may be not invertible. If we want
to ensure that A−1 exists, we have to include additional conditions.
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2.4. Convergence of the Neumann series

The proof of Lemma 2.17 relies on the fact that the Neumann series for the matrix
M converges. Lemma 2.13 states that this is the case if ‖M‖ < 1 holds, but this is only
a sufficient condition, not a necessary one: for any x ∈ R,

Mx =

(
0 x
0 0

)
satisfies M2

x = 0, so the Neumann series for this matrix always converges. On the other
hand, given any norm ‖ · ‖, we can find an x ∈ R with ‖Mx‖ ≥ 1.

Definition 2.19 (Spectral radius) Let X ∈ CI×I . λ ∈ C is called an eigenvalue of
X if an eigenvector e ∈ CI \ {0} exists such that

Xe = λe.

The set

σ(X) := {λ ∈ C : λ is an eigenvalue of X}

is called the spectrum of X. The maximum of the eigenvalues’ absolute values

%(X) := max{|λ| : λ ∈ σ(X)}

is called the spectral radius of X.

Lemma 2.20 (Necessary condition) Let X ∈ CI×I . If the sequence (X`)∞`=0 con-
verges to zero, we have %(X) < 1.

Proof. By contraposition.
Let %(X) ≥ 1. Then we can find an eigenvalue λ ∈ σ(X) with |λ| ≥ 1. Let e ∈ RI \{0}

be a matching eigenvector. We have

X`e = λ`e, ‖X`e‖ = |λ|`‖e‖ ≥ ‖e‖ for all ` ∈ N0,

and this implies that (X`)∞`=0 cannot converge to zero.

The Neumann series can only converge if (X`)∞`=0 converges to zero, so %(X) < 1 is a
necessary condition for its convergence. We will now prove that it is also sufficient, i.e.,
that the convergence of the Neumann series can be characterized by the spectral radius.

Theorem 2.21 (Schur decomposition) Let X ∈ Cn×n. There are an upper triangu-
lar matrix R ∈ Cn×n and a unitary matrix Q ∈ Cn×n such that

Q∗XQ = R.

Proof. By induction.
Base case: For n = 1, any matrix X ∈ C1×1 already is upper triangular, so we can

choose Q = I.
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2. Finite difference methods

Inductive step: Let n ∈ N be such that our claim holds for all matrices X ∈ Cn×n.
Let X ∈ C(n+1)×(n+1).

By the fundamental theorem of algebra, the characteristic polynomial pX(t) = det(tI−
X) has at least one zero λ ∈ C. Since then λI−X is singular, we can find an eigenvector
e ∈ Cn+1, and we can use scaling to ensure ‖e‖2 = 1.

Let Q0 ∈ C(n+1)×(n+1) be the Householder reflection with Q0δ = e, where δ denotes
the first canonical unit vector. We find

Q∗0XQ0 =

(
λ R0

X̂

)
for R0 ∈ C1×n and X̂ ∈ Cn×n.

Now we can apply the induction assumption to find an upper triangular matrix R̂ ∈
Cn×n and a unitary matrix Q̂ ∈ Cn×n such that

Q̂∗X̂Q̂ = R̂.

We let

Q := Q0

(
1

Q̂

)
, R :=

(
λ R0

R

)
,

observe that Q is a product of unitary matrices and therefore unitary itself, and conclude

Q∗XQ =

(
1

Q̂∗

)
Q∗0XQ0

(
1

Q̂

)
=

(
1

Q̂∗

)(
λ R0

X̂

)(
1

Q̂

)
=

(
λ R0

R̂

)
= R.

Since R̂ is upper triangular, so is R.

Using the Schur decomposition, we can investigate the relationship between the spec-
tral radius and matrix norms.

Lemma 2.22 (Spectral radius and operator norms) Let X ∈ CI×I . We have

%(X) ≤ ‖X‖

for any operator norm induced by a norm ‖ · ‖ for CI .
Given an ε ∈ R>0, we can find a norm ‖ · ‖X,ε such that the corresponding operator

norm satisfies

‖X‖X,ε ≤ %(X) + ε.

Proof. We may assume I = [1 : n] without loss of generality.
Let ‖ · ‖ be a norm for Cn. Let λ ∈ σ(X), and let e ∈ Cn be a corresponding

eigenvector. We have

‖Xe‖ = ‖λe‖ = |λ| ‖e‖,

and the definition (2.9) of the operator norm yields ‖X‖ ≥ |λ|, i.e., ‖X‖ ≥ %(X).
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2.4. Convergence of the Neumann series

Let now ε ∈ R>0. Due to Theorem 2.21, we can find a unitary matrix Q ∈ Cn×n and
an upper triangular matrix R ∈ Cn×n such that

Q∗XQ = R,

and since unitary matrices leave the Euclidean norm invariant, we have

‖X‖2 = ‖R‖2.

We split R ∈ Cn×n into the diagonal D ∈ Cn×n and the upper triangular part N, given
by

dij =

{
rii if i = j,

0 otherwise,
nij =

{
rij if i < j,

0 otherwise
for all i, j ∈ [1 : n].

We have R = D + N and ‖D‖2 = %(R) = %(X), so we only have to take care of N.
For a given δ ∈ R>0, we can define the diagonal matrix S ∈ Rn×n by

sij =

{
δi if i = j,

0 otherwise
for all i, j ∈ [1 : n].

We observe S−1DS = D and

(S−1NS)ij = δj−inij for all i, j ∈ [1 : n].

We choose δ small enough to ensure ‖S−1NS‖2 ≤ ε.
We define the norm

‖y‖X,ε := ‖S−1Q∗y‖2 for all y ∈ CI

and observe

‖Xy‖X,ε = ‖S−1Q∗Xy‖2 = ‖S−1Q∗XQS(S−1Q∗y)‖2 ≤ ‖S−1Q∗XQS‖2‖S−1Q∗y‖2
= ‖S−1RS‖2‖y‖X,ε for all y ∈ CI ,

which implies ‖X‖X,ε ≤ ‖S−1RS‖2.
Due to R = D + N, we can use the triangle inequality to obtain

‖X‖X,ε = ‖S−1(D + N)S‖2 ≤ ‖S−1DS‖2 + ‖S−1NS‖2 ≤ ‖D‖2 + ε = %(X) + ε,

completing the proof.

Corollary 2.23 (Neumann series) Let X ∈ CI×I . The Neumann series converges if
and only if %(X) < 1. In this case, I−X is invertible and we have

∞∑
`=0

X` = (I−X)−1.
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2. Finite difference methods

Proof. If the Neumann series converges, we have

lim
`→∞

X` = 0.

By Lemma 2.20, this implies %(X) < 1.
Let now %(X) < 1, and let ε := (1 − %(X))/2. By Lemma 2.22, we can find a norm
‖ · ‖X,ε such that

‖X‖X,ε ≤ %(X) + ε = %(X) + (1− %(X))/2 =
%(X) + 1

2
< 1.

Applying Lemma 2.13 with this norm, we conclude that the Neumann series converges
to (I−X)−1.

2.5. Irreducibly diagonally dominant matrices

In order to apply Corollary 2.23, we need a criterion for estimating the spectral radius
of a given matrix. A particularly elegant tool are Gershgorin discs.

Theorem 2.24 (Gershgorin discs) Let X ∈ CI×I . For every index i ∈ I, the Ger-
shorin disc is given by

DX,i :=
{
z ∈ C : |z − xii| <

∑
j∈I
j 6=i

|xij |
}
.

We have
σ(X) ⊆

⋃
i∈I
DX,i,

i.e., every eigenvalue λ ∈ σ(X) is contained in the closure of at least one of the Gersh-
gorin discs.

Proof. [10, Theorem 4.6] Let λ ∈ σ(X). Let e ∈ CI \ {0} be an eigenvector for λ and X.
We fix i ∈ I with

|ej | ≤ |ei| for all j ∈ I.

Due to e 6= 0, we have |ei| > 0.
Since e is an eigenvector, we have

λei = (Xe)i =
∑
j∈I

xijej ,

and the triangle inequality yields

(λ− xii)ei =
∑
j∈I
j 6=i

xijej ,
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2.5. Irreducibly diagonally dominant matrices

|λ− xii| |ei| ≤
∑
j∈I
j 6=i

|xij | |ej | ≤
∑
j∈I
j 6=i

|xij | |ei|,

|λ− xii| ≤
∑
j∈I
j 6=i

|xij |,

i.e., λ ∈ DX,i.

Exercise 2.25 (Diagonally dominant) Let A ∈ RI×I be a matrix with non-zero di-
agonal elements, let D be its diagonal part, and let M := I−D−1A.

Assume that A is weakly diagonally dominant. Prove %(M) ≤ 1 by Theorem 2.24

Assume that A is strictly diagonally dominant. Prove %(M) < 1 by Theorem 2.24.

Exercise 2.26 (Invertibility) Let ε ∈ R>0, let A ∈ Rn×n be given by

A =


3 ε

1/ε
. . .

. . .
. . .

. . . ε
1/ε 3

 .

Prove σ(A) ⊆ [1, 5] and conclude that A is invertible.

Hints: All eigenvalues of symmetric matrices are real.

What is the effect of the similarity transformation with the matrix S used in the proof
of Lemma 2.22 on the matrix A?

Theorem 2.24 states that any eigenvalue of a matrix X is contained in at least one
closed Gershgorin disc DX,i. In the case of weakly diagonally dominant matrices, we
find %(M) ≤ 1, but for convergence of the Neumann series we require %(M) < 1, i.e., we
need a condition that ensures that no eigenvalue lies on the boundary of the Gershgorin
disc.

Definition 2.27 (Irreducible matrix) Let X ∈ CI×I . We define the sets of neigh-
bours by

N(i) := {j ∈ I : xij 6= 0} for all i ∈ I

(cf. the proof of Lemma 2.7) and the sets of m-th generation neighbours by

Nm(i) :=

{
{i} if m = 0,⋃
j∈Nm−1(i)N(j) otherwise

for all m ∈ N0, i ∈ I.

The matrix X is called irreducible if for all i, j ∈ I there is an m ∈ N0 with j ∈ Nm(i).
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2. Finite difference methods

In the context of finite difference methods, an irreducible matrix corresponds to a grid
that allows us to reach any point by traveling from points to their left, right, top, or
bottom neighbours. In the case of the unit square and the discrete Laplace operator,
this property is obviously guaranteed.

For irreducible matrices, we can obtain the following refined result:

Lemma 2.28 (Gershgorin for irreducible matrices) Let X ∈ CI×I be irreducible,
and let the Gershgorin discs be defined as in Theorem 2.24.

If an eigenvalue λ ∈ σ(X) is not an element of any open Gershgorin disc, i.e.,

λ 6∈ DX,i for all i ∈ I,

it is an element of the boundary of all Gershgorin discs, i.e., we have

λ ∈ ∂DX,i for all i ∈ I.

Proof. [10, Theorem 4.7] Let λ ∈ σ(X) be an element of the boundary of the union of
all Gershgorin discs, and let e ∈ CI be a corresponding eigenvector of X.

In a preparatory step, we fix i ∈ I with

|ej | ≤ |ei| for all j ∈ I.

As in the proof of Theorem 2.24 we find

|λ− xii| |ei| ≤
∑
j∈I
j 6=i

|xij | |ej |, |λ− xii| ≤
∑
j∈I
j 6=i

|xij |. (2.11)

Our assumption implies that λ cannot be an element of the interior of any Gershgorin
disc, so it has to be an element of the boundary of DX,i, i.e.,

|λ− xii| ≥
∑
j∈I
j 6=i

|xij |,

and combining this equation with the left estimate in (2.11) yields∑
j∈I
j 6=i

|xij | |ei| ≤
∑
j∈I
j 6=i

|xij | |ej |, 0 ≤
∑
j∈I
j 6=i

|xij | (|ej | − |ei|).

Due to our choice of i ∈ I, we have |ej | − |ei| ≤ 0 for all j ∈ I and conclude |ej | = |ei|
for all j ∈ I with j 6= i and xij 6= 0, i.e., for all neighbours j ∈ N(i).

We will now prove |ej | = |ei| for all j ∈ Nm(i) and all m ∈ N0 by induction.
Base case: For m = 0, we have N0(i) = {i} and the claim is trivial.
Induction step: Let m ∈ N0 be such that |ej | = |ei| holds for all j ∈ Nm(i). Let

k ∈ Nm+1(i). By definition, there is a j ∈ Nm(i) such that k ∈ N(j). Due to the
induction assumption, we have |ej | = |ei|, and by the previous argument we obtain
|ek| = |ej | = |ei|.

This means that (2.11) holds for all i ∈ I, and this is equivalent to λ ∈ DX,i. Due to
λ 6∈ DX,i, we obtain λ ∈ ∂DX,i.
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Definition 2.29 (Irreducibly diagonally dominant) Let A ∈ CI×I . We call the
matrix A irreducibly diagonally dominant if it is irreducible and weakly diagonally dom-
inant and if there is an index i ∈ I with∑

j∈I
j 6=i

|aij | < |aii|.

Lemma 2.30 (Invertible diagonal) Let A ∈ CI×I be a weakly diagonally dominant,
and let #I > 1. If A is irreducible, we have aii 6= 0 for all i ∈ I, i.e., the diagonal of
A is invertible.

Proof. By contraposition. We assume that there is an index i ∈ I with aii = 0. Since
A is weakly diagonally dominant, this implies aij = 0 for all j ∈ I, i.e., N(i) = ∅.
We obtain N1(i) = N(i) = ∅, and a straightforward induction yields Nm(i) = ∅ for all
m ∈ N. If #I > 1 holds, we can find j ∈ I \ {i} and conclude j 6∈ Nm(i) for all m ∈ N0,
so A cannot be irreducible.

Corollary 2.31 (Irreducibly diagonally dominant) Let A ∈ CI×I be irreducibly
diagonally dominant, and let M := I−D−1A with the diagonal D of A.

The matrix A is invertible and we have

A−1 =

( ∞∑
`=0

M`

)
D−1.

Proof. Due to Lemma 2.30, the diagonal matrix D is invertible and M is well-defined.
We have already seen that

mij =

{
0 if i = j,

−aij/aii otherwise
holds for all i, j ∈ I,

so M is irreducible, since A is.
For every i ∈ I we have ∑

j∈I
j 6=i

|mij | =
1

|aii|
∑
j∈I
j 6=i

|aij | ≤ 1,

since A is weakly diagonally dominant. Due to mii = 0, the Gershgorin disc DM,i is a
subset of the disc with radius one around zero. This implies %(M) ≤ 1.

We now have to prove %(M) < 1. Due to Definition 2.29, there is an index i ∈ I such
that ∑

j∈I
j 6=i

|aij | < |aii|, α :=
∑
j∈I
j 6=i

|aij |
|aii|

< 1,
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so the i-th Gershgorin disc DM,i has a radius of α < 1. Let λ ∈ σ(M). If |λ| ≤ α < 1
holds, we are done. If |λ| > α holds, we have λ 6∈ ∂DX,i, and Lemma 2.28 implies that
there exists at least one open Gershgorin disc DX,j with j ∈ I and λ ∈ DX,j . Since this
is an open disc around zero of radius at most one, we conclude |λ| < 1.

We conclude %(M) < 1, so the Neumann series converges to

∞∑
`=0

M` = (I−M)−1 = (D−1A)−1 = A−1D.

Multiplying by D−1 yields the final result.

2.6. Discrete maximum principle

Let us now return our attention to the investigation of finite difference discretization
schemes. We denote the set of interior grid points by Ωh, the set of boundary points by
∂Ωh, and the set of all grid points by Ω̄h.

The discretization leads to a system

Lu = f , u|∂Ωh = g (2.12)

of linear equations with the matrix L ∈ RΩh×Ω̄h , the right-hand side f ∈ RΩh , the
boundary values g ∈ R∂Ωh , and the solution u ∈ RΩh .

We can separate the boundary values from the unknown values by introducing A :=
L|Ωh×Ωh and B := L|Ωh×∂Ωh . The system (2.12) takes the form

Au|Ωh + Bu|∂Ωh =
(
A B

)( u|Ωh
u|∂Ωh

)
= Lu = f ,

and due to u|∂Ωh = g, we obtain

Au|Ωh = f −Bg. (2.13)

In the model problem, we can apply the maximum principle introduced in Lemma 2.7 to
vanishing boundary conditions g = 0 and find that the coefficients of u are non-positive
if the same holds for the coefficients of Au ≤ 0.

Definition 2.32 (Positive matrices and vectors) Let A,B ∈ RI×J and x,y ∈ RI .
We define

x > y ⇐⇒ ∀i ∈ I : xi > yi,

x ≥ y ⇐⇒ ∀i ∈ I : xi ≥ yi,
A > B ⇐⇒ ∀i ∈ I, j ∈ J : aij > bij ,

A ≥ B ⇐⇒ ∀i ∈ I, j ∈ J : aij ≥ bij .
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Using these notations, Lemma 2.7 can be written as

Lu ≤ 0⇒ u ≤ 0 for all u ∈ RI .

In order to preserve this property in the general case, we would like to ensure A−1 ≥ 0.
Due to Lemma 2.13, we have

A−1 =

( ∞∑
`=0

M`

)
D−1, M = I−D−1A,

where D again denotes the diagonal part of A. If we can ensure M ≥ 0 and D > 0, this
representation implies A−1 ≥ 0.

Due to

mij =

{
−aij/aii if i 6= j,

0 otherwise
for all i, j ∈ Ωh, (2.14)

we should ensure aij ≤ 0 for all i, j ∈ I with i 6= j and aii > 0 for all i ∈ I.

Definition 2.33 (Z-matrix) A matrix A ∈ RΩh×Ω̄h is called a Z-matrix if

aii > 0 for all i ∈ Ωh,

aij ≤ 0 for all i ∈ Ωh, j ∈ Ω̄h, i 6= j.

If A is a Z-matrix, we have M ≥ 0. If the Neumann series for M converges, this
implies A−1 ≥ 0. For an irreducibly diagonally dominant matrix A, we can even obtain
a stronger result.

Lemma 2.34 (Positive power) Let A ∈ RI×I be a matrix with A ≥ 0.
The matrix A is irreducible if and only if for every pair i, j ∈ I there is an m ∈ N0

with (Am)ij > 0.

Proof. We first prove
(Am)ij > 0 ⇐⇒ j ∈ Nm(i) (2.15)

by induction for m ∈ N0.
Base case: Due to A0 = I, we have (A0)ij 6= 0 if and only if i = j.
Induction assumption: Let m ∈ N0 be chosen such that (2.15) holds for all i, j ∈ I.
Induction step: Let i, j ∈ I, and let B := Am. We have

(Am+1)ij = (BA)ij =
∑
k∈I

bikakj =
∑
k∈I

j∈N(k)

bikakj

Assume first (Am+1)ij > 0. Then there has to be at least on k ∈ I with bik > 0 and
akj > 0. By the induction assumption, the first inequality implies k ∈ Nm(i). The
second inequality implies j ∈ N(k), and we conclude

j ∈
⋃

k∈Nm(i)

N(k) = Nm+1(i).
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2. Finite difference methods

Now assume j ∈ Nm+1(i). By definition we find k ∈ Nm(i) with j ∈ N(k). By the
induction assumption, we have bik > 0, and by the definition of neighbours we have
akj > 0. Due to A ≥ 0 and B ≥ 0, we obtain

(Am+1)ij ≥ aikbkj > 0,

completing the induction.

Since A is irreducible if and only if for every pair i, j ∈ I there is an m ∈ N0 with
j ∈ Nm(i), our proof is complete.

Theorem 2.35 (Positive inverse) Let A be an irreducibly diagonally dominant Z-
matrix. Then A is invertible with A−1 > 0.

Proof. Since A is a Z-matrix, all of its diagonal elements are strictly positive, so M =
I−D−1A is well-defined. We have already seen that M ≥ 0 holds.

Since A is irreducibly diagonally dominant, the Neumann series for M fulfills

A−1D = (I−M)−1 =

∞∑
`=0

M`,

and due to D ≥ 0, this implies A−1 ≥ 0.

Since A is irreducible, so is M. Let i, j ∈ I. By Lemma 2.34, we find m ∈ N0 with
(Mm)ij > 0 and conclude ( ∞∑

`=0

M`
)
ij
≥ (Mm)ij > 0,

i.e., we have (A−1D)ij > 0. Due to D ≥ 0, this implies (A−1)ij > 0.

Remark 2.36 (M-matrix) A Z-matrix A ∈ RI×I is called an M-matrix if A−1 ≥ 0.

Theorem 2.35 states that an irreducibly diagonally dominant Z-matrix is an M-matrix.

Lemma 2.37 (Harmonic extension) Let L ∈ RΩh×Ω̄h be a Z-matrix such that A :=
L|Ωh×Ωh is irreducibly diagonally dominant. There is a vector u0 ∈ RΩ̄h such that

Lu0 = 0, (2.16a)

u0|∂Ωh = 1∂Ωh , (2.16b)

where 1∂Ωh denotes the vector in R∂Ωh with every component equal to one. This vector
satisfies

u ≤ 1Ω̄h
.

Proof. Due to (2.13), (2.16) is equivalent to

Au0|Ωh = −B1|∂Ωh .
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Due to Theorem 2.35, this equation has a unique solution.
Since L is a Z-matrix and weakly diagonally dominant, we have

(L1)i = `ii +
∑
j∈Ω̄h
j 6=i

`ij = |`ii| −
∑
j∈Ω̄h
j 6=i

|`ij | ≥ 0 for all i ∈ I.

This implies

L(1− u0) ≥ 0,

and

1|∂Ωh = u0|∂Ωh ,

yields

A(1− u0)|Ωh = A(1− u0)|Ωh + B(1− u0)|∂Ωh = L(1− u0) ≥ 0.

Due to A−1 > 0, we find

1− u0 ≥ 0.

Theorem 2.38 (Discrete maximum principle) Let L ∈ RΩh×Ω̄h be an irreducibly
diagonally dominant Z-matrix.

Let u ∈ RΩ̄h satisfy

Lu ≤ 0.

Then there is a boundary index j ∈ ∂Ωh such that

ui ≤ uj for all i ∈ Ω̄h.

Proof. We denote the maximum of u on the boundary by

β := max{ui : i ∈ ∂Ωh}.

Let u0 ∈ RΩ̄h be the function introduced in Lemma 2.37 and define

û := u− βu0.

Due to (2.16), we have

Lû = L(u− βu0) = Lu ≤ 0

and

ûi = ui − β ≤ 0 for all j ∈ ∂Ωh.

With A = L|Ωh×Ωh and B = L|Ωh×∂Ωh , we find

0 ≥ Lû =
(
A B

)( û|Ωh
û|∂Ωh

)
= Aû|Ωh + Bû|∂Ωh .
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2. Finite difference methods

Since L is a Z-matrix, we have B ≤ 0 and therefore Bû ≥ 0.
Due to A−1 ≥ 0, we find

û|Ωh ≤ û|Ωh + A−1Bû = A−1Lû ≤ 0,

and conclude
u = û + βu0 ≤ βu0.

Due to Lemma 2.37, each component of u0 is bounded by one, and therefore each
component of u is bounded by β.

2.7. Stability, consistency, and convergence

Let us consider a partial differential equation

Lu(x) = f(x) for all x ∈ Ω,

on a domain Ω. We prescibe Dirichlet boundary conditions, i.e., we require

u(x) = g(x) for all x ∈ ∂Ω.

Here f : Ω→ R and g : ∂Ω→ R are suitable functions, L is a linear differential operator,
and u : Ω→ R is the solution.

We approximate Ω by a grid Ωh and the boundary ∂Ω by ∂Ωh, and let Ω̄h := Ωh∪∂Ωh.
As before, we define the spaces

G(Ωh) := {u : Ωh → R},
G(Ω̄h) := {u : Ω̄h → R},
G0(Ω̄h) := {u ∈ G(Ω̄h) : u|∂Ωh = 0}

and consider a linear finite difference operator

Lh : G(Ω̄h)→ G(Ωh)

that approximates L. The finite difference approximation uh ∈ G(Ω̄h) of the solution u
is then given by

Lhuh(x) = f(x) for all x ∈ Ωh, (2.17a)

uh(x) = g(x) for all x ∈ ∂Ωh. (2.17b)

The functions uh, f |Ωh and g|∂Ωh can be interpreted as vectors u ∈ RΩ̄h , f ∈ RΩh and

g ∈ R∂Ωh , and the linear operator Lh corresponds to a matrix L ∈ RΩh×Ω̄h . We find

Lu = f , u|∂Ωh = g (2.18)

and now have to prove that this system has a unique solution u that converges to the
solution u of the original differential equation.

Using Theorem 2.38, we can apply the same arguments as in the proof of Lemma 2.9
to establish stability of general finite difference schemes.
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Corollary 2.39 (Stability) Let L ∈ RΩh×Ω̄h be an irreducibly diagonally dominant Z-
matrix, and let Lh : G(Ω̄h)→ G(Ωh) denote the corresponding finite difference operator.

Let wh ∈ G(Ω̄h) be a grid function satisfying

Lhwh(x) ≥ 1 for all x ∈ Ωh,

and let
γ := max{|wh(x)− wh(y)| : x, y ∈ Ω̄h}.

Then we have

‖uh‖∞,Ωh ≤ γ‖Lhuh‖∞,Ωh for all uh ∈ G0(Ω̄h). (2.19)

Proof. Let uh ∈ G0(Ω̄h). We fix

β := max{|Lhuh(x)| : x ∈ Ωh} = ‖Lhuh‖∞,Ωh .

Then we have

Lh(uh − βwh)(x) = Lhuh(x)− βLhwh(x) ≤ Lhuh(x)− β ≤ 0 for all x ∈ Ωh,

Lh(−uh − βwh)(x) = −Lhuh(x)− βLhwh(x) ≤ −Lhuh(x)− β ≤ 0 for all x ∈ Ωh.

Theorem 2.38 yields boundary indices y, z ∈ ∂Ωh such that

uh(x)− βwh(x) ≤ uh(y)− βwh(y),

−uh(x)− βwh(x) ≤ −uh(z)− βwh(z) for all x ∈ Ωh.

Due to uh|∂Ωh = 0, we find

uh(x) ≤ β(wh(x)− wh(y)) ≤ βγ,
−uh(x) ≤ β(wh(x)− wh(z)) ≤ βγ for all x ∈ Ωh,

and this implies ‖uh‖∞,Ωh ≤ βγ = γ‖Lhuh‖∞,Ωh .

Corollary 2.40 (Error estimate) Let γ ∈ R≥0 be a constant such that (2.19) holds.
Let Lh be consistent of order p with L and the solution u, i.e., let

‖Lu− Lhu‖∞,Ωh ≤ Ccnh
p

hold for constants Ccn ∈ R≥0, p ∈ N, and the mesh width h ∈ R>0.
Then we have

‖u− uh‖∞,Ωh ≤ Ccnγh
p.

Proof. By definition, we have

Lu(x) = f(x) = Lhuh(x) for all x ∈ Ωh.

Using (2.19) yields

‖uh − u‖∞,Ωh ≤ γ‖Lhuh − Lhu‖∞,Ωh = γ‖Lu− Lhu‖∞,Ωh ≤ Ccnγh
p.
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2.8. Analysis in Hilbert spaces

Until now, we have worked with the maximum norm to establish consistency, stabil-
ity, and convergence. In the following chapters, it is advantageous to formulate our
statements in terms of norms corresponding to Hilbert spaces.

Definition 2.41 (Inner product) Let V be an R-vector space. A mapping a : V×V →
R is called a bilinear form if

a(v + αw, u) = a(v, u) + αa(w, u) for all u, v, w ∈ V, α ∈ R, (2.20a)

a(v, u+ αw) = a(v, u) + αa(v, w) for all u, v, w ∈ V, α ∈ R. (2.20b)

A bilinear form a is called positive definite if

a(u, u) > 0 for all u ∈ V \ {0}, (2.20c)

and it is called symmetric if

a(u, v) = a(v, u) for all u, v ∈ V. (2.20d)

A symmetric positive definite bilinear form is called an inner product for the space V.

Lemma 2.42 (Cauchy-Schwarz) Let a : V × V → R be an inner product. We have

|a(v, u)|2 ≤ a(v, v)a(u, u) for all u, v ∈ V.

Both sides are equal if and only if u and v are linearly dependent.

Proof. Let u, v ∈ V. If a(v, v) = 0, we let α ∈ R and use (2.20a) and (2.20b) to find

0 ≤ a( 1
αv − αu,

1
αv − αu)

= 1
αa(v, 1

αv − αu)− αa(u, 1
αv − αu)

= 1
α2a(v, v)− a(v, u)− a(u, v) + α2a(u, u).

With (2.20d), we conclude

2a(v, u) ≤ 1
α2a(v, v) + α2a(u, u) = α2a(u, u).

Since this inequality holds for arbitrary values of α, we have a(v, u) ≤ 0. Replacing v
by −v, we obtain −a(v, u) = a(−v, u) ≤ 0, and therefore |a(v, u)| = 0.

Let now a(v, v) 6= 0. For all α ∈ R we can apply (2.20a), (2.20b), and (2.20d) to
obtain

0 ≤ a(u− αv, u− αv)

= a(u, u− αv)− αa(v, u− αv)

= a(u, u)− αa(u, v)− αa(v, u) + α2a(v, v)
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= a(u, u)− 2αa(v, u) + α2a(v, v).

Due to a(v, v) > 0, we can minimize the last term by choosing

α :=
a(v, u)

a(v, v)

and obtain

0 ≤ a(u, u)− 2
a(v, u)2

a(v, v)
+
a(v, u)2

a(v, v)2
a(v, v) = a(u, u)− a(v, u)2

a(v, v)
.

Multiplying by a(v, v) yields

0 ≤ a(v, v)a(u, u)− a(v, u)2,

and this is the Cauchy-Schwarz inequality. If a(v, u)2 = a(v, v)a(u, u) holds, we have

0 ≤ a(u− αv, u− αv) = a(v, v)a(u, u)− a(v, u)2 = 0,

i.e., a(u−αv, u−αv) = 0. Due to (2.20c), this implies u−αv = 0, so u and v are linear
dependent.

Remark 2.43 (Positive semidefinite) A bilinear form a : V × V → R is called posi-
tive semidefinite, if

a(u, u) ≥ 0 for all u ∈ V.

The proof of Lemma 2.42 remains valid except for the final statement if a is only sym-
metric and positive semidefinite.

Corollary 2.44 (Hilbert norm) Let a : V × V → R be an inner product.

‖u‖a :=
√
a(u, u) for all u ∈ V

is a norm for the space V. We call it the Hilbert norm corresponding to the inner
product. Using this norm, the Cauchy-Schwarz inequality takes the short form

|a(v, u)| ≤ ‖v‖a‖u‖a for all u, v ∈ V. (2.21)

Proof. Let u ∈ V. Due to (2.20a), we have

a(0, u) = a(u− u, u) = a(u, u)− a(u, u) = 0

and therefore ‖0‖a =
√
a(0, 0) = 0. If ‖u‖a = 0 holds, we have

0 = ‖u‖2a = a(u, u),

and (2.20c) yields u = 0.
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For α ∈ R, (2.20a) and (2.20b) yield

‖αu‖a =
√
a(αu, αu) =

√
α2a(u, u) = |α| ‖u‖a.

Let v ∈ V. (2.20a), (2.20b), (2.20d), and Lemma 2.42 yield

‖u+ v‖2a = a(u+ v, u+ v) = a(u, u) + 2a(v, u) + a(v, v)

≤ a(u, u) + 2
√
a(u, u)a(v, v) + a(v, v) = (

√
a(u, u) +

√
a(v, v))2

= (‖u‖a + ‖v‖a)2,

so we also have established the triangle inequality.

Definition 2.45 (Banach space) Let V be an R-vector space with a norm ‖ · ‖V . A
sequence (un)∞n=0 in V is called a Cauchy sequence, if for every ε ∈ R>0 there is an
n0 ∈ N0 such that

‖un − um‖V ≤ ε for all n,m ∈ N0 with n,m ≥ n0.

If every Cauchy sequence converges, i.e., if for every Cauchy sequence (un)∞n=0 there is
a u ∈ V with

lim
n→∞

‖u− un‖V = 0,

the space V is called a Banach space.

Definition 2.46 (Hilbert space) Let V be an R-vector space, and let a : V × V → R
be an inner product for V. If V is a Banach space with respect to the Hilbert norm ‖ · ‖a,
we call it a Hilbert space. In this case, we denote the norm by ‖u‖V := ‖u‖a and the
inner product by 〈v, u〉V := a(v, u) for all u, v ∈ V.

In order to take advantage of the properties of Hilbert spaces, we have to equip the
grid functions introduced in Definition 2.6 with a suitable inner product. We imitate
the L2-inner product on the space of square-integrable functions:

Definition 2.47 (Hilbert space of grid functions) Let N ∈ N, and let h and Ωh

be as in Definition 2.5. Let G0(Ω̄h) be the space of grid functions with homogeneous
Dirichlet boundary conditions. With the inner product

〈v, u〉Ωh := h2
∑
x∈Ωh

v(x)u(x) for all v, u ∈ G0(Ω̄h),

G0(Ω̄h) is a Hilbert space with the Hilbert norm given by

‖u‖Ωh := h

∑
x∈Ωh

u(x)2

1/2

for all u ∈ G0(Ω̄h).
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In order to obtain convergence with respect to the Hilbert norm ‖ · ‖Ωh , we need
consistency and stability estimates. For the consistency, we can simply rely on the
estimate provided by Lemma 2.4.

Lemma 2.48 (Consistency) Let u ∈ C4(Ω̄). We have

‖∆u−∆hu‖Ωh ≤
h2

6
|u|4,Ω.

Proof. We use (2.4) to find

‖∆u−∆hu‖2Ωh = h2
∑
x∈Ωh

(∆u(x)−∆hu(x))2 ≤ h2
∑
x∈Ωh

h4

36
|u|24,Ω

= h2N2h
4

36
|u|24,Ω =

N2

(N + 1)2

h4

36
|u|24,Ω ≤

h4

36
|u|24,Ω.

Replacing the stability estimate is a little more challenging, since it involves the max-
imum norm on the right-hand side, where we would like to see the Hilbert norm instead.
Instead of working with the discrete maximum principle (cf. Theorem 2.38), we can rely
on the Cauchy-Schwarz inequality for the Euclidean inner product.

Lemma 2.49 (Stability) Let uh ∈ G0(Ω̄h). We have

‖uh‖2Ωh ≤
1

2
〈uh,−∆huh〉Ωh ,

and this implies

‖uh‖Ωh ≤
1

2
‖∆huh‖Ωh .

Proof. The Cauchy-Schwarz inequality (2.21) applied to the Euclidean inner product
reads (

n∑
k=1

xkyk

)2

≤

(
n∑
k=1

x2
k

)(
n∑
k=1

y2
k

)
for all x, y ∈ Rn, n ∈ N. (2.22)

Let x ∈ Ωh. By definition, we find i, j ∈ [1 : N ] with x = (ih, jh). Due to uh(0, jh) = 0,
we can use a telescoping sum to obtain

uh(x) = uh(ih, jh)− uh(0, jh) =
i∑

k=1

uh(kh, jh)− uh((k − 1)h, jh),

and the Cauchy-Schwarz inequality (2.22) yields

uh(x)2 =

(
i∑

k=1

uh(kh, jh)− uh((k − 1)h, jh)

)2
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≤

(
i∑

k=1

1

)(
i∑

k=1

(uh(kh, jh)− uh((k − 1)h, jh))2

)

= i

i∑
k=1

(uh(kh, jh)− uh((k − 1)h, jh))2.

This sum only involves differences between neighbouring grid points, just like the discrete
Laplacian. We denote the set of neighbours again by

N(x) := {y ∈ Ω̄h : (x1 = y1 ∧ |x2 − y2| = h)

∨(x2 = y2 ∧ |x1 − y1| = h)} for all x ∈ Ω̄h

and write the discrete Laplacian as

−∆huh(x) = h−2
∑

y∈N(x)

uh(x)− uh(y) for all x ∈ Ωh.

Taking advantage of the homogeneous Dirichlet conditions, the symmetry y ∈ N(x) ⇐⇒
x ∈ N(y), and employing a change of variables, we find

〈uh,−∆huh〉Ωh =
∑
x∈Ωh

uh(x)
∑

y∈N(x)

uh(x)− uh(y)

=
∑
x∈Ω̄h

uh(x)
∑

y∈N(x)

uh(x)− uh(y)

=
∑

x,y∈Ω̄h
y∈N(x)

uh(x)(uh(x)− uh(y))

=
1

2

∑
x,y∈Ω̄h
y∈N(x)

uh(x)(uh(x)− uh(y)) +
1

2

∑
x,y∈Ω̄h
x∈N(y)

uh(x)(uh(x)− uh(y))

=
1

2

∑
x,y∈Ω̄h
y∈N(x)

uh(x)(uh(x)− uh(y))− 1

2

∑
x,y∈Ω̄h
x∈N(y)

uh(x)(uh(y)− uh(x))

=
1

2

∑
x,y∈Ω̄h
y∈N(x)

uh(x)(uh(x)− uh(y))− 1

2

∑
x,y∈Ω̄h
y∈N(x)

uh(y)(uh(x)− uh(y))

=
1

2

∑
x,y∈Ω̄h
y∈N(x)

(uh(x)− uh(y))2

≥ 1

2

∑
x∈Ωh

(uh(x)− uh(x1 − h, x2))2 +
1

2

∑
x∈Ωh

(uh(x1 − h, x2)− uh(x))2

=
∑
x∈Ωh

(uh(x)− uh(x1 − h, x2))2.
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We can complete the proof by combining both estimates and using Gauss’ summation
formula:

∑
x∈Ωh

uh(x)2 ≤
N∑
i=1

N∑
j=1

uh(ih, jh)2 ≤
N∑
i=1

N∑
j=1

i

i∑
k=1

(uh(kh, jh)− uh((k − 1)h, jh))2

≤
N∑
i=1

N∑
j=1

i

N∑
k=1

(uh(kh, jh)− uh((k − 1)h, jh))2

=
N(N + 1)

2

N∑
k=1

N∑
j=1

(uh(kh, jh)− uh((k − 1)h, jh))2

≤ N(N + 1)

2
〈uh,−∆huh〉Ωh ≤

(N + 1)2

2
〈uh,−∆huh〉Ωh

=
1

2h2
〈uh,−∆huh〉Ωh ,

and multiplying by h2 yields the first estimate.
From this, we immediately obtain

‖uh‖2Ωh ≤
1

2
〈uh,−∆huh〉Ωh ≤

1

2
‖uh‖Ωh‖∆huh‖Ωh

using the Cauchy-Schwarz inequality (2.21), and dividing by ‖uh‖Ωh yields the second
estimate.

We can proceed as in the proof of Theorem 2.10 to find

‖uh − u|Ωh‖Ωh ≤
h2

12
|u|4,Ω,

i.e., the grid functions will converge to the solution with respect to the Hilbert norm at
the same rate as with respect to the maximum norm.

The larger constant in the estimate is due to the larger constant in the stability
estimate. Using more sophisticated techniques, it is actually possible to prove

16‖uh‖2Ωh ≤ 〈uh,−∆huh〉Ωh ,

and the constant grows to 2π2 as the mesh is refined, the smallest eigenvalue of the
Laplace operator on the unit square Ω.
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3. Finite difference methods for parabolic
equations

Partial differential equations like Poisson’s equation are typically used to describe sys-
tems that do not change over time, e.g., the electrostatic field corresponding to a fixed
charge distribution or equilibrium states of mechanical systems.

Now we focus on time-dependent partial differential equations, starting with parabolic
equations that can be approached similarly to ordinary differential equations.

3.1. Heat equation

A classical example for a parabolic equation is the heat equation. For the two-dimensional
unit square Ω = (0, 1)2, it takes the form

∂u

∂t
(t, x) = g(t, x) + ∆xu(t, x) for all t ∈ R≥0, x ∈ Ω, (3.1a)

where ∆x is the Laplace operator applied only to the x variable. As in the previous
chapter, we have to add boundary conditions to ensure the uniqueness of the solution.
We once again choose homogeneous Dirichlet conditions

u(t, x) = 0 for all t ∈ R≥0, x ∈ ∂Ω. (3.1b)

We also have to provide initial conditions

u(a, x) = u0(x) for all x ∈ Ω. (3.1c)

The value u(t, x) can be interpreted as the temperature at time t ∈ R≥0 in the point
x ∈ Ω. The function g describes where and when heat is created: a positive value g(t, x)
means that at time t ∈ R≥0 the point x ∈ Ω is being heated, while a negative value
means that it is being cooled.

If g is constant with respect to time, i.e., if there is a function g∞ : Ω→ R such that

g(t, x) = g∞(x) for all t ∈ R,

it is possible to prove that the solution u will converge to a function u∞ ∈ C2(Ω) that
solves the Poisson equation

−∆u∞(x) = g∞(x) for all x ∈ Ω,
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3. Finite difference methods for parabolic equations

u∞(x) = 0 for all x ∈ ∂Ω.

This limit is called the equilibrium solution, and we can approximate it by the techniques
we have already discussed.

In order to handle the time dependence of the solution, we interprete u and g as
functions in time mapping to functions in space, i.e., we let

û(t)(x) := u(t, x), ĝ(t)(x) := g(t, x) for all t ∈ R≥0, x ∈ Ω.

By introducing the space

C∞∂Ω(Ω̄) := {u ∈ C(Ω̄) : u|Ω ∈ C∞(Ω), u|∂Ω = 0}

and extending the Laplace operator to

∆v(x) :=

{
∂2v
∂x2

1
(x) + ∂2v

∂x2
2
(x) if x ∈ Ω,

0 otherwise
for all v ∈ C∞∂Ω(Ω̄), x ∈ Ω̄,

we can write (3.1) as the ordinary differential equation

û(0) = û0, û′(t) = ĝ(t) + ∆û(t) for all t ∈ R≥0, (3.2)

with the initial value û0 ∈ C∞∂Ω(Ω̄), the heating function ĝ ∈ C(R≥0, C
∞
∂Ω(Ω̄)), and the

solution û ∈ C1(R≥0, C
∞
∂Ω(Ω̄)).

3.2. Method of lines

The idea of the method of lines is to replace the spatial differential operator by an
approximation. We choose the finite difference discretization we have already employed
for the Poisson equation: we let N ∈ N, let h := 1/(N + 1), replace the domain Ω by
the grid Ωh and the space C∞∂Ω(Ω̄) by G0(Ω̄h), and approximate the differential operator
∆ by

∆h : G0(Ω̄h)→ G0(Ω̄h)

defined as

∆hv(x) =
v(x1 + h, x2) + v(x1 − h, x2) + v(x1, x2 + h) + v(x1, x2 − h)− 4v(x)

h2

for all x ∈ Ωh and extended by
∆hv(x) = 0

for all boundary points x ∈ ∂Ωh. Replacing û, ĝ and û0 by

uh(t) := û(t)|Ω̄h , gh(t) := ĝ(t)|Ω̄h , u0,h := û0|Ω̄h for all t ∈ R≥0,

we obtain the approximation

uh(0) = u0,h, u′h(t) = gh(t) + ∆huh(t) for all t ∈ R≥0, (3.3)
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3.2. Method of lines

and this is an ordinary differential equation in the finite-dimensional space G0(Ω̄h).
If we introduce the function

f : R≥0 ×G0(Ω̄h)→ G0(Ω̄h), (t, yh) 7→ gh(t) + ∆hyh, (3.4)

we can write (3.3) in the standard form

uh(0) = u0,h, u′h(t) = f(t, uh(t)) for all t ∈ R≥0. (3.5)

Lemma 3.1 (Unique solution) The ordinary differential equation (3.3) has a unique
solution uh ∈ C1(R≥0, G0(Ω̄h)).

Proof. Since G0(Ω̄h) is finite-dimensional, the mapping ∆h is continuous, i.e., there is a
constant C∆ such that

‖∆hyh‖∞ ≤ C∆‖yh‖∞ for all yh ∈ G0(Ω̄h).

We find

‖f(t, yh)− f(t, zh)‖∞ = ‖∆hyh −∆hzh‖∞ = ‖∆h(yh − zh)‖∞
≤ C∆‖yh − zh‖∞ for all yh, zh ∈ G0(Ω̄h),

so the function f is Lipschitz continuous in the second parameter.
We can apply the Picard-Lindeløf theorem to conclude that (3.5) has a unique solution,

and this is equivalent to (3.3) having a unique solution.

In this proof, the existence of C∆ is the consequence of the fact that ∆h is a linear
mapping between finite-dimensional spaces. This is a fairly general approach and does
not provide us with any information regarding the behaviour of the Lipschitz constant.

In the case of our model problem, we can fortunately compute all eigenvalues and
eigenvectors of ∆h, and this gives us better insight into the behaviour of the system.

Lemma 3.2 (Eigenvalues) We define

λh,ν := 4h−2(sin2(πν1h/2) + sin2(πν2h/2) for all ν ∈ [1 : N ]2,

eh,ν(x) := 2 sin(πν1x1) sin(πν2x2) for all ν ∈ [1 : N ]2, x ∈ Ω̄h.

Then we have

−∆heh,ν = λh,νeh,ν for all ν ∈ [1 : N ]2,

〈eh,ν , eh,µ〉Ωh =

{
1 if ν = µ,

0 otherwise
for all ν, µ ∈ [1 : N ]2.

Proof. Let ν ∈ [1 : N ]2, and let x ∈ Ωh. We have

−∆heh,ν(x) =
2eh,ν(x)− eh,ν(x1 + h, x2)− eh,ν(x1 − h, x2)

h2
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3. Finite difference methods for parabolic equations

+
2eh,ν(x)− eh,ν(x1, x2 + h)− eh,ν(x1, x2 − h)

h2
.

Using the trigonometric identity sin(α+ β) = sin(α) cos(β) + cos(α) sin(β), we obtain

2eh,ν(x)− eh,ν(x1 + h, x2)− eh,ν(x1 − h, x2)

= 4 sin(πν1x1) sin(πν2x2)

− 2 sin(πν1x1 + πν1h) sin(πν2x2)

− 2 sin(πν1x1 − πν1h) sin(πν2x2)

= 2
(
2 sin(πν1x1)

− sin(πν1x1) cos(πν1h)− cos(πν1x1) sin(πν1h)

− sin(πν1x1) cos(−πν1h)− cos(πν1x1) sin(−πν1h)
)

sin(πν2x2)

= 2
(
2 sin(πν1x1)

− sin(πν1x1) cos(πν1h)− cos(πν1x1) sin(πν1h)

− sin(πν1x1) cos(πν1h) + cos(πν1x1) sin(πν1h)
)

sin(πν2x2)

= 4
(
1− cos(πν1h)

)
sin(πν1x1) sin(πν2x2)

= 2
(
1− cos(πν1h)

)
eh,ν(x).

Using the trigonometric identity cos(α) = 1− 2 sin2(α/2), we obtain

2eh,ν(x)− eh,ν(x1 + h, x2)− eh,ν(x1 − h, x2)

= 2
(
1− 1 + 2 sin2(πν1h/2)

)
eh,ν(x) = 4 sin2(πν1h/2)eh,ν(x).

Applying the same reasoning to the second variable x2, we get

2eh,ν(x)− eh,ν(x1, x2 + h)− eh,ν(x1, x2 − h)

= 2
(
1− 1 + 2 sin2(πν2h/2)

)
eh,ν(x) = 4 sin2(πν2h/2)eh,ν(x),

and adding both equations finally yields

−∆heh,ν(x) = 4h−2(sin2(πν1h/2) + sin2(πν2h/2))eh,ν(x) = λh,νeh,ν(x).

In order to establish the orthogonality of the eigenvectors, we make use of the trigono-
metric identity

N∑
k=1

sin(πνkh) sin(πµkh) =

{
(N + 1)/2 if ν = µ,

0 otherwise
for all ν, µ ∈ [1 : N ].

Let ν, µ ∈ [1 : N ]2. We have

〈eh,ν , eh,µ〉Ωh = h2
∑
x∈Ωh

eh,ν(x)eh,µ(x) = h2
N∑

i,j=1

eh,ν(ih, jh)eh,µ(ih, jh)
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3.2. Method of lines

= 4h2
N∑

i,j=1

sin(πν1ih) sin(πν2jh) sin(πµ1ih) sin(πµ2jh)

= 4h2

(
N∑
i=1

sin(πν1ih) sin(πµ1ih)

) N∑
j=1

sin(πν2jh) sin(πµ2jh)


= 4h2

{
(N + 1)2/4 if ν = µ,

0 otherwise

=

{
1 if ν = µ,

0 otherwise.

We can see that that largest eigenvalue of −∆h is given by

λmax := λh,(N,N) = 2λ̂h,N = 8h−2 sin2(πNh/2)

= 8h−2 sin2

(
π

2

N

N + 1

)
≈ 8h−2 sin2(π/2) = 8h−2

for large values of N . We have already seen in Lemma 2.22 that the spectral radius is a
lower bound for any operator norm, therefore the Lipschitz constant C∆ of the ordinary
differential equation (3.5) cannot be smaller than λmax ≈ 8h−2 ≈ 8N2.

Since the Lipschitz constant plays an important role in many stability and conver-
gence estimates, the fact that it grows as we refine the finite difference grid is rather
inconvenient.

Fortunately, the equation (3.5) has a redeeming quality: since all eigenvalues of −∆h

are strictly positive, the finite difference operator is positive definite, i.e., we have

〈−∆huh, uh〉2 > 0 for all uh ∈ G0(Ω̄h) \ {0}. (3.6)

In fact, we even have

〈−∆huh, uh〉2 ≥ λmin‖uh‖22 for all uh ∈ G0(Ω̄h),

where λmin := λh,(1,1) ≈ 2π2 denotes the minimal eigenvalue of −∆h.

For the right-hand side f introduced in (3.4), this implies

〈f(t, uh)− f(t, vh), uh − vh〉2
= 〈∆h(uh − vh), uh − vh〉2 ≤ −λmin‖uh − vh‖22 for all uh, vh ∈ G0(Ω̄h).

Lemma 3.3 (Perturbations) Let V be a Hilbert space with inner product 〈·, ·〉V . Let
f ∈ C(R× V,V) satisfy

〈f(t, v)− f(t, w), v − w〉V ≤ −λ‖v − w‖2V for all t ∈ R≥0, v, w ∈ V
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3. Finite difference methods for parabolic equations

for a suitable constant λ ∈ R≥0. Let y, z ∈ C1(R≥0,V) satisfy the ordinary differential
equations

y′(t) = f(t, y(t)), z′(t) = f(t, z(t)) for all t ∈ R≥0.

Then we have

‖y(t)− z(t)‖V ≤ e−λt‖y(0)− z(0)‖V for all t ∈ R≥0.

Proof. We consider the function

γ : R≥0 → R≥0, t 7→ ‖y(t)− z(t)‖2V .

It is continuously differentiable with

γ′(t) = 2〈y′(t)− z′(t), y(t)− z(t)〉2
= 2〈f(t, y(t))− f(t, z(t)), y(t)− z(t)〉2 for all t ∈ R≥0.

Due to our assumption, we have

γ′(t) = 2〈f(t, y(t))− f(t, z(t)), y(t)− z(t)〉2
≤ −2λ‖y(t)− z(t)‖2V = −2λγ(t) for all t ∈ R≥0.

We have to prove γ(t) ≤ e−2λtγ(0).

To this end, we follow the proof of [11, Satz 9.IX] and introduce

γ̂ : R≥0 → R≥0, t 7→ e−2λtγ(0)

and ω := γ̂ − γ. Our goal is to prove ω ≥ 0.

Since ω is continuous, every point t ∈ R≥0 with ω(t) < 0 would be surrounded by an
interval [a, b] such that ω|[a,b] ≤ 0. Since ω(0) = 0 holds, we can enlarge the interval to
ensure ω(a) = 0. We have

ω′(t) = γ̂′(t)− γ′(t) ≥ −2λγ̂(t) + 2λγ(t) = −2λω(t) ≥ 0 for all t ∈ [a, b].

Due to the fundamental theorem of calculus and ω(a) = 0, this implies ω|[a,b] ≥ 0 and
therefore ω|[a,b] = 0. We conclude that there can be no t ∈ R≥0 with ω(t) < 0.

We have proven

‖y(t)− z(t)‖2V = γ(t) ≤ γ̂(t) = e−2λtγ(0) = e−2λt‖y(0)− z(0)‖2V for all t ∈ R≥0,

and taking the square root yields the required estimate.

In our case, this lemma states that the ordinary differential equation (3.5) is very
stable with regard to perturbations of the initial value, even if the Lipschitz constant
C∆ is large.
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Remark 3.4 (Limit t→∞) In our model problem, we have λmin > 0, and Lemma 3.3
yields that all solutions of (3.5) have to converge to the same limit for t→∞, no matter
what the initial value at t = a is.

If gh is fixed, i.e., if gh(t) = gh,∞ holds for a function gh,∞ ∈ G0(Ω̄h), we can even
compute this limit: if uh,∞ ∈ G0(Ω̄h) solves

−∆huh,∞ = gh,∞,

we have

f(t, uh,∞) = gh,∞ + ∆huh,∞ = 0 for all t ∈ R,

so the constant function t 7→ uh,∞ is a solution of (3.5). Due to Lemma 3.3, all solutions
have to converge to uh,∞ for t→∞.

3.3. Time-stepping methods

Let us take a look at approximation methods for general initial value problems. Let V
be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.

The initial value problem (3.5) is of the following form:

Let y0 ∈ V, and let f ∈ C(R≥0 × V,V). Find y ∈ C1(R≥0,V) such that

y(0) = y0, y′(t) = f(t, y(t)) for all t ∈ R≥0. (3.7)

We consider time-stepping methods for finding an approximate solution. The basic idea
is to replace the continuous time interval R≥0 by discrete points

0 = t0 < t1 < t2 < . . .

and try to approximate y(ti) for these points. To keep the presentation simple, we fix a
step size δ ∈ R>0 and let

ti := iδ for all i ∈ N0.

A single-step method is defined by a time-step function

Ψ : R≥0 × R≥0 × V → V

that takes the current time ti, the time step δ and the current value y(ti) and computes
an approximation of y(ti+1). The resulting sequence of approximate solutions is given
by

ỹ(0) := y0, ỹ(ti+1) := Ψ(ti, δ, ỹ(ti)) for all i ∈ N0.

In order to construct Ψ, we can take our cue from the fundamental theorem of calculus:
due to (3.7), we have

y(ti+1)− y(ti) =

∫ ti+1

ti

y′(s) ds =

∫ ti+1

ti

f(s, y(s)) ds,
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3. Finite difference methods for parabolic equations

y(ti+1) = y(ti) +

∫ ti+1

ti

f(s, y(s)) ds,

so it seems straightforward to look for a quadrature formula to approximate the integral.
Unfortunately, this quadrature formula cannot evaluate the integrand in the interval

[ti, ti+1], since only y(ti) is at our disposal.
A simple solution is to use a quadrature formula that only uses this one value.

Lemma 3.5 (Rectangle rule) Let g ∈ C1([a, b],V). There are ηa, ηb ∈ [a, b] such that∥∥∥∥∫ b

a
g(s) ds− (b− a)g(a)

∥∥∥∥ ≤ (b− a)2

2
‖g′(ηa)‖,∥∥∥∥∫ b

a
g(s) ds− (b− a)g(b)

∥∥∥∥ ≤ (b− a)2

2
‖g′(ηb)‖.

Proof. For the first statement, we consider the function

ϕ : [a, b]→ R, s 7→ s− b.

Using partial integration and ϕ′ = 1, we find∫ b

a
g(s) ds− (b− a)g(a) =

∫ b

a
g(s)− g(a) ds =

∫ b

a
ϕ′(s)(g(s)− g(a)) ds,

=
[
ϕ(s)(g(s)− g(a))

]b
s=a
−
∫ b

a
ϕ(s)g′(s) ds = −

∫ b

a
ϕ(s)g′(s) ds,

and the mean value theorem yields ηa ∈ [a, b] such that∥∥∥∥∫ b

a
g(s) ds− (b− a)g(a)

∥∥∥∥ ≤ ∫ b

a
|ϕ(s)|‖g′(s)‖ ds

= ‖g′(ηa)‖
∫ b

a
b− s ds = ‖g′(ηa)‖

(b− a)2

2
.

The second statement can be proven by using the same arguments for ϕ(s) = s− a.

Applying the rectangle quadrature rule to the left point of interval [ti, ti+1], we find∫ ti+1

ti

f(s, y(s)) ds ≈ δf(ti, y(ti))

and therefore
Ψ(t, δ, y(t)) = y(t) + δf(t, y(t)).

This defines the explicit Euler method. For our model problem (3.5), we have

uh(ti+1) = uh(ti) + δ(gh(ti) + ∆huh(ti)),

Ψ(ti, δ, x) = x+ δgh(ti) + δ∆hx,
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3.3. Time-stepping methods

so performing one time step requires only linear combinations of grid functions and one
evaluation of the finite difference operator.

We can also use the right point of [ti, ti+1] as a quadrature point. This yields∫ ti+1

ti

f(s, y(s)) ds ≈ δf(ti+1, y(ti+1)).

We find

y(ti+1) ≈ y(ti) + δf(ti+1, y(ti+1)),

y(ti+1)− δf(ti+1, y(ti+1)) ≈ y(ti)

and have to solve this equation to obtain y(ti+1). This approach is known as the implicit
Euler method.

For our model problem (3.5), we find

y(ti+1)− δf(ti+1, y(ti+1)) = uh(ti+1)− δgh(ti+1)− δ∆huh(ti+1) ≈ uh(ti),

(I − δ∆h)uh(ti+1) ≈ uh(ti) + δgh(ti+1),

Ψ(t, δ, x) = (I − δ∆h)−1(x+ δgh(ti+1)),

so performing one time step requires us to solve the finite difference equation. This is
computationally considerably more expensive than the explicit Euler method, but it has
particularly attractive properties regarding parabolic equations.

Since both Euler methods approximate the integral essentially by the integral of a
constant function, they are only first-order accurate. In order to reach a higher accuracy,
we can approximate the integral by the trapezoidal rule.

Lemma 3.6 (Trapezoidal rule) Let g ∈ C2([a, b],V). There is an η ∈ [a, b] such that∥∥∥∥∫ b

a
g(s) ds− b− a

2
(g(a) + g(b))

∥∥∥∥ ≤ (b− a)3

12
‖g′′(η)‖.

Proof. We consider the function

ϕ : [a, b]→ R, s 7→ (s− a)(s− b)
2

,

satisfying ϕ′′ = 1 and ϕ(a) = ϕ(b) = 0. The linear function interpolating g in a and b is
given by

p : [a, b]→ V, s 7→ b− s
b− a

g(a) +
s− a
b− a

g(b),

and its integral coincides with the quadrature rule∫ b

a
p(s) ds =

∫ b

a

b− s
b− a

ds g(a) +

∫ b

a

s− a
b− a

ds g(b) =
b− a

2
g(a) +

b− a
2

g(b).
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Using partial integration twice, we find∫ b

a
g(s) ds− b− a

2
(g(a)− g(b)) =

∫ b

a
g(s)− p(s) ds =

∫ b

a
ϕ′′(s)(g(s)− p(s)) ds

=
[
ϕ′(s)(g(s)− p(s))

]b
s=a
−
∫ b

a
ϕ′(s)(g′(s)− p′(s)) ds

= −
∫ b

a
ϕ′(s)(g′(s)− p′(s)) ds

= −
[
ϕ(s)(g′(s)− p′(s))

]b
s=a

+

∫ b

a
ϕ(s)g′′(s) ds =

∫ b

a
ϕ(s)g′′(s) ds.

By the mean value theorem we find η ∈ [a, b] such that∥∥∥∥∫ b

a
g(s) ds− b− a

2
(g(a)− g(b))

∥∥∥∥ ≤ ∫ b

a
|ϕ(s)| ‖g′′(s)‖ ds

= −‖g′′(η)‖
∫ b

a
ϕ(s) ds =

(b− a)3

12
‖g′′(η)‖.

Approximating the integral by the trapezoidal rule yields∫ ti+1

ti

f(s, y(s)) ds ≈ δ

2
(f(ti, y(ti)) + f(ti+1, y(ti+1))).

This approach requires us to solve

y(ti+1) ≈ y(ti) +
δ

2
f(ti, y(ti)) +

δ

2
f(ti+1, y(ti+1)),

y(ti+1)− δ

2
f(ti+1, y(ti+1)) ≈ y(ti) +

δ

2
f(ti, y(ti))

to obtain an approximation of y(ti+1). The resulting algorithm is known as the Crank-
Nicolson method [5]. Since the trapezoidal rule integrates linear functions exactly, we
can expect second-order convergence.

For our model problem, we find

uh(ti+1)− δ

2
gh(ti+1)− δ

2
∆huh(ti+1) ≈ uh(ti) +

δ

2
gh(ti) +

δ

2
∆huh(ti),(

I − δ

2
∆h

)
uh(ti+1) ≈ uh(ti) + δ

gh(ti) + gh(ti+1)

2
+
δ

2
∆huh(ti),

so the function Ψ is given by

Ψ(t, δ, x) =

(
I − δ

2
∆h

)−1(
x+ δ

gh(ti) + gh(ti+1)

2
+
δ

2
∆hx

)
. (3.8)
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3.4. Consistency, stability, convergence

We have to ensure that the time-stepping methods approximate the solution of the ordi-
nary differential equation sufficiently well. As in the previous chapter, we split the error
analysis into two parts: we investigate the consistency of the time-stepping methods, i.e.,
how well the algorithm approximates the solution during only one step, and we establish
the stability of the methods, i.e., how sensitive they react to perturbations. Combining
consistency and stability allows us to establish the convergence of the methods.

In order to obtain the required results, particularly estimates regarding the stability
of the methods, we have to take advantage of the methods’ properties. A standard
assumption is that the right-hand side function f is Lipschitz-continuous with respect
to its third parameter, i.e., that there is a constant Lf ∈ R≥0 such that

‖f(t, v)− f(t, w)‖ ≤ Lf‖v − w‖ for all t ∈ R≥0, v, w ∈ V, (3.9)

In our case, this condition is problematic, since the best possible Lipschitz constant is
given by Lf = ‖∆h‖ ∼ h−2, i.e., the Lipschitz constant will grow rapidly when we refine
the finite difference grid.

That is why we also consider an alternative condition that is frequently sufficient to
obtain the required results: we assume that the differential equation is contracting, i.e.,
that

〈f(t, v)− f(t, w), v − w〉 ≤ 0 for all t ∈ R≥0, v, w ∈ V. (3.10)

In our case, we have f(t, v) − f(t, w) = ∆h(v − w), and Lemma 3.2 yields that −∆h is
positive definite, so ∆h has to be negative definite, i.e., (3.10) holds.

Definition 3.7 (Consistency) Let p ∈ N. A time-stepping method, characterized by
its time-step function Ψ, is consistent of p-th order with a solution y of the initial value
problem (3.7), if there are constants Ccn ∈ R≥0 and δmax ∈ R>0 ∪ {∞} such that

‖y(t+ δ)−Ψ(t, δ, y(t))‖ ≤ Ccnδ
p+1 for all t ∈ R≥0, δ ∈ (0, δmax).

Lemma 3.8 (Explicit Euler method) Let y ∈ C2(R≥0,V) be a solution of (3.7).
The explicit Euler method satisfies

‖y(t+ δ)−Ψ(t, δ, y(t))‖ ≤ δ2

2
‖y′′‖∞,[t,t+δ] for all t ∈ R≥0, δ ∈ R>0,

i.e., the explicit Euler method is consistent of first order.

Proof. Let t ∈ R≥0 and δ ∈ R>0. By the fundamental theorem of calculus, we have

y(t+ δ) = y(t) +

∫ t+δ

t
y′(s) ds,

Ψ(t, δ, y(t)) = y(t) + δf(t, y(t)) = y(t) + δy′(t).
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3. Finite difference methods for parabolic equations

With Lemma 3.5, we find η ∈ [a, b] such that

‖y(t+ δ)−Ψ(t, δ, y(t))‖ ≤ δ2

2
‖y′′(η)‖.

Taking the maximum yields our estimate.

Lemma 3.9 (Implicit Euler method) Let y ∈ C2(R≥0,V) be a solution of (3.7). If
there is a Lipschitz constant Lf ∈ R≥0 such that (3.9) holds, the implicit Euler method
satisfies

‖y(t+ δ)−Ψ(t, δ, y(t))‖ ≤ δ2

2(1− Lfδ)
‖y′′‖∞,[t,t+δ] for all t ∈ R≥0, δ ∈ (0, 1/Lf ).

If instead we have (3.10), we obtain the stronger result

‖y(t+ δ)−Ψ(t, δ, y(t))‖ ≤ δ2

2
‖y′′‖∞,[t,t+δ] for all t ∈ R≥0, δ ∈ R>0.

In both cases, the implicit Euler method is consistent of first order.

Proof. Left as an exercise, e.g., by following the lines of the proof of Lemma 3.10.

Lemma 3.10 (Crank-Nicolson method) Let y ∈ C3(R≥0,V) be a solution of (3.7).
If there is a constant Lf ∈ R≥0 such that the Lipschitz condition (3.9) holds, the Crank-
Nicolson method satisfies

‖y(t+ δ)−Ψ(t, δ, y(t))‖ ≤ δ3

12(1− Lfδ/2)
‖y′′‖∞,[t,t+δ] for all t ∈ R≥0, δ ∈ (0, 2/Lf ).

If instead we have (3.10), we obtain the stronger result

‖y(t+ δ)−Ψ(t, δ, y(t))‖ ≤ δ3

12
‖y′′‖∞,[t,t+δ] for all t ∈ R≥0, δ ∈ R>0.

In both cases, the Crank-Nicolson method is consistent of second order.

Proof. Let t ∈ R≥0 and δ ∈ R>0. We denote the error by

e := y(t+ δ)− ỹ(t+ δ), where ỹ(t+ δ) := Ψ(t, δ, y(t)).

By the fundamental theorem of calculus, we have

y(t+ δ) = y(t) +

∫ t+δ

t
y′(s) ds,

and the definition of the Crank-Nicolson method yields

ỹ(t+ δ) = y(t) +
δ

2

(
f(t, y(t)) + f(t+ δ, ỹ(t+ δ))

)
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= y(t) +
δ

2

(
f(t, y(t)) + f(t+ δ, y(t+ δ))

)
+
δ

2

(
f(t+ δ, ỹ(t+ δ))− f(t+ δ, y(t+ δ))

)
= y(t) +

δ

2

(
y′(t) + y′(t+ δ)

)
+
δ

2

(
f(t+ δ, ỹ(t+ δ))− f(t+ δ, y(t+ δ))

)
.

We can split the error into the quadrature error

eq :=

∫ t+δ

t
y′(s) ds− δ

2
(y′(t) + y′(t+ δ))

and the approximation error

ea :=
δ

2

(
f(t+ δ, y(t+ δ))− f(t+ δ, ỹ(t+ δ))

)
.

For the quadrature error, Lemma 3.6 yields

‖eq‖ ≤
δ3

12
‖y′′′‖∞,[t,t+δ].

Let now (3.9) hold, and let δ < 2/Lf . Then we have

‖ea‖ =
δ

2

∥∥f(t+ δ, y(t+ δ))− f(t+ δ, ỹ(t+ δ))
∥∥

≤ δ

2
Lf‖y(t+ δ)− ỹ(t+ δ)‖ =

δLf
2
‖e‖,

‖e‖ ≤ ‖eq‖+ ‖ea‖ ≤
δ3

12
‖y′′′‖∞,[t,t+δ] +

δLf
2
‖e‖,

and

(1− δLf/2)‖e‖ ≤ δ3

12
‖y′′′‖∞,[t,t+δ]

yields the first estimate.

For the second estimate, let (3.10) hold instead of (3.9). Since V is a Hilbert space,
we have

‖e‖2 = 〈e, e〉 = 〈eq + ea, e〉

= 〈eq, e〉+
δ

2
〈f(t+ δ, y(t+ δ))− f(t+ δ, ỹ(t+ δ)), y(t+ δ)− ỹ(t+ δ)〉

≤ 〈eq, e〉 ≤ ‖eq‖ ‖e‖ ≤
δ3

12
‖y′′′‖∞,[t,t+δ]‖e‖

by the Cauchy-Schwarz inequality, and dividing by ‖e‖ yields the desired estimate.
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3. Finite difference methods for parabolic equations

Remark 3.11 (Global consistency) The estimates of Lemmas 3.8, 3.9, and 3.10 in-
volve the maximum norm of derivatives of the solution y in [t, t + δ], while our Defini-
tion 3.7 requires the constant Ccn to be independent of t and δ.

We can fix this issue by considering only the approximation of y in a compact time
interval [a, b]. Assuming that the relevant derivatives of y are continuous, the maximum
norm in [t, t + δ] can be bounded by the maximum norm in [a, b], and this is indeed a
constant that does not depend on t and δ.

Consistency allows us to control the error introduced by one step of our algorithm.
Since the next step starts with an approximation instead of the exact solution, we have
to investigate how the errors introduced at different steps propagate with time.

Definition 3.12 (Stability) A time-stepping method, characterized by its time-step
function Ψ, is stable if there are constants LΨ ∈ R and δmax ∈ R>0 ∪ {∞} such that

‖Ψ(t, δ, v)−Ψ(t, δ, w)‖ ≤ (1 + LΨδ)‖v − w‖ for all t ∈ R≥0, δ ∈ (0, δmax),

v, w ∈ V.

The method is unconditionally stable if we can choose LΨ = 0.

Lemma 3.13 (Explicit Euler method) Assume that f ∈ C(R≥0×V,V) is Lipschitz-
continuous in the second argument, i.e., that there is a constant Lf ∈ R≥0 such that

‖f(t, v)− f(t, w)‖ ≤ Lf‖v − w‖ for all t ∈ R≥0, v, w ∈ V.

Then the explicit Euler method satisfies

‖Ψ(t, δ, v)−Ψ(t, δ, w)‖ ≤ (1 + Lfδ)‖v − w‖ for all t ∈ R≥0, δ ∈ R>0, v, w ∈ V,

i.e., it is stable.

Proof. Let t ∈ R≥0, δ ∈ R≥0, and v, w ∈ V. We have

ṽ := Ψ(t, δ, v) = v + δf(t, v),

w̃ := Ψ(t, δ, w) = w + δf(t, w)

and find

‖ṽ − w̃‖ = ‖v − w + δ(f(t, v)− f(t, w))‖ ≤ ‖v − w‖+ δ‖f(t, v)− f(t, w)‖
≤ ‖v − w‖+ Lfδ‖v − w‖ = (1 + Lfδ)‖v − w‖.

For the model problem, we can obtain the following more precise estimate.
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3.4. Consistency, stability, convergence

Lemma 3.14 (Explicit Euler, heat equation) Let Ψ denote the time-step function
of the explicit Euler method for our model problem (3.3), and let

CΨ := max{1, |1− δλmax|}.

We have

‖Ψ(t, δ, uh)−Ψ(t, δ, vh)‖Ωh ≤ CΨ‖uh − vh‖Ωh for all t ∈ R≥0, δ ∈ R≥0,

uh, vh ∈ G0(Ω̄h).

Proof. Let t ∈ R≥0, δ ∈ R≥0, and uh, vh ∈ G0(Ω̄). Due to Lemma 3.2, We can find
(αν)ν∈[1:N ]2 such that

uh − vh =
∑

ν∈[1:N ]2

ανeh,ν .

We let

ũh := Ψ(t, δ, uh) = uh + δ(gh(t) + ∆huh),

ṽh := Ψ(t, δ, vh) = vh + δ(gh(t) + ∆hvh)

and observe

ũh − ṽh = uh − vh + δ∆h(uh − vh) = (I + δ∆h)(uh − vh)

=
∑

ν∈[1:N ]2

(I + δ∆h)ανeh,ν =
∑

ν∈[1:N ]2

(1− δλh,ν)ανeh,ν ,

‖ũh − ṽh‖2 = 〈ũh − ṽh, ũh − ṽh〉

=
∑

ν∈[1:N ]2

∑
µ∈[1:N ]2

(1− δλh,ν)(1− δλh,µ)αναµ〈eh,ν , eh,µ〉

=
∑

ν∈[1:N ]2

(1− δλh,ν)2α2
ν .

Since s 7→ (1− s)2 is convex, we have

(1− δλh,ν)2 ≤ max{(1− δλmin)2, (1− δλmax)2} ≤ max{1, |1− δλmax|}2 = C2
Ψ

and conclude

‖ũh − ṽh‖2 =
∑

ν∈[1:N ]2

(1− δλh,ν)2α2
ν ≤ C2

Ψ

∑
ν∈[1:N ]2

α2
ν

= C2
Ψ

∑
ν∈[1:N ]2

∑
µ∈[1:N ]2

αναµ〈eh,ν , eh,µ〉

= C2
Ψ〈uh − vh, uh − vh〉 = C2

Ψ‖uh − vh‖2.
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3. Finite difference methods for parabolic equations

This estimate is quite sharp: if we choose uh = eh,(N,N) and vh = 0, we have

‖Ψ(t, δ, uh)−Ψ(t, δ, vh)‖Ωh = |1− δλmax| ‖uh − vh‖Ωh .

In particular, if we have δλmax > 1, the solution computed by the explicit Euler method
will change its sign at each step. For δλmax > 2, the approximate solution will diverge
rapidly for t→∞, although we have seen in Lemma 3.3 that the exact solution converges.

In order to obtain a stable method, we have to ensure

δ ≤ 1/λmax ≈ h2/8. (3.11)

This is called the Courant-Friedrichs-Lewy condition (abbreviated as CFL condition)
for our discretization of the heat equation [4]. Bounds like this are common for explicit
time-stepping schemes for parabolic or hyperbolic partial differential equations.

Lemma 3.15 (Implicit Euler method) Assume that (3.10) holds. Then the implicit
Euler method satisfies

‖Ψ(t, δ, v)−Ψ(t, δ, w)‖ ≤ ‖v − w‖ for all t ∈ R≥0, δ ∈ R≥0, v, w ∈ V,

i.e., it is unconditionally stable.

Proof. Let t ∈ R≥0, δ ∈ R≥0 and v, w ∈ V. We define

ṽ := Ψ(t, δ, v), w̃ := Ψ(t, δ, w)

and obtain

ṽ = v + δf(t, ṽ), w̃ = w + δf(t, w̃).

Using (3.10) and the Cauchy-Schwarz inequality, we find

‖ṽ − w̃‖2 = 〈ṽ − w̃, ṽ − w̃〉 = 〈v + δf(t+ δ, ṽ)− w − δf(t+ δ, w̃), ṽ − w̃〉
= 〈v − w, ṽ − w̃〉+ δ〈f(t+ δ, ṽ)− f(t+ δ, w̃), ṽ − w̃〉
≤ 〈v − w, ṽ − w̃〉 ≤ ‖v − w‖ ‖ṽ − w̃‖,

and dividing by ‖ṽ − w̃‖ yields our result.

For the implicit Euler method, we can also obtain a sharper estimate if we consider
our model problem.

Lemma 3.16 (Implicit Euler, heat equation) Let Ψ denote the time-step function
of the implicit Euler method for the model problem (3.3). We have

‖Ψ(t, δ, uh)−Ψ(t, δ, vh)‖Ωh ≤
1

1 + δλmin
‖uh − vh‖Ωh for all t ∈ R≥0, δ ∈ R≥0,

uh, vh ∈ G0(Ω̄h).
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3.4. Consistency, stability, convergence

Proof. Let t ∈ R≥0, δ ∈ R≥0, and uh, vh ∈ G0(Ω̄h). Due to Lemma 3.2, we can find
(αν)ν∈[1:N ]2 such that

uh − vh =
∑

ν∈[1:N ]2

ανeh,ν .

We let

ũh := Ψ(t, δ, uh) = uh + δ(gh(t) + ∆hũh),

ṽh := Ψ(t, δ, vh) = vh + δ(gh(t) + ∆hṽh)

and observe

ũh − ṽh = uh − vh + δ∆h(ũh − ṽh),

(I − δ∆h)(ũh − ṽh) = uh − vh,

ũh − ṽh = (I − δ∆h)−1(uh − vh) =
∑

ν∈[1:N ]2

(I − δ∆h)−1ανeh,ν

=
∑

ν∈[1:N ]2

1

1 + δλh,ν
ανeh,ν ,

‖ũh − ṽh‖2 = 〈ũh − ṽh, ũh − ṽh〉

=
∑

ν∈[1:N ]2

∑
µ∈[1:N ]2

1

1 + δλh,ν

1

1 + δλh,µ
αναµ〈eh,ν , eh,µ〉

=
∑

ν∈[1:N ]2

1

(1 + δλh,ν)2
α2
ν ≤

∑
ν∈[1:N ]2

1

(1 + δλmin)2
α2
ν

=
1

(1 + δλmin)2

∑
ν∈[1:N ]2

∑
µ∈[1:N ]2

αναµ〈eh,ν , eh,µ〉

=
1

(1 + δλmin)2
‖uh − vh‖2.

We can see that the implicit Euler method is stable with LΨ = 0 for the model problem
(3.3). If we assume δ ≤ 1, we even have

1

1 + δλmin
= 1− λmin

1 + δλmin
δ ≤ 1− λmin

1 + λmin
δ,

i.e., the method is stable with LΨ = −λmin/(1 + λmin).
Finding a general stability result for the Crank-Nicolson method requires special con-

siderations that would lead too far, so we focus only on the model problem.

Lemma 3.17 (Crank-Nicolson, heat equation) Let Ψ denote the time-step func-
tion of the implicit Euler method for the model problem (3.3). We have

‖Ψ(t, δ, uh)−Ψ(t, δ, vh)‖Ωh ≤ ‖uh − vh‖Ωh for all t ∈ R≥0, δ ∈ R≥0,
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3. Finite difference methods for parabolic equations

uh, vh ∈ G0(Ω̄h),

i.e., the Crank-Nicolson method is unconditionally stable.

Proof. Let t ∈ R≥0, δ ∈ R≥0, and uh, vh ∈ G0(Ω̄h). Due to Lemma 3.2, we can find
(αν)ν∈[1:N ]2 such that

uh − vh =
∑

ν∈[1:N ]2

ανeh,ν .

We let

ũh := Ψ(t, δ, uh) = uh +
δ

2
(gh(t) + ∆huh) +

δ

2
(gh(t+ δ) + ∆hũh),

ṽh := Ψ(t, δ, vh) = vh +
δ

2
(gh(t) + ∆hvh) +

δ

2
(gh(t+ δ) + ∆hũh),

and observe

ũh − ṽh = uh − vh +
δ

2
∆h(uh − vh) +

δ

2
∆h(ũh − ṽh),(

I − δ

2
∆h

)
(ũh − ṽh) =

(
I +

δ

2
∆h

)
(uh − vh),

ũh − ṽh =
(
I − δ

2
∆h

)−1(
I +

δ

2
∆h

)
(uh − vh),

ũh − ṽh =
(
I − δ

2
∆h

)−1(
I +

δ

2
∆h

) ∑
ν∈[1:N ]2

ανeh,ν

=
∑

ν∈[1:N ]2

1− δλh,ν/2
1 + δλh,ν/2

ανeh,ν ,

‖ũh − ṽh‖2 =
∑

ν∈[1:N ]2

(1− δλh,ν/2
1 + δλh,ν/2

)2
α2
ν .

We have to investigate the function

γ : R≥0 → R, s 7→ 1− s
1 + s

.

Due to

γ′(s) =
−(1 + s)− (1− s)

(1 + s)2
=

−2

(1 + s)2
for all s ∈ R≥0,

the function is monotonic decreasing. We have

γ(0) = 1, γ(1) = 0, lim
s→∞

γ(s) = −1

and conclude

γ(s)2 ≤ 1 for all s ∈ R≥0.
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This means

‖ũh − ṽh‖2 =
∑

ν∈[1:N ]2

γ(δλh,ν/2)2α2
ν ≤

∑
ν∈[1:N ]2

α2
ν = ‖uh − vh‖2.

Remark 3.18 (Oscillations) The function γ introduced in the proof of Lemma 3.17
is negative for arguments greater than one.

This means that the sign of the ν-th eigenvector component changes if δλh,ν > 2
holds, i.e., we have an unconditionally stable method that still may produce oscillations
for high-frequency eigenvectors if the step size δ is too large.

Exercise 3.19 (Midpoint rule) We can define another time-stepping scheme based
on the midpoint quadrature rule: for any g ∈ C2([a, b],V), we can find η ∈ [a, b] such
that ∥∥∥∫ b

a
g(s) ds− (b− a)g

(a+ b

2

)∥∥∥ ≤ (b− a)3

24
‖g′′(η)‖.

Based on the approximation

y(t+ δ) = y(t) +

∫ t+δ

t
f(s, y(s)) ds ≈ y(t) + δf

(
t+ δ/2,

y(t) + y(t+ δ)

2

)
,

we define Ψ as the solution — if it exists — of

Ψ(t, δ, v) = v + δf
(
t+ δ/2,

v + Ψ(t, δ, v)

2

)
for all t ∈ R≥0, δ ∈ R≥0, v ∈ V.

Prove that

• this time-stepping scheme is unconditionally stable if (3.10) holds, and that

• it coincides with the Crank-Nicolson method if there is a linear operator A : V → V
such that f(t, x) = Ax for all t ∈ R≥0 and x ∈ V.

In particular, for our model problem the midpoint rule and the trapezoidal rule lead to
the same unconditionally stable second-order consistent time-stepping method if gh is
constant.

We can now proceed to prove convergence of our time-stepping method by combining
consistency and stability.

Theorem 3.20 (Convergence) Let y ∈ C1(R≥0,V) be a solution of (3.7), and let Ψ
be the time-step function of a time-stepping method.

Let this method be consistent of p-th order with the solution, and let it also be stable.
We denote the corresponding constants with Ccn, LΨ and δmax.
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If LΨ 6= 0, the approximations ỹ(ti) computed by the method satisfy

‖y(ti)− ỹ(ti)‖ ≤ Ccn
eLΨti − 1

LΨ
δp (3.12)

for all i ∈ N0.
If LΨ = 0, we have

‖y(ti)− ỹ(ti)‖ ≤ Ccntiδ
p for all i ∈ N0.

Proof. We handle the case LΨ 6= 0 by induction.
Base case: For i = 0, we have y(t0) = ỹ(t0) by definition.
Induction assumption: Let i ∈ N0 be such that (3.12) holds.
Induction step: We have

‖y(ti+1)− ỹ(ti+1)‖ = ‖y(ti+1)−Ψ(ti, δ, y(ti)) + Ψ(ti, δ, y(ti))−Ψ(ti, δ, ỹ(ti))‖
≤ ‖y(ti + δ)−Ψ(ti, δ, y(ti))‖+ ‖Ψ(ti, δ, y(ti))−Ψ(ti, δ, ỹ(ti))‖.

We can bound the first term by the consistency condition and the second by the stability
condition to find

‖y(ti+1)− ỹ(ti+1)‖ ≤ Ccnδ
p+1 + (1 + LΨδ)‖y(ti)− ỹ(ti)‖,

and the induction assumption yields

‖y(ti+1)− ỹ(ti+1)‖ ≤ Ccnδ
p+1 + (1 + LΨδ)Ccn

eLΨti − 1

LΨ
δp

A Taylor-expansion of s→ es around zero reveals that for each s ∈ R, there is an η ∈ R
such that

es = 1 + s+ eη
s2

2
.

In particular, we have 1 + s ≤ es for all s ∈ R. In our case, we find 1 + LΨδ ≤ eLΨδ and
conclude

‖y(ti+1)− ỹ(ti+1)‖ ≤ Ccn

(
δ +

(1 + LΨδ)(e
LΨti − 1)

LΨ

)
δp

≤ Ccn
LΨδ + eLΨδeLΨti − 1− LΨδ

LΨ
δp

= Ccn
eLΨti+1 − 1

LΨ
δp.

Let us now consider the case LΨ = 0. Let i ∈ N0. By definition, stability with LΨ = 0
implies stability with any constant L̂Ψ > 0. Introducing the function

C : R>0 → R≥0, L 7→ Ccn
eLti − 1

L
δp,
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the first part of our proof can be written as

‖y(ti)− ỹ(ti)‖ ≤ C(L) for all L ∈ R>0.

By L’Hôpital’s rule, we have

lim
L→0

C(L) = Ccn

∂
∂L(eLti − 1)|L=0

∂
∂LL|L=0

δp = Ccn
tie

0ti

1
δp = Ccntiδ

p,

and this yields
‖y(ti)− ỹ(ti)‖ ≤ Ccntiδ

p.

3.5. Influence of the spatial discretization

We have established that we can write the heat equation in the form

u(0) = u0, u′(t) = g(t) + ∆u(t) for all t ∈ R≥0

and that approximating u by grid functions and ∆ by the finite difference operator ∆h

yields

uh(0) = u0,h, u′h(t) = gh(t) + ∆huh(t) for all t ∈ R≥0.

We have also proven that the discretized problem can be solved by stable time-stepping
methods like the implicit Euler method or the Crank-Nicolson method.

Until now, we have neglected to investigate the error introduced by the spatial dis-
cretization, i.e.,

eh(t) := u(t)|Ω̄h − uh(t) for all t ∈ R≥0.

Our approach is to represent eh as the solution of an initial value problem, so we compute
the derivative

e′h(t) = u′(t)|Ω̄h − u
′
h(t)

= g(t)|Ω̄h + (∆u(t))|Ω̄h − gh(t)−∆huh(t)

= (∆u(t)−∆hu(t))|Ω̄h + ∆h(u(t)− uh(t))

= (∆u(t)−∆hu(t))|Ω̄h + ∆heh(t) for all t ∈ R≥0.

The first term on the right-hand side corresponds to the spatial consistency error

vh(t) := (∆u(t)−∆hu(t))|Ω̄h for all t ∈ R≥0

incurred for the exact solution u. According to Lemma 2.1, we expect

‖vh(t)‖∞,Ωh ≤ Ch
2 for all t ∈ R≥0
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3. Finite difference methods for parabolic equations

with a suitable constant C ∈ R≥0. Now the error is the solution of

eh(0) = u0|Ω̄h − u0,h, e′h(t) = vh(t) + ∆heh(t) for all t ∈ R≥0, (3.13)

and this initial value problem can be used to derive error bounds.

To prepare our proof, we require a very simple version of the stability result obtained
in Corollary 2.39.

Lemma 3.21 (Stability of I − δ∆h) Let δ ∈ R≥0. We have

‖wh‖∞,Ωh ≤ ‖(I − δ∆h)wh‖∞,Ωh for all wh ∈ G0(Ω̄h).

Proof. Let wh ∈ G0(Ω̄h), and let x ∈ Ω̄h satisfy

wh(y) ≤ wh(x) for all y ∈ Ω̄h. (3.14)

If x is a boundary point, i.e., x ∈ ∂Ωh, we have wh(x) = 0 and therefore wh ≤ 0.

Otherwise, i.e., if x ∈ Ωh holds, we have

(I − δ∆h)wh(x) = wh(x) + δh−2
∑

y∈N(x)

(wh(x)− wh(y)),

where N(x) ⊆ Ω̄h denotes the neighbours of x in the grid. Due to (3.14), we find
wh(x)− wh(y) ≥ 0 for all y ∈ N(x) and conclude

(I − δ∆h)wh(x) ≥ wh(x).

In summary, wh is bounded by max{0, (I − δ∆h)wh(x)}, and therefore also by the
maximum norm ‖(I − δ∆h)wh‖∞,Ωh .

Applying the same argument to −wh, we obtain

‖wh‖∞,Ωh ≤ ‖(I − δ∆h)wh‖∞,Ωh for all wh ∈ G0(Ω̄h).

Theorem 3.22 (Method of lines) Let vh ∈ C(R≥0, G0(Ω̄h)). We consider the solu-
tion eh ∈ C1(R≥0, G0(Ωh)) of (3.13), i.e.,

eh(0) = u0|Ω̄h − u0,h, e′h(t) = vh(t) + ∆heh(t) for all t ∈ R≥0.

We have

‖eh(t)‖∞,Ωh ≤ ‖u0|Ωh − u0,h‖∞,Ωh +

∫ t

0
‖vh(s)‖∞,Ωh ds for all t ∈ R≥0.
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3.5. Influence of the spatial discretization

Proof. In order to use Lemma 3.21, we essentially imitate the structure of the implicit
Euler method.

Let t ∈ R≥0, n ∈ N, and

δ := t/n, ti := iδ for all i ∈ [0 : n].

Using the fundamental theorem of calculus, we find

eh(ti) = eh(ti−1) +

∫ ti

ti−1

e′h(s) ds = eh(ti−1) +

∫ ti

ti−1

vh(s) + ∆heh(s) ds

= eh(ti−1) +

∫ ti

ti−1

vh(s) ds+ δ∆heh(ti) +

∫ ti

ti−1

∆heh(s)−∆heh(ti) ds,

and subtracting δ∆heh(ti) yields

(I − δ∆h)eh(ti) = eh(ti−1) +

∫ ti

ti−1

vh(s) ds+

∫ ti

ti−1

∆heh(s)−∆heh(ti) ds,

‖(I − δ∆h)eh(ti)‖∞,Ωh ≤ ‖eh(ti−1)‖∞,Ωh +

∫ ti

ti−1

‖vh(s)‖∞,Ωh

+

∫ ti

ti−1

‖∆heh(s)−∆heh(ti)‖∞,Ωh ds.

The first two terms look similar to the ones appearing in the final result, and we can get
rid of the third term by taking advantage of the continuity of eh.

Let ε ∈ R>0. Since s 7→ eh(s) is a continuous function, the same holds for the function
s 7→ ∆heh(s). Since [0, t] is a compact interval, this function is also uniformly continuous,
so we can find δε ∈ R>0 such that

‖∆heh(s1)−∆heh(s2)‖∞,Ωh ≤ ε for all s1, s2 ∈ [0, t] with |s1 − s2| ≤ δε.

We choose n large enough to ensure δ = t/n ≤ δε and therefore ‖∆heh(s) −
∆heh(ti)‖∞,Ωh ≤ ε for all s ∈ [ti−1, ti], so we can conclude

‖(I − δ∆h)eh(ti)‖∞,Ωh ≤ ‖eh(ti−1)‖∞,Ωh +

∫ ti

ti−1

‖vh(s)‖∞,Ωh ds+

∫ ti

ti−1

ε ds

= ‖eh(ti−1)‖∞,Ωh +

∫ ti

ti−1

‖vh(s)‖∞,Ωh ds+ δε.

Now we can employ Lemma 3.21 to obtain

‖eh(ti)‖∞,Ωh ≤ ‖(I − δ∆h)eh(ti)‖∞,Ωh

≤ ‖eh(ti−1)‖∞,Ωh +

∫ ti

ti−1

‖vh(s)‖∞,Ωh + δε for all i ∈ [1 : n].
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3. Finite difference methods for parabolic equations

A straightforward induction yields

‖eh(ti)‖∞,Ωh ≤ ‖eh(t0)‖∞,Ωh +

∫ ti

0
‖vh(s)‖∞,Ωh ds+ iδε for all i ∈ [0 : n],

and in particular

‖eh(t)‖∞,Ωh = ‖eh(tn)‖∞,Ωh ≤ ‖eh(t0)‖∞,Ωh +

∫ tn

t0

‖vh(s)‖∞,Ωh ds+ nδε

= ‖eh(0)‖∞,Ωh +

∫ t

0
‖vh(s)‖∞,Ωh ds+ tε.

Since this estimate holds for all ε ∈ R>0, the proof is complete.

If we use the Hilbert norm ‖ ·‖ instead of the maximum norm, we can obtain a similar
result by a particularly simple argument.

Lemma 3.23 (Approximation error) Let eh ∈ C1(R≥0,R≥0) be a solution of (3.13).
We have

‖eh(t)‖ ≤ ‖u0|Ω̄h − u0,h‖+

∫ t

0
‖vh(s)‖ ds for all t ∈ R≥0.

Proof. We consider the function

γ : R≥0 → R≥0, t 7→ ‖eh(t)‖.

Since the Hilbert norm is given by the inner product, we find

γ(t) = ‖eh(t)‖ = 〈eh(t), eh(t)〉1/2,

γ′(t) =
1

2

2〈e′h(t), eh(t)〉
〈eh(t), eh(t)〉1/2

=
〈vh(t) + ∆heh(t), eh(t)〉

‖eh(t)‖
for all t ∈ R≥0

by the product rule. Using (3.6) and the Cauchy-Schwarz inequality, we find

γ′(t) =
〈vh(t) + ∆heh(t), eh(t)〉

‖eh(t)‖
=
〈vh(t), eh(t)〉+ 〈∆heh(t), eh(t)〉

‖eh(t)‖

≤ 〈vh(t), eh(t)〉
‖eh(t)‖

≤ ‖vh(t)‖ ‖eh(t)‖
‖eh(t)‖

= ‖vh(t)‖ for all t ∈ R≥0,

and the fundamental theorem of calculus yields

γ(t) = γ(0) +

∫ t

0
γ′(s) ds ≤ γ(0) +

∫ t

0
‖vh(s)‖ ds

= ‖u0|Ω̄h − u0,h‖+

∫ t

0
‖vh(s)‖ ds for all t ∈ R≥0.
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4. Finite difference methods for hyperbolic
equations

Parabolic equations like the heat equation typically show the behaviour outlined in
Lemma 3.3: the initial conditions become less and less important as time progresses,
and if the driving terms (g in the case of the heat equation) are constant, the solution
converges to a limit for t→∞.

Many processes do not have this property, e.g., electromagnetic waves keep traveling
and never reach a steady state. Some of these processes can be described by hyperbolic
partial differential equations.

4.1. Transport equations

We consider transport equations as a first example. Let u ∈ C1(R×R) describe a density
of a fluid, i.e., the amount of fluid in an interval [a, b] ⊆ R at a time t ∈ R is given by

ma,b(t) =

∫ b

a
u(t, x) dx for all t ∈ R.

The transport of fluid is described by a flux function f ∈ C(R × R) that assigns each
point x ∈ R and each time t ∈ R the rate at which fluid flows in the positive direction.
The amount of fluid in [a, b] changes accordingly, i.e., we have

∂

∂t
ma,b(t) = f(t, a)− f(t, b) for all t ∈ R.

The change in fluid is the balance between inflow at a and outflow at b.
We would like to obtain an equation for the density, so we have to get rid of the

integral in the definition of ma,b. By the mean value theorem for integrals, we can find
η ∈ [a, b] such that

f(t, a)− f(t, b) =
∂

∂t
ma,b(t) =

∫ b

a

∂u

∂t
(t, x) dx = (b− a)

∂u

∂t
(t, η),

and dividing by b− a yields

−f(t, b)− f(t, a)

b− a
=
∂u

∂t
(t, η).

If f is differentiable, we can consider a, b→ x and obtain

− ∂f

∂x
(t, x) =

∂u

∂t
(t, x). (4.1)
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4. Finite difference methods for hyperbolic equations

A standard assumption is that the flux f depends on the density u. A simple example
is given by

f(t, x) = αu(t, x) for all t, x ∈ R,

where α ∈ R is a suitable constant. This choice leads to the linear transport equation

α
∂u

∂x
(t, x) +

∂u

∂t
(t, x) = 0 for all t, x ∈ R.

For a more interesting example, we consider

f(t, x) =
1

2
u(t, x)2,

∂f

∂x
(t, x) = u(t, x)

∂u

∂x
(t, x) for all t, x ∈ R.

This leads to the nonlinear Burgers’ equation [2]

u(t, x)
∂u

∂x
(t, x) +

∂u

∂t
(t, x) = 0 for all t, x ∈ R.

4.2. Method of characteristics

For the potential equation (2.1), we could prescribe boundary conditions on the entire
boundary ∂Ω of the computational domain Ω.

For the heat equation (3.1), seen as an equation in the space-time domain R≥0 × Ω
we could prescribe boundary conditions on R≥0 × ∂Ω and initial conditions at {0} ×Ω,
but our analysis indicates that these two conditions already lead to a unique solution
(at least for the discretized problem).

Now we consider the kind of boundary conditions that can be used for transport
equations in the form

a(z)
∂u

∂z1
(z) + b(z)

∂u

∂z2
(z) = c(z) for all z ∈ R2 (4.2)

with functions
a, b, c : R2 → R.

An elegant approach to analyzing equations of this kind is the method of characteristics.
We introduce a curve γ ∈ C1(R,R2) and consider the function û ∈ C1(R) given by

û(τ) := u(γ(τ)) for all τ ∈ R.

Differentiating û using the chain rule yields

û′(τ) =
∂u

∂z1
(γ(τ))γ′1(τ) +

∂u

∂z2
(γ(τ))γ′2(τ) for all τ ∈ R,

and comparing this equation with (4.2) suggests that we look for a curve γ such that

a(γ(τ)) = γ′1(τ), b(γ(τ)) = γ′2(τ) for all τ ∈ R.

This is a system of ordinary differential equations that can be used to describe the
behaviour of the solution.
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4.2. Method of characteristics

Definition 4.1 (Characteristic curve) A function γ ∈ C1(R,R2) is called a charac-
teristic curve of (4.2) if

γ′(τ) =

(
a(γ(τ))
b(γ(τ))

)
for all τ ∈ R.

If γ is a characteristic curve of (4.2), and if u ∈ C1(R2) is a solution, the function
û = u ◦ γ satisfies

û′(τ) =
∂u

∂z1
(γ(τ))γ′1(τ) +

∂u

∂z2
(γ(τ))γ′2(τ)

=
∂u

∂z1
(γ(τ))a(γ(τ)) +

∂u

∂z2
(γ(τ))b(γ(τ))

= c(γ(τ)) for all τ ∈ R,

i.e., û is a solution of the initial value problem

û(0) = u(γ(0)), û′(τ) = c(γ(τ)) for all τ ∈ R.

If this problem has a unique solution, e.g., if c is Lipschitz continuous, we see that if we
know u(γ(0)), the solution u is uniquely determined along the entire curve γ.

This suggests how we may choose boundary conditions: if a characteristic curve inter-
sects the boundary at two or more points, we may only prescribe the value of u in one
of these points, since this fixes the values in all others.

For the simple transport equation, we let z = (t, x) and have

a(z) = 1, b(z) = α, c(z) = 0 for all z ∈ R2,

so the characteristic curves are given by

γ(τ) =

(
τ

ξ + ατ

)
for all τ ∈ R,

where ξ ∈ R can be chosen to choose the starting point γ(τ) = (0, ξ). Due to c = 0, we
have

u(γ(τ)) = u(0, ξ) for all τ ∈ R,

i.e., u is constant along the characteristic curves.
For (t, x) = z = γ(τ), we have t = τ and x = ξ + αt, so we can write this equation in

the form

u(t, ξ + αt) = u(0, ξ), for all t, ξ ∈ R,

and with ξ := x− αt we get

u(t, x) = u(0, x− αt) for all t, x ∈ R.

This means that the solution of the linear transport equation is uniquely determined by
the values u(0, ·) of u at time t = 0.
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4. Finite difference methods for hyperbolic equations

4.3. One-dimensional wave equation

Another problem that can be tackled with the method of characteristics is the one-
dimensional wave equation

∂2u

∂t2
(t, x)− c2∂

2u

∂x2
(t, x) = 0 for all t, x ∈ R (4.3)

with c ∈ R \ {0}. We introduce

γ : R2 → R2,

(
τ
ξ

)
7→
(

(τ − ξ)/(2c)
(τ + ξ)/2

)
,

and investigate û := u ◦ γ. We have

∂û

∂τ
(τ, ξ) =

∂u

∂t
(γ(τ, ξ))

∂γ1

∂τ
(τ, ξ) +

∂u

∂x
(γ(τ, ξ))

∂γ2

∂τ
(τ, ξ)

=
1

2c

∂u

∂t
(γ(τ, ξ)) +

1

2

∂u

∂x
(γ(τ, ξ)),

∂2û

∂τ∂ξ
(τ, ξ) =

1

2c

∂2u

∂t2
(γ(τ, ξ))

∂γ1

∂ξ
(τ, ξ) +

1

2c

∂2u

∂t∂x
(γ(τ, ξ))

∂γ2

∂ξ
(τ, ξ)

+
1

2

∂2u

∂x∂t
(γ(τ, ξ))

∂γ1

∂ξ
(τ, ξ) +

1

2

∂2u

∂x2
(γ(τ, ξ))

∂γ2

∂ξ
(τ, ξ)

= − 1

4c2

∂2u

∂t2
(γ(τ, ξ)) +

1

4c

∂2u

∂t∂x
(γ(τ, ξ))− 1

4c

∂2u

∂t∂x
(γ(τ, ξ)) +

1

4

∂2u

∂x2
(γ(τ, ξ))

= − 1

4c2

(∂2u

∂t2
(γ(τ, ξ))− c2∂

2u

∂x2
(γ(τ, ξ))

)
= 0 for all τ, ξ ∈ R.

This means that ∂û/∂τ is constant with respect to ξ, i.e., that there is a function v1

such that

∂û

∂τ
(τ, ξ) = v1(τ) for all τ, ξ ∈ R,

and that ∂û/∂ξ is constant with respect to τ , i.e., that there is a function v2 such that

∂û

∂ξ
(τ, ξ) = v2(ξ) for all τ, ξ ∈ R.

Let u1 and u2 be antiderivatives of v1 and v2, and define

ũ : R2 → R, (τ, ξ) 7→ u1(τ) + u2(ξ).

We find

∂ũ

∂τ
(τ, ξ) = u′1(τ) = v1(τ) =

∂û

∂τ
(τ, ξ),

∂ũ

∂ξ
(τ, ξ) = u′2(ξ) = v2(ξ) =

∂û

∂ξ
(τ, ξ),
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so û and ũ can differ only by a constant.
We can add this constant to u1 or u2 without changing the relevant equations and

obtain

û(τ, ξ) = u1(τ) + u2(ξ) for all τ, ξ ∈ R.

Let now t, x ∈ R. We observe

γ(x+ ct, x− ct) =

(
(x+ ct− x+ ct)/(2c)

(x+ ct+ x− ct)/2

)
=

(
t
x

)
and obtain the final result

u(t, x) = u1(x+ ct) + u2(x− ct) for all t, x ∈ R.

4.4. Conservation laws

Hyperbolic partial differential equations are frequently connected to conservation laws.
In the case of the transport equation (4.1), the amount ma,b of fluid is conserved: we

have

∂

∂t
ma,b(t) =

∂

∂t

∫ b

a
u(t, x) dx =

∫ b

a

∂

∂t
u(t, x) dx

= −
∫ b

a

∂

∂x
f(t, x) dx = f(t, a)− f(t, b) for all t ∈ R,

i.e., if the flux function were zero, the amount of fluid would be constant.
In the case of the wave equation (4.3), the energy of the system is conserved. The

energy is defined as the sum of the kinetic energy

Ekin(t) :=
1

2

∫ ∞
−∞

(∂u
∂t

(t, x)
)2
dx for all t ∈ R

and the potential energy

Epot(t) :=
c2

2

∫ ∞
−∞

(∂u
∂x

(t, x)
)2
dx for all t ∈ R,

assuming that both integrals exist and are bounded. If we also assume

lim
x→∞

∂u

∂t
(t, x) = 0, lim

x→−∞

∂u

∂t
(t, x) = 0 for all t ∈ R,

we can use the product rule and partial integration to find

E′kin(t) =

∫ ∞
−∞

∂u

∂t
(t, x)

∂2u

∂t2
(t, x) dx =

∫ ∞
−∞

∂u

∂t
(t, x)c2∂

2u

∂x2
(t, x) dx
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4. Finite difference methods for hyperbolic equations

= −c2

∫ ∞
−∞

∂2u

∂t∂x
(t, x)

∂u

∂x
(t, x) dx = −E′pot(t) for all t ∈ R,

and therefore the total energy

E(t) := Ekin(t) + Epot(t) for all t ∈ R

satisfies

E′(t) = E′kin(t) + E′pot(t) = 0 for all t ∈ R,

i.e., the total energy is constant.
Convervation laws play an important role in many applications, and numerical algo-

rithms for solving the corresponding partial differential equations should at least try
to ensure that the quantities that are conserved in the continuous equation are also
conserved in the discretized equation, at least approximately.

4.5. Higher-dimensional wave equation

We consider the two-dimensional wave equation

∂2u

∂t2
(t, x)− c2∆xu(t, x) = 0 for all t ∈ R≥0, x ∈ Ω

in a domain Ω ⊆ R2 with a parameter c ∈ R>0.
In order to obtain a unique solution, we impose Dirichlet boundary conditions

u(t, x) = 0 for all t ∈ R≥0, x ∈ ∂Ω.

We can eliminate the second time derivatives by introducing the velocity function

v(t, x) :=
∂u

∂t
(t, x) for all t ∈ R≥0, x ∈ Ω̄

and writing the wave equation in the form

∂u

∂t
(t, x) = v(t, x),

∂v

∂t
(t, x) = c2∆xu(t, x) for all t ∈ R≥0, x ∈ Ω, (4.4a)

u(t, x) = 0, v(t, x) = 0 for all t ∈ R≥0, x ∈ ∂Ω. (4.4b)

As in the case of the heat equation (3.1), these equations can be considered as an ordinary
differential equation for

y(t) :=

(
u(t, ·)
v(t, ·)

)
∈ C∞0 (Ω)× C∞0 (Ω) for all t ∈ R≥0,

where
C∞0 (Ω) := {u ∈ C(Ω̄) : u|Ω ∈ C∞(Ω), u|∂Ω = 0}
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is the space of infinitely differentiable functions with homogeneous Dirichlet boundary
conditions. The equations (4.4) correspond to the ordinary differential equation

y′(t) =

(
y2(t)

c2∆y1(t)

)
for all t ∈ R≥0,

so we can expect that we have to introduce initial conditions

y(0) = y0 =

(
u0

v0

)
with u0, v0 ∈ C∞0 (Ω) at the time t = 0 to ensure that the initial value problem can have
at most one solution.

As in the one-dimensional case, the wave equation (4.4) conserves the total energy. For
the kinetic energy, we can essentially use the same definition as in the one-dimensional
setting. For the potential energy, we have to introduce two differential operators.

Definition 4.2 (Gradient and divergence) Let d ∈ N, let Ω ⊆ Rd be a domain, let
ϕ ∈ C1(Ω). The mapping

∇ϕ : Ω→ Rd, x 7→


∂ϕ
∂x1

(x)
...

∂ϕ
∂xd

(x)

 ,

is called the gradient of ϕ. Let u ∈ C1(Ω,Rd). The mapping

∇ · u : Ω→ R, x 7→ ∂u1

∂x1
(x) + . . .+

∂ud
∂xd

(x),

is called the divergence of u.

Reminder 4.3 (Gauß integral theorem) Let d ∈ N, let Ω ⊆ Rd be a Lipschitz do-
main, let

n : ∂Ω→ Rd

denote the mapping that assigns all boundary points x ∈ ∂Ω the unit exterior normal
vector n(x).

We have∫
∂Ω
〈n(x), u(x)〉2 dx =

∫
Ω
∇ · u(x) dx for all u ∈ C1(Ω,Rd).

Applying this result to u := ϕv for ϕ ∈ C1(Ω) and v ∈ C1(Ω,Rd) using the product rule
yields the equation∫

∂Ω
ϕ(x)〈n(x), v(x)〉2 dx =

∫
Ω
ϕ(x)∇ · v(x) dx+

∫
Ω
〈∇ϕ(x), v(x)〉2 dx

corresponding to multi-dimensional partial integration.
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4. Finite difference methods for hyperbolic equations

For the multi-dimensional wave equation (4.4), we define the kinetic energy by

Ekin(t) :=
1

2

∫
Ω

(
∂u

∂t
(t, x)

)2

dx =
1

2

∫
Ω
v(x)2 dx for all t ∈ R≥0

and the potential energy by

Epot(t) :=
c2

2

∫
Ω
‖∇u(t, x)‖22 dx =

c2

2

∫
Ω
〈∇u(t, x),∇u(t, x)〉2 dx for all t ∈ R≥0.

Corollary 4.4 (Energy conservation) Let u, v ∈ C1(R≥0, C
∞
0 (Ω)) solve the wave

equation (4.4). We have

E′kin(t) + E′pot(t) = 0 for all t ∈ R≥0,

i.e., the total energy is constant.

Proof. Let t ∈ R≥0. Using the product rule and multi-dimensional partial integration,
we find

E′kin(t) =

∫
Ω

∂u

∂t
(t, x)

∂2u

∂t2
(t, x) dx =

∫
Ω

∂u

∂t
(t, x)c2∆xu(t, x) dx

=

∫
Ω

∂u

∂t
(t, x)c2∇ · (∇u)(t, x) dx

= c2

∫
∂Ω

∂u

∂t
(t, x)〈n(x),∇u(t, x)〉2 dx− c2

∫
Ω
〈∇∂u

∂t
(t, x),∇u(t, x)〉2 dx

= −c2

∫
Ω
〈 ∂
∂t
∇u(t, x),∇u(t, x)〉2 dx = −E′pot(t).

4.6. Method of lines

As in the case of parabolic equations, we can employ the method of lines to approximate
the solution of the wave equation (4.4): we replace u(t, ·) by a grid function uh(t) ∈
G0(Ω̄h) and v(t, ·) by a grid function vh(t) ∈ G0(Ω̄h), while the Laplace operator ∆ is
approximated by the finite difference operator ∆h. This results in the following system
of ordinary differential equations:

u′h(t) = vh(t), v′h(t) = c2∆huh(t) for all t ∈ R≥0, (4.5a)

uh(0) = u0,h, vh(0) = v0,h. (4.5b)

This system can be solve by time-stepping methods.
We introduce the Hilbert space

V := G0(Ω̄h)×G0(Ω̄h),
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4.6. Method of lines

for the moment with the inner product

〈(uh, vh), (xh, yh)〉 := 〈uh, xh〉Ωh + 〈vh, yh〉Ωh for all (uh, vh), (xh, yh) ∈ V,

and let

y0 :=

(
u0,h

v0,h

)
,

y(t) :=

(
uh(t)
vh(t)

)
for all t ∈ R≥0,

f(t, (uh, vh)) :=

(
vh

c2∆huh

)
for all t ∈ R≥0, (uh, vh) ∈ V.

This allows us to write (4.5) in the usual form

y(0) = y0, y′(t) = f(t, y(t)) for all t ∈ R≥0. (4.6)

The explicit Euler method takes the form

ũh(t0) = u0,h, ṽh(t0) = v0,h,

ũh(ti+1) = ũh(ti) + δṽh(ti), ṽh(ti+1) = ṽh(ti) + δc2∆hũh(ti) for all i ∈ N0,

for the implicit Euler method we find

ũh(t0) = u0,h, ṽh(t0) = v0,h,

ũh(ti+1) = ũh(ti) + δṽh(ti+1), ṽh(ti+1) = ṽh(ti) + δc2∆hũh(ti+1) for all i ∈ N0,

and substituting the variables yields

ũh(ti+1) = ũh(ti) + δ(ṽh(ti) + δc2∆hũh(ti+1)),

(I − δ2c2∆h)ũh(ti+1) = ũh(ti) + δṽh(ti),

ṽh(ti+1) = ṽh(ti) + δc2∆h(ũh(ti) + δṽh(ti+1)),

(I − δ2c2∆h)ṽh(ti+1) = ṽh(ti) + δc2∆hũh(ti) for all i ∈ N0,

so performing one time step requires us to solve two linear systems.
For the Crank-Nicolson method, we obtain

ũh(t0) = u0,h, ṽh(t0) = v0,h,

ũh(ti+1) = ũh(ti) +
δ

2
(ṽh(ti) + ṽh(ti+1)),

ṽh(ti+1) = ṽh(ti) +
δ

2
c2∆h(ũh(ti) + ũh(ti+1)) for all i ∈ N0,

and once more substitution yields

ũh(ti+1) = ũh(ti) +
δ

2

(
ṽh(ti) + ṽh(ti) +

δ

2
c2∆h(ũh(ti) + ũh(ti+1))

)
,

73



4. Finite difference methods for hyperbolic equations

(
I − δ2

4
c2∆h

)
ũh(ti+1) =

(
I +

δ2

4
c2∆h

)
ũh(ti) + δṽh(ti),

ṽh(ti+1) = ṽh(ti) +
δ

2
c2∆h

(
ũh(ti) + ũh(ti) +

δ

2
(ṽh(ti) + ṽh(ti+1))

)
,(

I − δ2

4
c2∆h

)
ṽh(ti+1) =

(
I +

δ2

4
c2∆h

)
ṽh(ti) + δc2∆hũh(ti),

so we can perform one time step by solving two linear systems.
In order to prove convergence, we have to establish that our time-stepping algorithms

are consistent and stable. Since the original wave equation conserves the total energy,
we should also consider whether the discrete solution shares this property.

4.7. Discrete conservation of energy

Since the potential energy of a solution (u, v) of the original equation (4.4) can be written
in the form

Epot(t) =
c2

2

∫
Ω
〈∇u(t, x),∇u(t, x)〉2 dx

=
c2

2

∫
∂Ω
u(t, x)〈n(x),∇u(t, x)〉2 dx−

c2

2

∫
Ω
u(t, x)∇ · ∇u(t, x) dx

= −c
2

2

∫
Ω
u(t, x)∆xu(t, x) dx for all t ∈ R≥0

by partial integration (cf. Reminder 4.3) due to u(t, x)|∂Ω = 0, a straightforward defini-
tion of the potential energy of the discrete problem is given by

Epot,h(t) := −c
2

2
〈uh(t),∆huh(t)〉Ωh for all t ∈ R≥0.

For the kinetic energy, we choose

Ekin,h(t) :=
1

2
〈vh(t), vh(t)〉Ωh for all t ∈ R≥0.

The product rule immediately yields

E′kin,h(t) = 〈vh(t), v′h(t)〉Ωh = 〈vh(t), c2∆huh(t)〉Ωh = 〈u′h(t), c2∆huh(t)〉Ωh
= −E′pot,h(t) for all t ∈ R≥0,

where the last step makes use of the fact that ∆h is a self-adjoint operator. We can see
that the method of lines preserves the discrete energy

Eh(t) := Ekin,h(t) + Epot,h(t) =
1

2
‖vh(t)‖2Ωh −

c2

2
〈uh(t),∆huh(t)〉Ωh for all t ∈ R≥0.

Obviously, we prefer time-stepping schemes that share this property.
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4.7. Discrete conservation of energy

In order to generalize the following results, we introduce the operator

Lh := −c2∆h

and write our system in the form(
uh(0)
vh(0)

)
=

(
u0,h

v0,h

)
,

(
u′h(t)
v′h(t)

)
=

(
0 I
−Lh 0

)(
uh(t)
vh(t)

)
for all t ∈ R≥0.

In the following, we only assume that Lh is positive definite, i.e., that

〈vh,Lhvh〉Ωh > 0 for all vh ∈ G0(Ω̄h) \ {0}.

For our model problem (4.5), this property is guaranteed by Lemma 3.2.

The energy of a state (uh(t), vh(t)) can be written as Eh(t) = 1
2Φh(uh(t), vh(t)), where

Φh : G0(Ω̄h)×G0(Ω̄h)→ R≥0, (xh, yh) 7→ ‖yh‖2Ωh + 〈xh,Lhxh〉Ωh ,

is called the discrete energy functional.

Lemma 4.5 (Explicit Euler method) Let δ ∈ R≥0. Let uh, vh ∈ G0(Ω̄h), and let

ũh := uh + δvh, ṽh := vh − δLhuh

denote the approximations constructed in one step of the explicit Euler method. We have

Φh(ũh, ṽh)− Φh(uh, vh) = δ2‖Lhuh‖2Ωh + δ2〈vh,Lhvh〉Ωh ≥ 0.

Proof. By the third binomial equation, we have

‖ṽh‖2Ωh − ‖vh‖
2
Ωh

= 〈ṽh − vh, ṽh + vh〉Ωh = −δ〈Lhuh, ṽh + vh〉Ωh ,
〈ũh,Lhũh〉Ωh − 〈uh,Lhuh〉Ωh = 〈ũh − uh,Lh(ũh + uh)〉Ωh = δ〈vh,Lh(ũh + uh)〉Ωh ,

so we find

Φh(ũh, ṽh)− Φh(uh, vh) = δ〈vh,Lh(ũh + uh)〉Ωh − δ〈ṽh + vh,Lhuh〉Ωh
= δ〈vh,Lhũh〉Ωh − δ〈ṽh,Lhuh〉Ωh
= δ〈vh,Lhuh + δLhvh〉Ωh − δ〈vh − δLhuh,Lhuh〉Ωh
= δ2〈vh,Lhvh〉Ωh + δ2〈Lhuh,Lhuh〉Ωh ≥ 0.

Due to our assumption, we know that 〈vh,Lhvh〉Ωh ≥ 0 holds for all vh ∈ G0(Ω̄h)
with 〈vh,∆hvh〉Ωh = 0 if and only if vh = 0, so we have to conclude that the explicit
Euler scheme increases the total discrete energy unless we encounter the very special
case uh = vh = 0.
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4. Finite difference methods for hyperbolic equations

Exercise 4.6 (Implicit Euler method) Let δ ∈ R≥0. Let uh, vh ∈ G0(Ω̄h), and let

ũh = uh + δṽh, ṽh = vh − δLhũh

denote the approximations constructed in one step of the implicit Euler method. Prove

Φh(ũh, ṽh)− Φh(uh, vh) = −δ2‖Lhũh‖2Ωh − δ
2〈ṽh,Lhṽh〉Ωh ≤ 0.

The implicit Euler method decreases the total discrete energy, and this is also not a
desirable property.

Lemma 4.7 (Crank-Nicolson method) Let δ ∈ R≥0. Let uh, vh ∈ G0(Ω̄h), and let

ũh := uh +
δ

2
(ṽh + vh), ṽh := vh −

δ

2
Lh(ũh + uh)

denote the approximations constructed in one step of the Crank-Nicolson method. We
have

Φh(ũh, ṽh) = Φh(uh, vh).

Proof. By the third binomial equation, we have

‖ṽh‖2Ωh − ‖vh‖
2
Ωh

= 〈ṽh − vh, ṽh + vh〉Ωh = −δ
2
〈Lh(ũh + uh), ṽh + vh〉Ωh ,

〈ũh,Lhũh〉Ωh − 〈uh,Lhuh〉Ωh = 〈ũh − uh,Lh(ũh + uh)〉Ωh

=
δ

2
〈ṽh + vh,Lh(ũh + uh)〉Ωh ,

so we find

Φh(ũh, ṽh)− Φh(uh, vh) =
δ

2
(− 〈ṽh + vh,Lh(ũh + uh)〉Ωh

+ 〈ṽh + vh,Lh(ũh + uh)〉Ωh) = 0.

This is a very encouraging result: the Crank-Nicolson method conserves the total
discrete energy, just like the original wave equation conserves the total energy.

4.8. Consistency and stability

In order to prove convergence of a time-stepping method used to approximate the solu-
tion of (4.5), we should try to establish consistency and stability of the method for the
given problem.

We would like to re-use the previous results for the parabolic case, and these results
rely on the property

〈f(t, x)− f(t, y), x− y〉 ≤ 0 for all t ∈ R≥0, x, y ∈ V.
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In our case, we have V = G0(Ω̄h)×G0(Ω̄h), and the obvious candidate

〈
(
x1

x2

)
,

(
y1

y2

)
〉 := 〈x1, y1〉Ωh + 〈x2, y2〉Ωh for all x, y ∈ V

for an inner product for V would lead to

〈f(t, x)− f(t, y), x− y〉 = 〈x2 − y2, x1 − y1〉Ωh
− 〈Lh(x1 − y1), x2 − y2〉Ωh for all x, y ∈ V,

and it is not clear at all why this term should be non-positive.

A very elegant approach relies on the energy inner product

〈
(
x1

x2

)
,

(
y1

y2

)
〉A := 〈x1,Lhy1〉Ωh + 〈x2, y2〉Ωh for all x, y ∈ V.

This inner product gets its name from the fact that

Φh(x) = 〈x, x〉A for all x ∈ V,

i.e., the energy norm corresponding to the energy inner product, defined by

‖x‖A :=
√
〈x, x〉A for all x ∈ V,

is just the square of the energy functional.

For the energy inner product, we find

〈f(t, x)− f(t, y), x− y〉A = 〈x2 − y2,Lh(x1 − y1)〉Ωh
+ 〈−L(x1 − y1), x2 − y2〉Ωh = 0 for all t ∈ R≥0, x, y ∈ V,

and consistency of our time-stepping methods is guaranteed by Lemma 3.8, Lemma 3.9,
and Lemma 3.10.

Stability is guaranteed by Lemma 3.15 for the implicit Euler method and by Exer-
cise 3.19 for the Crank-Nicolson method.

For the explicit Euler method, we can take a look at the eigenvalues.

Lemma 4.8 (Explicit Euler, wave equation) Let Ψ denote the time-step function
of the explicit Euler method for our model problem (4.6), and let

CΨ :=
√

1 + δ2c2λmax ≤ 1 + δc
√
λmax.

We have

‖Ψ(t, δ, x)−Ψ(t, δ, y)‖A ≤ CΨ‖x− y‖A for all t ∈ R≥0, δ ∈ R≥0, x, y ∈ V.
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4. Finite difference methods for hyperbolic equations

Proof. Let t ∈ R≥0, δ ∈ R≥0, and x, y ∈ V. We let

x̃ := Ψ(t, δ, x) =

(
x1 + δx2

x2 − δLhx1

)
,

ỹ := Ψ(t, δ, y) =

(
y1 + δy2

y2 − δLhy1

)
.

Due to Lemma 3.2, we can find (αν)ν∈[1:N ]2 and (βν)ν∈[1:N ]2 such that

x1 − y1 =
∑

ν∈[1:N ]2

ανeh,ν , x2 − y2 =
∑

ν∈[1:N ]2

βνeh,ν .

We obtain

x̃1 − ỹ1 = (x1 − y1) + δ(x2 − y2) =
∑

ν∈[1:N ]2

(αν + δβν)eh,ν ,

x̃2 − ỹ2 = (x2 − y2)− δLh(x1 − y1) =
∑

ν∈[1:N ]2

(βν − δc2λh,ναν)eh,ν ,

〈x̃1 − ỹ1,Lh(x̃1 − ỹ1)〉Ωh =
∑

ν∈[1:N ]2

c2λh,ν(αν + δβν)2,

‖x̃2 − ỹ2‖2Ωh =
∑

ν∈[1:N ]2

(βν − δc2λh,ναν)2,

‖x̃− ỹ‖2A =
∑

ν∈[1:N ]2

c2λh,ν(αν + δβν)2 + (βν − δc2λh,ναν)2

=
∑

ν∈[1:N ]2

(c2λh,να
2
ν + 2c2δλh,νανβν + c2δ2λh,νβ

2
ν

+ β2
ν − 2c2δλh,νανβν + c4δ2λ2

h,να
2
ν)

=
∑

ν∈[1:N ]2

(1 + δ2c2λh,ν)c2λh,να
2
ν + (1 + c2δ2λh,ν)β2

ν

≤ C2
Ψ

∑
ν∈[1:N ]2

c2λh,να
2
ν + β2

ν

= C2
Ψ(‖x2 − y2‖2Ωh + 〈x1 − y1,Lh(x1 − y1)〉Ωh)

= C2
Ψ‖x− y‖2A.

This is the first estimate. We conclude by observing√
1 + δ2c2λmax ≤

√
1 + 2δc

√
λmax + δ2c2λmax =

√
(1 + δc

√
λmax)2 = 1 + δc

√
λmax.

We can see that this estimate cannot be improved, since we have equality for x− y =
(eh,(N,N), eh,(N,N)). This means that we can only expect a stable method if we ensure

δ2 .
1

c2λmax
≈ h2

8c2
, δ . h.
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This is similar to the Courant-Friedrichs-Lewy condition (3.11) for the heat equation:
explicit time-stepping schemes for the wave equation also require that the time steps
become smaller as the grid is refined.

In a way, the wave equation is less demanding than the heat equation: while the heat
equation requires δ ∈ O(h2), we only need δ ∈ O(h) for the wave equation.

As in the case of the heat equation, both implicit methods are unconditionally stable
and therefore require no bound for the time steps.

4.9. Finite volume discretization

Conservation laws are frequently expressed in terms of integrals, and this gives rise to
an important class of discretization techniques: finite volume methods split the compu-
tational domain into subsets and formulate conditions that have to be satisfied in each
of these subsets.

A simple example is Darcy’s model of groundwater flow, described by two quantities.

The flux f : Ω→ R2 corresponds to the flow of water in the domain Ω ⊆ R2. Roughly
speaking, the inner product 〈q, f(x)〉 describes the amount of water flowing in direction
q ∈ R2 in point x ∈ Ω.

The pressure p : Ω→ R corresponds to the force exerted, e.g., by gravitation.

Darcy’s law states

f(x) + k∇p(x) = 0 for all x ∈ Ω, (4.7)

i.e., groundwater flows from high-pressure into low-pressure regions. The permeability
k ∈ R>0 describes how rapidly the water can flow in response to the pressure.

In order to obtain a reasonable model, we have to add a second set of equations
describing the conservation of mass, i.e., that water is not created or destroyed. This
property is described by the equation

∇ · f(x) = 0 for all x ∈ Ω. (4.8)

Given a subdomain ω ⊆ Ω with exterior normal vectors n : ∂ω → R2, the Gauß theo-
rem 4.3 yields

0 =

∫
ω
∇ · f(x) dx =

∫
∂ω
〈n(x), f(x)〉 dx,

i.e., the total flows into and out of ω are balanced and therefore the total amount of
water is conserved.

The idea of the finite volume method is to split the domain into a finite number of
subdomains and formulate equations that have to hold for each of these domains. We
once again consider only the unit square Ω = (0, 1)× (0, 1), choose n ∈ N, let h := 1/n,
and define sub-squares

ωi := [(i1 − 1)h, i1h]× [(i2 − 1)h, i2h] for all i ∈ I := [1 : n]× [1 : n].
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4. Finite difference methods for hyperbolic equations

Applying the Gauß theorem to these squares yields

0 =

∫
ωi

∇ · f(x) dx =

∫
∂ωi

〈n(x), f(x)〉 dx for all i ∈ I.

The boundaries of the squares consist of edges

ex,i := [(i1 − 1)h, i1h]× {i2h} for all i ∈ Īx := [1 : n]× [0 : n]

in x direction and edges

ey,i := {i1h} × [(i2 − 1)h, i2h] for all i ∈ Īy := [0 : n]× [1 : n]

in y direction. For these edges we fix the unit normal vectors

nx :=

(
0
1

)
, ny :=

(
1
0

)
.

For i ∈ I, the boundary of ωi consists of the edges ex,i, ex,i1,i2−1, ey,i, and ey,i1−1,i2 .
With respect to this squarem the vector nx is an exterior normal vector on ex,i and an
interior normal vector on ex,i1,i2−1, while ny is an exterior normal vector on ey,i and an
interior normal vector on ey,i1−1,i2 , so that the boundary integral takes the form

0 =

∫
∂ωi

〈n(x), f(x) dx

=

∫
ex,i

f2(x) dx−
∫
ex,i1,i2−1

f2(x) dx+

∫
ey,i

f1(x) dx−
∫
ey,i1−1,i2

f1(x) dx.

We use these edge integrals as the first set of degrees of freedom in the discrete system,
i.e., we let

fx,i :=

∫
ex,i

f2(x) dx for all i ∈ Īx,

fy,i :=

∫
ey,i

f1(x) dx for all i ∈ Īy,

and observe that the exact conservation of mass in each square corresponds to the
equations

fx,i − fx,i1,i2−1 + fy,i − fy,i1−1,i2 = 0 for all i ∈ I. (4.9)

Now we have to consider Darcy’s law. Let i ∈ [1 : n]× [1 : n − 1]. Multiplying Darcy’s
law (4.7) by the normal vector and integrating along the edge ex,i yields

0 =

∫
ex,i

〈nx, f(x) + k∇p(x)〉 dx =

∫
ex,i

〈nx, f(x)〉 dx+ k

∫
ex,i

∂p

∂x2
(x) dx

= fx,i + k

∫ i1h

(i1−1)h

∂p

∂x2
(s, i2h) ds.
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Since we cannot handle equations of this kind directly, we have to employ a numerical
approximation. For the derivative, we can rely on the central difference quotient (cf.
Lemma 2.1), i.e.,

∂p

∂x2
(s, i2h) ≈ p(s, (i2 − 1/2)h)− p(s, (i2 + 1/2)h)

h
for all s ∈ [(i1 − 1)h, i1h].

The integral, on the other hand, can be approximated by a quadrature rule.

Lemma 4.9 (Midpoint rule) Let h ∈ R>0 and g ∈ C2[−h, h]. We can find η ∈
(−h, h) with

2hg(0) =

∫ h

−h
g(s) ds− h3

3
g′′(η).

Proof. We define

ĝ : [−1, 1]→ R, s 7→ g(sh),

and apply a change of variables to obtain∫ h

−h
g(s) ds = h

∫ 1

−1
ĝ(s) ds.

We introduce ϕ(s) := (s − 1)2/2 and observe ϕ′(s) = s − 1 and ϕ′′(s) = 1. Partial
integration yields∫ 1

0
ĝ(s) ds =

∫ 1

0
ϕ′′(s)ĝ(s) ds =

[
ϕ′(s)ĝ(s)

]1
s=0
−
∫ 1

0
ϕ′(s)ĝ′(s) ds

= ĝ(0)−
[
ϕ(s)ĝ′(s)

]1
s=0

+

∫ 1

0
ϕ(s)ĝ′′(s) ds

= ĝ(0) + ĝ′(0)/2 +

∫ 1

0
ϕ(s)ĝ′′(s) ds.

Due to ϕ(s) ≥ 0, we can apply the mean value theorem to find η+ ∈ (0, 1) with∫ 1

0
ϕ(s)ĝ′′(s) ds = ĝ′′(η+)

∫ 1

0
ϕ(s) ds =

1

6
ĝ′′(η+).

Reflecting ĝ by zero gives the complementary result∫ 0

−1
ĝ(s) ds =

∫ 1

0
ĝ(−s) ds = ĝ(0)− ĝ′(0)/2 +

1

6
ĝ′′(η−)

with η− ∈ (−1, 0). Adding both equations leads to∫ 1

−1
ĝ(s) ds = 2ĝ(0) +

1

3

ĝ′′(η+) + ĝ′′(η−)

2
,
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4. Finite difference methods for hyperbolic equations

and the intermediate value theorem yields η̂ ∈ [η−, η+] ⊆ (−1, 1) with

ĝ′′(η) =
ĝ′′(η+) + ĝ′′(η−)

2
,

and the chain rule leads to the desired result∫ h

−h
g(s) ds = h

∫ 1

−1
ĝ(s) ds = 2hĝ(0) +

h

3
ĝ′′(η̂) = 2hg(0) +

h3

3
g′′(η)

if we choose η = hη̂ ∈ (−h, h).

We approximate Darcy’s law by

0 = fx,i + k

∫ i1h

(i1−1)h

∂p

∂x2
(s, i2h) ds

≈ fx,i + k

∫ i1h

(i1−1)h

p(s, (i2 + 1
2)h)− p(s, (i2 − 1

2)h)

h
ds

≈ fx,i + k(p((i1 − 1
2)h, (i2 + 1

2)h)− p((i1 − 1
2)h, (i2 − 1

2)h)

and conclude that we only need the values of p in the midpoints of the squares. This
leads us to introduce the second set of degrees of freedom as

pi := p((i1 − 1
2)h, (i2 − 1

2)h) for all i ∈ I.

Performing the same approximation steps for the y edges as well and dividing by the
constant k leads us to the following approximation of Darcy’s law:

0 ≈ 1
kfx,i + pi1,i2+1 − pi for all i ∈ Ix := [1 : n]× [1 : n− 1], (4.10a)

0 ≈ 1
kfy,i + pi1+1,i2 − pi for all i ∈ Iy := [1 : n− 1]× [1 : n]. (4.10b)

Together with the conservation equations (4.9) and conditions for boundary edges fx,i
with i ∈ ∂Ix := Īx \Ix = [1 : n]×{0, n} and fy,i with i ∈ ∂Iy := Īy \Iy = {0, n}× [1 : n]
yields a linear system that can be solved as long as the boundary conditions ensure that
the inflow for Ω equals the outflow, since this is obviously necessary in order to have an
equilibrium state.

The solution is not unique, since the pressure is only determined up to a global con-
stant. This problem can be solved in various ways, e.g., by including an equation that
forces the mean pressure to be zero or by using a suitable iterative solver like Uzawa’s
method.
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5. Variational problems

While finite difference methods work quite well in a variety of applications, they are not
very flexible when it comes to irregular geometries or solutions with limited differentia-
bility.

Variational techniques can handle these situations far better: variational formulations
of partial differential equations can lead to weak solutions where no classical solutions
exist, and the Galerkin method offers a straightforward discretization scheme that pre-
serves many of the original problem’s properties.

5.1. Variational formulation

We consider the Poisson equation

−∆u(x) = f(x) for all x ∈ Ω, (5.1a)

u(x) = 0 for all x ∈ ∂Ω (5.1b)

in a bounded domain Ω ⊆ Rd with a right-hand side function f ∈ C(Ω) and a solution
u ∈ C(Ω̄) with u|Ω ∈ C2(Ω).

Unfortunately, there are domains Ω and right-hand sides g such that no twice differ-
entiable solution exists, and these are not particularly pathological examples but appear
in real applications.

Since our differentiability requirements is “too strong”, we consider weaker formula-
tions. We construct these formulations in a way that ensures that a solution of the
original problem is still a solution of the weaker problem, but that the weaker problem
may have solutions where the original problem does not.

In a first step, we replace point-wise equality by averaged equality: we multiply (5.1a)
by test functions v ∈ C(Ω) and integrate. This leads to the following weaker formulation:

Find u ∈ C(Ω̄) with u|Ω ∈ C2(Ω) such that

−
∫

Ω
v(x)∆u(x) dx =

∫
Ω
v(x)f(x) dx for all v ∈ C(Ω), (5.2a)

u(x) = 0 for all x ∈ ∂Ω. (5.2b)

Obviously a solution of (5.1) is also a solution of (5.2).
Next we get rid of the requirement that u has to be twice differentiable in Ω: if v

is continuously differentiable, we can apply partial integration and shift one derivative
from u to v. By introducing

C1
0 (Ω) := {u ∈ C(Ω̄) : u|Ω ∈ C1(Ω), u|∂Ω = 0},
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5. Variational problems

we can also incorporate the boundary conditions.
Let now v ∈ C1

0 (Ω). Due to Reminder 4.3, partial integration yields

−
∫

Ω
v(x)∆u(x) dx = −

∫
Ω
v(x)∇ · ∇u(x) dx

=

∫
Ω
〈∇v(x),∇u(x)〉2 dx−

∫
∂Ω
v(x)〈n(x),∇u(x)〉2 dx.

By definition, we have v|∂Ω = 0, so the boundary integral vanishes and we conclude

−
∫

Ω
v(x)∆u(x) dx =

∫
Ω
〈∇v(x),∇u(x)〉2 dx.

The right-hand side requires u only to be differentiable, not twice differentiable, and
since C1

0 (Ω) already includes the boundary conditions, we find the following weaker
formulation:

Find u ∈ C1
0 (Ω) such that∫

Ω
〈∇v(x),∇u(x)〉2 dx =

∫
Ω
v(x)f(x) dx for all v ∈ C1

0 (Ω). (5.3)

Once again, our construction ensures that a solution of the original problem (5.1) is also
a solution of (5.3).

This is called a variational formulation of the original equation, since the equation
has to hold for varying test functions v ∈ C1

0 (Ω).
Unfortunately, the requirement that u is once continuously differentiable is still too

strong. We have to generalize what it means for a function to be differentiable.

5.2. Sobolev spaces

A closer look at (5.3) suggests that we actually do not need ∇u(x) to be continuous, it
only has to be integrable. This suggests that we could weaken the definition of differ-
entiability in the same way we have weakened the problem formulation: by multiplying
by a test function an integrating.

Reminder 5.1 (L2(Ω) and L2(Ω,Rd)) We denote the space of real-valued square in-
tegrable functions by

L2(Ω) :=
{
u : Ω→ R : u is Lebesgue-measurable,

∫
Ω
u(x)2 dx <∞

}
and the space of vector-valued square integrable functions by

L2(Ω,Rd) :=
{
u : Ω→ Rd : ‖u‖2 is Lebesgue-measurable,

∫
Ω
‖u(x)‖22 dx <∞

}
.
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5.2. Sobolev spaces

Both are Hilbert spaces with the inner products

〈v, u〉L2 :=

∫
Ω
v(x)u(x) dx for all v, u ∈ L2(Ω),

〈v, u〉L2 :=

∫
Ω
〈v(x), u(x)〉2 dx for all v, u ∈ L2(Ω,Rd)

and the corresponding norms

‖u‖L2 :=
√
〈u, u〉L2 for all u ∈ L2(Ω) or u ∈ L2(Ω,Rd).

Hölder’s inequality yields the Cauchy-Schwarz inequality

|〈v, u〉L2 | ≤ ‖v‖L2‖u‖L2 for all u, v ∈ L2(Ω) or u ∈ L2(Ω,Rd). (5.4)

As usual in this context, we treat functions that differ only on a null set as equal.

Partial integration allows us to shift derivatives between factors in an integral, and
we plan to move all derivatives to the test function. This means that we should require
the test function to be infinitely differentiable, and it means that we should also ensure
that no boundary integrals appear during the partial integration.

Definition 5.2 (Support) Let u : Ω→ R or u : Ω→ Rd. The support of u is defined
by

supp(u) := {x ∈ Ω : u(x) 6= 0}.

This definition implies u|Ω\supp(u) = 0, so in order to ensure that u and (possibly its
derivatives) vanish on the boundary of Ω, we have to keep supp(u) and ∂Ω disjoint.

Lemma 5.3 (Compact support) Let K ⊆ Rd be a compact set, and let ‖ · ‖ denote
a norm for Rd.

If K ⊆ Ω, there is a δ ∈ R>0 such that

‖x− y‖ > δ for all x ∈ K, y ∈ ∂Ω.

Proof. Let K ⊆ Ω.
If K = ∅, our claim is trivially satisfied since there is no x ∈ K.
Let now K 6= ∅. We denote open balls in Rd by

B(x, r) := {y ∈ Rd : ‖y − x‖ < r}, for all x ∈ Rd, r ∈ R>0.

Since Ω is an open set and K ⊆ Ω, we can find an εx ∈ R>0 for each x ∈ K such that

B(x, 3εx) ⊆ Ω for all x ∈ K.

Then
C := {B(x, εx) : x ∈ K}
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5. Variational problems

is an open cover of K. Since K is compact and non-empty, there is a finite and non-empty
subset A ⊆ K such that

K ⊆
⋃
{B(x̂, εx̂) : x̂ ∈ A}.

We define δ := min{εx̂ : x̂ ∈ A}.
Let now x ∈ K and y ∈ ∂Ω. We have seen that we can find x̂ ∈ A such that

x ∈ B(x̂, εx̂).

Since y is a boundary point, each open ball centered at y intersects the complement of
Ω, i.e., we can find z ∈ B(y, εx̂)∩(Rd\Ω). Due to B(x̂, 3εx̂) ⊆ Ω this means z 6∈ B(x̂, 3εx̂),
and the triangle inequality yields

‖x̂− y‖ ≥ ‖x̂− z‖ − ‖z − y‖ > 3εx̂ − εx̂ = 2εx̂.

We can apply the triangle inequality again to obtain

‖x− y‖ ≥ ‖x̂− y‖ − ‖x− x̂‖ > 2εx̂ − εx̂ = εx̂ ≥ δ.

Applying this result to K = supp(u), we conclude that if a function has compact
support, the support has to have a positive distance to the boundary, and therefore the
function must be zero in an open neighbourhood of the boundary. In particular, not
only the function vanishes in this neighbourhood, but also all of its derivatives.

This leads us to the definition

C∞0 (Ω) := {u ∈ C∞(Rd) : supp(u) is compact and supp(u) ⊆ Ω}.

Let us consider the j-th partial derivative for j ∈ [1 : d]. Let u ∈ C1(Ω) and ϕ ∈ C∞0 (Ω),
and let ϕ̂ ∈ C∞(Ω,Rd) be given by

ϕ̂k =

{
ϕ if k = j,

0 otherwise
for all k ∈ [1 : d].

Applying partial integration (cf. Reminder 4.3), we find

0 =

∫
∂Ω
u(x)〈n(x), ϕ̂(x)〉2

=

∫
Ω
u(x)∇ · ϕ̂(x) dx+

∫
Ω
〈∇u(x), ϕ̂(x)〉2 dx

=

∫
Ω
u(x)

∂ϕ

∂xj
(x) dx+

∫
Ω

∂u

∂xj
(x)ϕ(x) dx

and conclude ∫
Ω

∂u

∂xj
(x)ϕ(x) dx = −

∫
Ω
u(x)

∂ϕ

∂xj
(x) dx. (5.5)
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This equation suggests a generalization of the derivative: if we can find a square-
integrable function v ∈ L2(Ω) such that∫

Ω
v(x)ϕ(x) dx = −

∫
Ω
u(x)

∂ϕ

∂xj
(x) dx for all ϕ ∈ C∞0 (Ω),

we can use v as a “weak” j-th partial derivative of u.
In order to make handling higher derivatives easier, we introduce the set Nd0 of multi-

indices and write

|ν| := ν1 + . . .+ νd for all ν ∈ Nd0,

∂νu(x) :=
∂ν1

∂xν1
1

. . .
∂νd

∂xνdd
u(x) for all ν ∈ Nd0, u ∈ C |ν|(Ω), x ∈ Ω.

Using (5.5) and our definition of the L2-inner product, a straightforward induction yields

〈∂νu, ϕ〉L2 = (−1)|ν|〈u, ∂νϕ〉L2 for all ν ∈ Nd0, u ∈ C |ν|(Ω), ϕ ∈ C∞0 (Ω).

Definition 5.4 (Weak derivatives) Let u ∈ L2(Ω) and ν ∈ Nd0. If v ∈ L2(Ω) satisfies

〈v, ϕ〉L2 = (−1)|ν|〈u, ∂νϕ〉L2 for all ϕ ∈ C∞0 (Ω), (5.6)

we call v a ν-th weak derivative of u.

We have already seen that for classically differentiable functions the derivative is also
a weak derivative, so the weak derivative is a generalization. In order to be able to work
with it (almost) as if it were a proper derivative, we have to ensure that it is uniquely
determined by our definition.

Reminder 5.5 (Smooth approximation) For u ∈ L2(Ω) and ε ∈ R>0, there is a
function ũ ∈ C∞0 (Ω) such that

‖u− ũ‖L2 ≤ ε.

Lemma 5.6 (Uniqueness of weak derivatives) Let u ∈ L2(Ω) and ν ∈ Nd0.
Let v, w ∈ L2(Ω) be weak ν-th derivatives of u. Then we have ‖v − w‖L2 = 0, i.e.,

v = w.

Proof. Due to Reminder 5.5, we can find ϕ ∈ C∞0 (Ω) such that

‖(v − w)− ϕ‖L2 ≤ ε.

By the definition of the inner product, we get

‖v − w‖2L2 = 〈v − w, v − w〉L2 = 〈v − w,ϕ〉L2 + 〈v − w, (v − w)− ϕ〉L2 .

Since v and w are both weak derivatives of u, we have

〈v, ϕ〉L2 = (−1)|ν|〈u, ∂νϕ〉L2 = 〈w,ϕ〉L2 ,
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5. Variational problems

and therefore 〈v − w,ϕ〉L2 = 0 and

‖v − w‖2L2 = 〈v − w, (v − w)− ϕ〉L2 .

Using the Cauchy-Schwarz inequality (5.4) yields

‖v − w‖2L2 ≤ ‖v − w‖L2‖(v − w)− ϕ‖L2 ,

‖v − w‖L2 ≤ ‖(v − w)− ϕ‖L2 ≤ ε.

Since we have proven this estimate for arbitrary ε ∈ R>0, we conclude ‖v−w‖L2 = 0.

Remark 5.7 (Orthogonality) The proof of Lemma 5.6 uses a fairly common ap-
proach: in order to bound v−w, we require that v−w can be approximated in a subspace,
in this case C∞0 (Ω), and that it is orthogonal on this subspace, i.e., 〈v−w,ϕ〉L2 = 0 for
all ϕ ∈ C∞0 (Ω). Combining both properties yields an estimate for v − w.

Definition 5.8 (Sobolev space) Let u ∈ L2(Ω) and ν ∈ Nd0. If u has a ν-th weak
derivative v ∈ L2(Ω), it is unique by Lemma 5.6, and we denote it by ∂νu := v.

Let m ∈ N0. The space

Hm(Ω) := {u ∈ L2(Ω) : weak derivatives ∂νu exist for all ν ∈ Nd0, |ν| ≤ m}

is called the Sobolev space of m times weakly differentiable functions.
We equip this space with the norm

‖u‖Hm :=
( ∑
ν∈Nd0
|ν|≤m

‖∂νu‖2L2

)1/2
for all u ∈ Hm(Ω),

the semi-norm

|u|Hm :=
( ∑
ν∈Nd0
|ν|=m

‖∂νu‖2L2

)1/2
for all u ∈ Hm(Ω),

and the corresponding inner product

〈v, u〉Hm :=
∑
ν∈Nd0
|ν|≤m

〈∂νv, ∂νu〉L2 for all u, v ∈ Hm(Ω).

The Cauchy-Schwarz inequality (5.4) carries over to this norm and this inner product.

Exercise 5.9 (Completeness) Let m ∈ N0. Prove that Hm(Ω) is a complete space,
i.e., a Hilbert space.

Hint: the fact that L2(Ω) is a Hilbert space can be used to construct limits for Cauchy
sequences. The Cauchy-Schwarz inequality (5.4) can be combined with (5.6) to prove
that the limit of the ν-th weak derivatives of a sequence of functions is the ν-th weak
derivative of the limit of the sequence.
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Definition 5.10 (Weak gradient) The weak gradient of u is given by

∇u :=

∂(1,0,...,0)u
...

∂(0,...,0,1)u

 for all u ∈ H1(Ω).

For u ∈ C1(Ω), it coincides with the gradient introduced in Definition 4.2.

Using the weak gradient, we can generalize the variational formulation (5.3), but there
is a minor obstacle: due to Reminder 5.5, we can approximate an arbitrary function in
L2(Ω) by functions that are zero in a neighbourhood of the boundary and therefore
vanish on the boundary. This implies that we cannot define the restriction u|∂Ω in the
usual way for functions u ∈ L2(Ω).

For continuous functions we can introduce the trace operator

γ : C(Ω̄)→ C(∂Ω), u 7→ u|∂Ω (5.7)

that maps functions in C(Ω̄) to their boundary values in ∂Ω.

Theorem 5.11 (Trace operator) Let Ω = (0, 1)2. The trace operator γ satisfies

‖γ(u)‖L2(∂Ω) ≤ 2‖u‖L2 + 2
√
‖u‖L2‖∇u‖L2 ≤ 3‖u‖H1 for all u ∈ C1(Ω̄).

Proof. Let u ∈ C1(Ω̄). Let y ∈ (0, 1) and define

f0 : [0, 1]→ R, x 7→ (1− x)u(x, y)2,

f1 : [0, 1]→ R, x 7→ xu(x, y)2.

We have

f ′0(x) = −u(x, y)2 + 2(1− x)u(x, y)
∂u

∂x
(x, y),

f ′1(x) = u(x, y)2 + 2xu(x, y)
∂u

∂x
(x, y) for all x ∈ [0, 1]

and

f0(0) = u(0, y)2, f0(1) = 0, f1(0) = 0, f1(1) = u(1, y)2.

Using the fundamental theorem of calculus, we find

u(0, y)2 = f0(0) = f0(1)−
∫ 1

0
f ′0(x) dx =

∫ 1

0
u(x, y)2 − 2(1− x)u(x, y)

∂u

∂x
(x, y) dx,

≤
∫ 1

0
u(x, y)2 dx+ 2

∫ 1

0
(1− x)|u(x, y)|

∣∣∣∣∂u∂x(x, y)

∣∣∣∣ dx,
u(1, y)2 = f1(1) = f1(0) +

∫ 1

0
f ′1(x) dx =

∫ 1

0
u(x, y)2 + 2xu(x, y)

∂u

∂x
(x, y) dx
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≤
∫ 1

0
u(x, y)2 dx+ 2

∫ 1

0
x|u(x, y)|

∣∣∣∣∂u∂x(x, y)

∣∣∣∣ dx.
Adding both estimates and applying the Cauchy-Schwarz inequality (5.4) yields

u(0, y)2 + u(1, y)2 ≤ 2

∫ 1

0
u(x, y)2 dx+ 2

∫ 1

0
|u(x, y)|

∣∣∣∣∂u∂x(x, y)

∣∣∣∣ dx
≤ 2

∫ 1

0
u(x, y)2 dx+ 2

(∫ 1

0
u(x, y)2 dx

)1/2(∫ 1

0

∂u

∂x
(x, y)2 dx

)1/2

.

Integrating both sides and applying the Cauchy-Schwarz inequality again gives us∫ 1

0
u(0, y)2 + u(1, y)2 dy ≤ 2

∫ 1

0

∫ 1

0
u(x, y)2 dx dy

+ 2

∫ 1

0

(∫ 1

0
u(x, y)2 dx

)1/2(∫ 1

0

∂u

∂x
(x, y)2 dx

)1/2

dy

≤ 2‖u‖2L2

+ 2

(∫ 1

0

∫ 1

0
u(x, y)2 dx dy

)1/2(∫ 1

0

∫ 1

0

∂u

∂x
(x, y)2 dx dy

)1/2

= 2‖u‖2L2 + 2‖u‖L2

∥∥∥∥∂u∂x
∥∥∥∥
L2

.

Applying the same arguments with x and y exchanged results in∫ 1

0
u(x, 0)2 + u(x, 1)2 dx ≤ 2‖u‖2L2 + 2‖u‖L2

∥∥∥∥∂u∂y
∥∥∥∥
L2

,

and adding both estimates and using a+ b ≤ 2
√
a2 + b2 leads to

‖γ(u)‖2L2(∂Ω) ≤ 4‖u‖2L2 + 2‖u‖L2

(∥∥∥∥∂u∂x
∥∥∥∥
L2

+

∥∥∥∥∂u∂y
∥∥∥∥
L2

)
≤ 4‖u‖2L2 + 4‖u‖L2‖∇u‖L2 .

Due to
√
a+ b ≤

√
a+ 2

√
ab+ b =

√
a+
√
b, we find

‖γ(u)‖L2(∂Ω) ≤ 2‖u‖L2 + 2
√
‖u‖L2‖∇u‖L2 ,

and 2ab ≤ a2 + b2 gives us the final estimate

‖γ(u)‖L2(∂Ω) ≤ 2‖u‖L2 + ‖u‖L2 + ‖∇u‖L2 ≤ 3‖u‖H1 .

This result can be generalized: for any Lipschitz domain Ω, there is a constant Cγ
such that

‖γ(u)‖L2(∂Ω) ≤ Cγ‖u‖H1 for all u ∈ C1(Ω̄).

In order to obtain a similar result for u ∈ H1(Ω), we make use of the following extension
of the approximation result of Reminder 5.5.
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Theorem 5.12 (Meyers-Serrin) Let u ∈ Hm(Ω) and ε ∈ R>0. There is a function
ũ ∈ C∞(Ω) such that ‖u− ũ‖Hm ≤ ε.

Proof. cf. [8]

Applied to m = 1, this result means that for any u ∈ H1(Ω), we can find a sequence
(un)∞n=1 in C∞(Ω) such that

lim
n→∞

‖u− un‖H1 = 0.

Due to Theorem 5.11, we have that (γ(un))∞n=1 is a Cauchy sequence in L2(∂Ω), and
since L2(∂Ω) is complete, it has to be convergent. We define

γ(u) := lim
n→∞

γ(un)

and thus obtain the extension

γ : H1(Ω)→ L2(∂Ω)

of the trace operator satisfying

‖γ(u)‖L2(∂Ω) ≤ Cγ‖u‖H1 for all u ∈ H1(Ω).

We could now use

H1
0 (Ω) := {u ∈ H1(Ω) : γ(u) = 0}

to define the weak counterpart of C1
0 (Ω). This definition would immediately imply

C1
0 (Ω) ⊆ H1

0 (Ω), but it would make the proofs of some results, particularly Friedrichs’
inequality (cf. Lemma 5.25) a little complicated.

Therefore we use a more general approach: since the space of infinitely differentiable
functions is a dense subset of Hm(Ω), we can define Hm

0 (Ω) as the closure of C∞0 (Ω) with
respect to the Hm-norm. For m = 1, this is equivalent to the definition given above,
but this statement will not be proven here.

Definition 5.13 (Homogeneous boundary conditions) Let m ∈ N0. The space

Hm
0 (Ω) := {u ∈ Hm(Ω) : for all ε ∈ R>0 there is a ϕ ∈ C∞0 (Ω) with ‖u− ϕ‖Hm ≤ ε}

is called the Sobolev space of m times weakly differentiable functions with Dirichlet
boundary conditions.

Exercise 5.14 (Completeness) Let m ∈ N0. Prove that Hm
0 (Ω) is a complete space,

i.e., a Hilbert space.

Now we are ready to introduce the final variational formulation of our model problem,
the Poisson equation (5.1): we replace C1

0 (Ω) by H1
0 (Ω) and the gradient by the weak

gradient.
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5. Variational problems

Find u ∈ H1
0 (Ω) such that

〈∇v,∇u〉L2 = 〈v, f〉L2 for all v ∈ H1
0 (Ω). (5.8)

Proving that a solution of (5.3) is also a solution of (5.8) requires two steps: first we
have to demonstrate that u ∈ C1

0 (Ω) implies u ∈ H1
0 (Ω), and second we have to show

that testing with function v ∈ H1
0 (Ω) instead of C1

0 (Ω) will not change the validity of
the equation.

We have already completed the first step: we have C1(Ω) ⊆ H1(Ω) due to partial
integration, and u ∈ C1

0 (Ω) implies γ(u) = 0 and therefore u ∈ H1
0 (Ω).

The second step is a simple consequence of the Cauchy-Schwarz inequality: assume
that (5.3) holds, and let v ∈ H1

0 (Ω). For each ε ∈ R>0, we can find ṽ ∈ C∞0 (Ω) with
‖v − ṽ‖H1 ≤ ε by Definition 5.13). Due to ṽ ∈ C∞0 (Ω) ⊆ C1

0 (Ω), we have

〈∇ṽ,∇u〉L2 = 〈ṽ, f〉L2

and obtain

|〈∇v,∇u〉L2 − 〈v, f〉L2 | = |〈∇v,∇u〉L2 − 〈∇ṽ,∇u〉L2 + 〈ṽ, f〉L2 − 〈v, f〉L2 |
= |〈∇(v − ṽ),∇u〉L2 + 〈ṽ − v, f〉L2 |
≤ |〈∇(v − ṽ),∇u〉L2 |+ |〈ṽ − v, f〉L2 |.

Now we can apply the Cauchy-Schwarz inequality (5.4) to find

|〈∇v,∇u〉L2 − 〈v, f〉L2 | ≤ ‖∇(v − ṽ)‖L2‖∇u‖L2 + ‖ṽ − v‖L2‖f‖L2

≤ ε‖∇u‖L2 + ε‖f‖L2 .

Since this holds for all ε ∈ R>0, we conclude

〈∇v,∇u〉L2 = 〈v, f〉L2 ,

i.e., the (5.8) holds for arbitrary test functions v ∈ H1
0 (Ω).

5.3. Solutions of variational problems

We investigate the existence and uniqueness of solutions of variational problems of the
form (5.8) in a general setting: let V be a R-Hilbert space with the inner product 〈·, ·〉V
and the norm

‖ · ‖V : V → R≥0, u 7→
√
〈u, u〉V .

We write a general variational problem in the following form:

Find u ∈ V such that

a(v, u) = β(v) for all v ∈ V. (5.9)
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5.3. Solutions of variational problems

Here a : V × V → R is a bilinear form and β : V → R is a linear mapping.

Definition 5.15 (Dual space) A continuous linear function λ : V → R mapping V
into R is called a functional.

The space of all functionals is called the dual space of V and denoted by

V ′ := {λ : V → R : λ is a functional}.

If is usually equipped with the dual norm

‖ · ‖V ′ : V ′ → R, λ 7→ sup
{ |λ(v)|
‖v‖V

: v ∈ V \ {0}
}
.

This is well-defined, since a linear continuous function is always bounded.

Lemma 5.16 (Right-hand side) The right-hand side of our model problem (5.8) is
given by

β(v) = 〈v, f〉L2 for all v ∈ V = H1
0 (Ω).

This is a functional, i.e., we have β ∈ V ′, and the dual norm satisfies ‖β‖V ′ ≤ ‖f‖L2.

Proof. For the model problem, we have V = H1
0 (Ω).

Due to the Cauchy-Schwarz inequality (5.4), we have

|β(v)| = |〈v, f〉L2 | ≤ ‖v‖L2‖f‖L2 ≤ ‖v‖H1‖f‖L2 = ‖v‖V‖f‖L2 for all v ∈ V = H1
0 (Ω).

This implies

‖β‖V ′ = sup
( |λ(v)|
‖v‖V

: v ∈ V \ {0}
)

≤ sup
(‖v‖V‖f‖L2

‖v‖V
: v ∈ V \ {0}

)
= ‖f‖L2 ,

so β is bounded, and therefore also continuous.

Definition 5.17 (Positive definite bilinear form) A bilinear form a : V × V → R
is called positive definite if

a(u, u) > 0 for all u ∈ V \ {0}.

Definition 5.18 (Symmetric bilinear form) A bilinear form a : V×V → R is called
symmetric if

a(v, u) = a(u, v) for all u, v ∈ V.
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5. Variational problems

Lemma 5.19 (Minimization problem) Let β ∈ V ′, and let a : V × V → R be a
symmetric positive definite bilinear form. We define the function

J : V → R, v 7→ a(v, v)− 2β(v).

Let u, v ∈ V. We have

J(u) ≤ J(u+ tv) for all t ∈ R (5.10a)

if and only if
a(v, u) = β(v). (5.10b)

In particular, u ∈ V is a solution of (5.9) if and only if it is a global minimum of J . In
this case, it is the only global minimum.

Proof. If v = 0 holds, the equivalence is trivial. We assume v 6= 0.
We start by observing

J(u+ tv) = a(u+ tv, u+ tv)− 2β(u+ tv)

= a(u, u) + ta(u, v) + ta(v, u) + t2a(v, v)− 2β(u)− 2tβ(v)

= J(u) + 2t(a(v, u)− β(v)) + t2a(v, v) for all t ∈ R.

Now assume (5.10b) holds. It implies

J(u+ tv) = J(u) + t2a(v, v) ≥ J(u) for all t ∈ R,

and this is (5.10a).
Now assume (5.10a) holds. We choose

t := −a(v, u)− β(v)

a(v, v)

(we look for a minimum of t 7→ J(u+ tv), i.e., for a zero of its derivative) and find

0 ≤ J(u+ tv)− J(u) = 2t(a(v, u)− β(v)) + t2a(v, v)

= −2
(a(v, u)− β(v))2

a(v, v)
+

(a(v, u)− β(v))2

a(v, v)2
a(v, v)

= −(a(v, u)− β(v))2

a(v, v)
≤ 0.

Due to a(v, v) > 0, this implies (a(v, u)− β(v))2 = 0, and (5.10b) holds.
Let now (5.10b) hold, and let ũ ∈ V be a solution of

a(v, ũ) = β(v) for all v ∈ V.

Then we have

a(v, u− ũ) = a(v, u)− a(v, ũ) = β(v)− β(v) = 0 for all v ∈ V,

and choosing v := u− ũ yields a(v, v) = 0. Since a is positive definite, this implies v = 0,
i.e., ũ = u.
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5.3. Solutions of variational problems

Definition 5.20 (Bounded bilinear form) A bilinear form a : V × V → R is called
bounded if there is a constant CB ∈ R≥0 such that

|a(v, u)| ≤ CB‖v‖V‖u‖V for all v, u ∈ V.

Definition 5.21 (Coercive bilinear form) A bilinear form a : V × V → R is called
coercive if it is bounded and there is a constant CK ∈ R>0 such that

CK‖u‖2V ≤ a(u, u) for all u ∈ V.

Theorem 5.22 (Riesz) Let β ∈ V ′, and let a : V×V → R be a symmetric and coercive
bilinear form. Then there is exactly one u ∈ V such that

a(v, u) = β(v) for all v ∈ V,

and we have
1

CB
‖β‖V ′ ≤ ‖u‖V ≤

1

CK
‖β‖V ′ .

Proof. According to Lemma 5.19, we only have to find a global minimum of

J : V → R, v 7→ a(v, v)− 2β(v)

to find a solution of (5.9). Since a is coercive and β is bounded, we find

J(v) = a(v, v)− 2β(v) ≥ CK‖v‖2V − 2‖β‖V ′‖v‖V

= CK‖v‖2V − 2‖β‖V ′‖v‖V +
‖β‖2V ′
CK

−
‖β‖2V ′
CK

=
(√

CK‖v‖V −
√

1/CK‖β‖V ′
)2
−
‖β‖2V ′
CK

≥ −
‖β‖2V ′
CK

for all v ∈ V.

This implies that

µ := inf{J(v) : v ∈ V}

is a real number, i.e.,

0 ≥ µ ≥ −‖β‖2V ′/CK > −∞.

By the definition of the infimum, we can find a sequence (un)∞n=1 such that

J(un) ≤ µ+ 1/n for all n ∈ N.

We will now prove that this is a Cauchy sequence. Let n,m ∈ N. We have

a(un − um,un − um) = 2a(un, un) + 2a(um, um)− a(un + um, un + um)

= 2J(un) + 4β(un) + 2J(um) + 4β(um)− 4a
(un + um

2
,
un + um

2

)
= 2J(un) + 4β(un) + 2J(um) + 4β(um)
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− 4J
(un + um

2

)
− 8β

(un + um
2

)
= 2J(un) + 4β(un) + 2J(um) + 4β(um)

− 4J
(un + um

2

)
− 4β(un)− 4β(um)

= 2J(un) + 2J(um)− 4J
(un + um

2

)
≤ 2(µ+ 1/n) + 2(µ+ 1/m)− 4µ = 2/n+ 2/m.

Let ε ∈ R>0. We can find n0 ∈ N such that 4
CKn0

< ε. For all n,m ∈ N with n,m ≥ n0,
we have just proven

‖un − um‖2V ≤
1

CK
a(un − um, un − um) ≤ 2/n+ 2/m

CK
≤ 4

CKn0
< ε,

so (un)∞n=1 is indeed a Cauchy sequence. Since V is complete, it converges to a vector
u ∈ V.

Let ε ∈ R>0. We can find n ∈ N such that 1/n ≤ ε and ‖u− un‖V ≤ ε. Since a and β
are bounded, we find

J(u) = a(u, u)− 2β(u)

= a(un, un) + a(u− un, un) + a(u, u− un)− 2β(un) + 2β(un − u)

= J(un) + a(u− un, un) + a(u, u− un) + 2β(un − u)

≤ J(un) + CB‖u− un‖V‖un‖V + CB‖u‖V‖u− un‖V + 2‖β‖V ′‖u− un‖V
≤ µ+ ε+ CBε‖un‖V + CBε‖u‖V + 2ε‖β‖V ′
≤ µ+ ε+ CBε‖u‖V + CBε‖un − u‖V + CBε‖u‖V + 2ε‖β‖V ′
≤ µ+ ε(1 + 2CB‖u‖V + 2‖β‖V ′ + CBε).

Since ε can be chosen arbitrarily small, we conclude J(u) = µ, i.e., the function J is
minimal at the point u.

Due to Lemma 5.19, u is the unique solution of (5.9).
We have

CK‖u‖2V ≤ a(u, u) = β(u) ≤ ‖β‖V ′‖u‖V ,

and this implies ‖u‖V ≤ ‖β‖V ′/CK .
Let ε ∈ R>0. By definition, we can find v ∈ V \ {0} such that

‖β‖V ′ ≤
|β(v)|
‖v‖V

+ ε =
|a(v, u)|
‖v‖V

+ ε ≤ CB‖v‖V‖u‖V
‖v‖V

+ ε = CB‖u‖V + ε,

and since ε can be chosen arbitrarily small, this implies ‖β‖V ′/CB ≤ ‖u‖V .

Remark 5.23 (Lower bound) In the first part of the previous proof, we rely on the
estimate

J(v) ≥ −‖β‖2V ′/CK for all v ∈ V.
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5.3. Solutions of variational problems

to ensure that the infimum of J is finite.
For the solution u of the variational problem, we obtain

J(u) = a(u, u)− 2β(u) = −β(u) ≥ −‖β‖V ′‖u‖V ≥ −‖β‖2V ′/CK

using the stability estimate provided by the Theorem 5.22, i.e., the lower bound can be
sharp for a suitable choice of β and a.

Corollary 5.24 (Riesz representation theorem) The mapping

ΨV : V → V ′, u 7→ 〈·, u〉V ,

is bijective and satisfies

‖ΨVu‖V ′ = ‖u‖V for all u ∈ V,

i.e, it is an isometric isomorphism between V and the dual space V ′.

Proof. The mapping ΨV is obviously linear.
Let u ∈ V. Then we have

‖u‖2V = 〈u, u〉V = |(ΨVu)(u)| ≤ ‖ΨVu‖V ′‖u‖V ,

and this implies

‖u‖V ≤ ‖ΨVu‖V ′ for all u ∈ V.

The Cauchy-Schwarz inequality yields

‖ΨVu‖V ′ = sup
{ |(ΨVu)(v)|

‖v‖V
: v ∈ V \ {0}

}
= sup

{ |〈v, u〉V |
‖v‖V

: v ∈ V \ {0}
}

≤ sup
{‖v‖V‖u‖V
‖v‖V

: v ∈ V \ {0}
}

= ‖u‖V for all u ∈ V.

We conclude that ΨV is injective and isometric.
Let β ∈ V ′. Applying Theorem 5.22 to

a(v, u) := 〈v, u〉V for all u, v ∈ V

yields u ∈ V with ΨVu = β, so ΨV is also surjective.

In order to apply Theorem 5.22 to our model problem, we have to establish that it it
coercive.

Lemma 5.25 (Friedrichs’ inequality) Let B := [a, b]×Rd−1 be given such that Ω ⊆
B, and let R := b− a.

We have

‖u‖L2 ≤ R‖∇u‖L2 for all u ∈ H1
0 (Ω).
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Proof. We first consider u ∈ C∞0 (Ω). Let x ∈ Ω. Due to the fundamental theorem of
calculus, we have

u(x) = u(a) +

∫ x1

a

∂u

∂x1
(y, x2, . . . , xd) dy, (5.11)

and due to u ∈ C∞0 (Ω), we also have u(a) = 0.
Introducing

x̂ :=

x2
...
xd

 for all x ∈ Ω,

Ω̂ := {x̂ : x ∈ Ω},

we can write (5.11) in the shorter form

u(x) =

∫ x1

a

∂u

∂x1
(y, x̂) dy for all x ∈ Ω.

Squaring, integrating, and the Cauchy-Schwarz inequality (5.4) yields

‖u‖2L2 =

∫
Ω
u(x)2 dx =

∫
Ω

(∫ x1

a

∂u

∂x1
(y, x̂) dy

)2
dx

≤
∫

Ω

∫ x1

a
1 dy

∫ x1

a

( ∂u
∂x1

(y, x̂)
)2
dy dx

≤ R
∫

Ω

∫ b

a

( ∂u
∂x1

(y, x̂)
)2
dy dx

= R

∫ b

a

∫
Ω̂

∫ b

a

( ∂u
∂x1

(y, x̂)
)2
dy dx̂ dz

= R

∫ b

a

∫
Ω

( ∂u
∂x1

(x)
)2
dx dz

= R

∫ b

a

∥∥∥∥ ∂u∂x1

∥∥∥∥2

L2

dz = R2

∥∥∥∥ ∂u∂x1

∥∥∥∥2

L2

≤ R2‖∇u‖2L2 .

We have proven

‖u‖L2 ≤ R‖∇u‖L2 for all u ∈ C∞0 (Ω).

Let now u ∈ H1
0 (Ω), and let ε ∈ R>0. Due to Definition 5.13, we can find ũ ∈ C∞0 (Ω)

such that
‖u− ũ‖H1 ≤ ε.

Since we have already proven the desired estimate for all functions in C∞0 (Ω), we can
use the triangle inequality to find

‖u‖L2 ≤ ‖ũ‖L2 + ‖u− ũ‖L2 ≤ R‖∇ũ‖L2 + ε

≤ R‖∇u‖L2 +R‖∇(ũ− u)‖L2 + ε ≤ R‖∇u‖L2 +Rε+ ε.

This holds for all ε, so our proof is complete.
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Corollary 5.26 (Model problem) Let R be chosen as in Lemma 5.25. The bilinear
form

a : H1
0 (Ω)×H1

0 (Ω)→ R, (v, u) 7→ 〈∇v,∇u〉L2 ,

satisfies

|a(v, u)| ≤ ‖∇v‖L2‖∇u‖L2 ≤ ‖v‖H1‖u‖H1 for all v, u ∈ H1(Ω),

a(u, u) ≥ 1

1 +R2
‖u‖2H1 for all u ∈ H1

0 (Ω).

i.e., it is bounded and coercive.

Proof. Let v, u ∈ H1(Ω). Due to the Cauchy-Schwarz inequality (5.4), we have

|a(v, u)| = |〈∇v,∇u〉L2 | ≤ ‖∇v‖L2‖∇u‖L2 ≤ ‖v‖H1‖u‖H1 ,

so a is continuous with the continuity constant CB = 1.
Let u ∈ H1

0 (Ω). By Friedrichs’ Lemma 5.25, we have

‖u‖2L2 ≤ R2‖∇u‖2L2 ,

‖u‖2H1 = ‖u‖2L2 + ‖∇u‖2L2 ≤ R2‖∇u‖2L2 + ‖∇u‖2L2

= (1 +R2)‖∇u‖2L2 = (1 +R2)a(u, u),

and this implies
1

1 +R2
‖u‖2H1 ≤ a(u, u),

so a is coercive with the coercivity constant CK = 1/(1 +R2).

We can interprete this result as a norm equivalence: on the subspace H1
0 (Ω) with

homogeneous Dirichlet boundary conditions, the semi-norm

|u|H1 := ‖∇u‖H1 for all u ∈ H1(Ω)

is in fact a norm, and equivalent to the norm ‖u‖H1 . This is obviously not the case
without the boundary conditions, since we can choose u = 1 and obtain ‖∇u‖L2 = 0
and ‖u‖H1 = ‖u‖L2 =

√
|Ω| > 0.

Riesz’ Theorem 5.22 requires the bilinear form a to be symmetric, and this property
is not guaranteed for all partial differential equations we might want to investigate. We
now consider a generalization of this existence result.

If a is bounded, we can define the operator

A : V → V ′, u 7→ a(·, u),

and write (5.9) in the compact form

Au = β.
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Due to

‖Au‖V ′ = sup
( |a(v, u)|
‖v‖V

: v ∈ V \ {0}
)

≤ sup
(CB‖v‖V‖u‖V

‖v‖V
: v ∈ V \ {0}

)
≤ CB‖u‖V for all u ∈ V,

the operator A is well-defined and bounded, i.e., continuous.

Lemma 5.27 (Bounded inverse) Let A be invertible. The inverse is bounded if and
only if there is an α ∈ R>0 such that

α‖u‖V ≤ ‖Au‖V ′ = sup

{
|a(v, u)|
‖v‖V

: v ∈ V \ {0}
}

for all u ∈ V. (5.12)

In this case, we have ‖A−1‖V←V ′ ≤ 1/α.

Proof. We assume that A−1 is bounded, i.e.,

‖A−1‖V ′←V <∞.

By definition, this implies

‖A−1λ‖V ≤ ‖A−1‖V←V ′‖λ‖V ′

= ‖A−1‖V←V ′ sup

{
|λ(v)|
‖v‖V

: v ∈ V \ {0}
}

for all λ ∈ V ′.

Let now u ∈ V and λ := Au. We obtain

‖u‖V ≤ ‖A−1‖V←V ′ sup

{
|(Au)(v)|
‖v‖V

: v ∈ V \ {0}
}

= ‖A−1‖V←V ′ sup

{
|a(v, u)|
‖v‖V

: v ∈ V \ {0}
}
,

and this implies

1

‖A−1‖V←V ′
≤ sup

{
|a(v, u)|
‖v‖V‖u‖V

: v ∈ V \ {0}
}
.

Assume now that (5.12) holds. Let λ ∈ V ′ and u := A−1λ. We have

α‖A−1λ‖V = α‖u‖V ≤ sup

{
|a(v, u)|
‖v‖V‖u‖V

: v ∈ V \ {0}
}

= sup

{
|λ(v)|
‖v‖V‖u‖V

: v ∈ V \ {0}
}

= ‖λ‖V ′ ,

and this implies

‖A−1λ‖V ≤
1

α
‖λ‖V ′ .
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By definition of the operator norm, this is equivalent with ‖A−1‖V←V ′ ≤ 1/α.

The condition (5.12) is frequently written in the form

0 < α := inf

{
sup

{
|a(v, u)|
‖v‖V‖u‖V

: v ∈ V \ {0}
}

: u ∈ V \ {0}
}

and called an inf-sup condition.
Although this condition does not guarantee the invertibility of A, it ensures two other

important properties.

Lemma 5.28 (Closed range) Let a be continuous and satisfy (5.12). Then A is in-
jective and the range

R(A) := {Au : u ∈ V}
is a closed subspace of the dual space V ′.

Proof. We prove injectivity by contraposition: let u ∈ V \ {0}. Applying (5.12) yields

‖Au‖V ′ = sup

{
|a(v, u)|
‖v‖V‖u‖V

: v ∈ V \ {0}
}
‖u‖V ≥ α‖u‖V > 0,

i.e., Au 6= 0. Therefore Au = 0 implies u = 0 and A has to be injective.
Let now (λn)∞n=1 be a convergent sequence in R(A). By definition, we can find a

sequence (un)∞n=1 with

Aun = λn for all n ∈ N.

Let n,m ∈ N. We apply (5.12) to find

α‖un − um‖V ≤ ‖A(un − um)‖V ′ = ‖Aun −Aum‖V ′ = ‖λn − λm‖V ′ .

Since (λn)∞n=1 is convergent, it is also a Cauchy sequence. We have just proven that the
same holds for (un)∞n=1, so there is a u ∈ V with

u = lim
n→∞

un.

Since A is continuous, we have

lim
n→∞

λn = lim
n→∞

Aun = A lim
n→∞

un = Au ∈ R(A),

i.e., R(A) is a closed subspace.

In order to ensure that A is surjective, we need a criterion for checking R(A) = V ′.

Lemma 5.29 (Orthogonal projection) Let S ⊆ V be a closed subspace. There is a
linear mapping

ΠS : V → S
such that

〈v,ΠSu〉V = 〈v, u〉V for all u ∈ V, v ∈ S. (5.13)

If S 6= V, we can find w ∈ V with w 6= 0 and

〈v, w〉V = 0 for all v ∈ S.
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Proof. Let

ΨV : V → V ′, u 7→ 〈·, u〉V ,
ΨS : S → S ′, u 7→ 〈·, u〉V ,

denote the Riesz isomorphisms on V and S. Since S is a closed subspace of the Hilbert
space V, Corollary 5.24 guarantees that both are isometric isomorphisms

Since S and V share the same norm, we have V ′ ⊆ S ′ and can define

ΠS := Ψ−1
S ΨV .

Let now u ∈ V and v ∈ S. We have

〈v,ΠSu〉V = (ΨVu)(v) = 〈v, u〉V .

Assume S 6= V. This implies that we can find z ∈ V \ S. Let w := z − ΠSz. Due to
z 6∈ S and ΠSz ∈ S, we have w 6= 0, and (5.13) yields

〈v, w〉V = 〈v, z −ΠSz〉V = 〈v, z〉V − 〈v,ΠSz〉V = 0 for all v ∈ S.

Remark 5.30 (Adjoint operator) Let V and W be R-Hilbert spaces, and let A : V →
W denote a bounded operator.

For every w ∈ W, the mapping

λw : V → R, v 7→ 〈w,Av〉W ,

is a functional in V ′. Using the Riesz isomorphism ΨV , we define a new operator
A∗ : W → V by

A∗w := Ψ−1
V λw for all w ∈W

and observe

〈w,Av〉W = λw(v) = 〈A∗w, v〉V for all v ∈ V, w ∈ W.

We call A∗ the adjoint of A.
Denote the range of A by S := R(A) ⊆ W and the null space of A∗ by N (A∗) :=
{w ∈ W : A∗w = 0}, and assume that the range S is a closed subspace.

Let w ∈ W. Using the orthogonal projection ΠS introduced in Lemma 5.29, we can
define w1 := ΠSw and w2 := w − w1. By definition, we have w1 ∈ R(A). Due to
Lemma 5.29, we have

0 = 〈w −ΠSw,Av〉W = 〈w2,Av〉W = 〈A∗w2, v〉W for all v ∈ V,

and therefore A∗w2 = 0, i.e., w2 ∈ N (A∗).
We conclude that W is the orthogonal direct sum of R(A) and N (A∗).
In particular, this means that if a vector w ∈ W is orthogonal with respect to the null

space N (A∗), it belongs to the range R(A) of A.
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5.4. Galerkin methods

Theorem 5.31 (Babuška-Lax-Milgram) Let a be continuous and satisfy the inf-sup
condition (5.12).

If for each w ∈ V \ {0} there is a u ∈ V such that a(w, u) 6= 0, the operator A has an
inverse satisfying ‖A−1‖V←V ′ ≤ 1/α.

Proof. Due to Lemma 5.27, we know that if an inverse exists, it has to be bounded. Due
to Lemma 5.28, we know that R(A) is a closed subspace and that A is injective.

We prove our claim by contraposition: assume thatA does not have a bounded inverse.
We have already seen that this can only be the case if it is not surjective, so R(A) 6= V ′
holds. Applying the Riesz isomorphism yields that

X := Ψ−1
V (R(A))

is a closed proper subspace of V. Lemma 5.29 gives us a w ∈ V \ {0} such that

〈v, w〉V = 0 for all v ∈ X .

Since the inner product is symmetric, we can apply the definition of X to find

0 = 〈w,Ψ−1
V λ〉V = λ(w) for all λ ∈ R(A)

and by definition

0 = (Au)(w) = a(w, u) for all u ∈ V.

5.4. Galerkin methods

In order to solve a variational problem of the form (5.9), we have to make it finite-
dimensional, i.e., discretize it.

A particularly elegant and general approach is the Galerkin discretization: we fix a
finite-dimensional subspace Vn ⊆ V and solve the following finite-dimensional variational
problem:

Find un ∈ Vn such that

a(vn, un) = β(vn) for all vn ∈ Vn. (5.14)

Let n ∈ N denote the dimension of Vn.

The most important property of any discretization scheme is, of course, that it yields
an approximation of the original problem that can be actually be solved. In the case of
the Galerkin method, we can translate the discretized variational problem (5.14) into a
system of linear equations that can be solved by standard algorithms.
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5. Variational problems

Lemma 5.32 (Linear system) Let (ϕi)
n
i=1 be a basis of Vn, and let A ∈ Rn×n and

b ∈ Rn be defined by

aij := a(ϕi, ϕj), bi = β(ϕi) for all i, j ∈ [1 : n].

Let x ∈ Rn and

un =
n∑
j=1

xjϕj . (5.15)

We have Ax = b if and only if un is a solution of (5.14).

Proof. Assume first that Ax = b holds. Let vn ∈ Vn. Since (ϕi)
n
i=1 is a basis of Vn, we

can find coefficients y ∈ Rn such that

vn =
n∑
i=1

yiϕi

and obtain

a(vn, un) = a
( n∑
i=1

yiϕi,

n∑
j=1

xjϕj

)
=

n∑
i=1

n∑
j=1

yia(ϕi, ϕj)xj

=
n∑
i=1

n∑
j=1

yiaijxj =
n∑
i=1

yi(Ax)i = 〈y,Ax〉2 = 〈y, b〉2

=
n∑
i=1

yibi =
n∑
i=1

yiβ(ϕi) = β
( n∑
i=1

yiϕi

)
= β(vn).

Since this holds for arbitrary vn ∈ Vn, we have proven (5.14).
Let now un, as defined in (5.15), be a solution of (5.14), and let i ∈ [1 : n]. Due to

ϕi ∈ Vn, we have

(Ax)i =
n∑
j=1

aijxj =
n∑
j=1

a(ϕi, ϕj)xj = a
(
ϕi,

n∑
j=1

xjϕj

)
= a(ϕi, un) = β(ϕi) = bi.

Since this holds for all i ∈ [1 : n], we have Ax = b.

Since Vn is a Hilbert space, just like V, we can apply the results of the previous section
to establish existence and uniqueness of solutions of (5.14).

Corollary 5.33 (Existence and uniqueness) If there is an αn ∈ R>0 such that the
bilinear form a satisfies the discrete inf-sup condition

αn‖un‖V ≤ sup

{
|a(vn, un)|
‖vn‖V

: vn ∈ Vn \ {0}
}

for all un ∈ Vn, (5.16)

and if for each wn ∈ Vn \ {0} there is a un ∈ Vn such that a(wn, un) 6= 0, the discrete
variational problem (5.14) has a unique solution.
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5.4. Galerkin methods

Proof. Since Vn is finite-dimensional, the linearity of β already implies β ∈ V ′n. For the
same reasons, the bilinear form a is continuous in Vn × Vn.

Now we can simply apply Theorem 5.31 to Vn instead of V.

Corollary 5.34 (Coercivity) If a is coercive, the discrete variational problem (5.14)
has a unique solution.

Proof. Let a be coercive with

a(u, u) ≥ CK‖u‖2V for all u ∈ V

for 0 < CK ≤ CB.
Let un ∈ Vn \ {0}. We have

CK ≤
|a(un, un)|
‖un‖V‖un‖V

,

and this immediately implies

0 < CK ≤ sup

{
|a(vn, un)|
‖vn‖V‖un‖V

: vn ∈ Vn \ {0}
}
.

We have proven that the discrete inf-sup condition (5.16) holds, and Corollary 5.33 yields
existence and uniqueness of the solution.

Lemma 5.35 (Matrix properties) Let A be the matrix defined in Lemma 5.32.
If the bilinear form a is symmetric, the matrix A is symmetric.
If the bilinear form a is positive definite, the matrix A is positive definite.
If the bilinear form satisfies (5.16), the matrix A is invertible.

Proof. Assume that a is symmetric. We have

aij = a(ϕi, ϕj) = a(ϕj , ϕi) = aji for all i, j ∈ [1 : n].

Assume that a is positive definite. Let x ∈ Rn \ {0}. We define un as in (5.15) and
observe un 6= 0, since (ϕi)

n
i=1 is a basis.

We have

〈x,Ax〉2 =
n∑
i=1

n∑
j=1

xiaijxj =
n∑
i=1

n∑
j=1

xia(ϕi, ϕj)xj

= a
( n∑
i=1

xiϕi,

n∑
j=1

xjϕj

)
= a(un, un) > 0.

Assume that (5.16) holds. Let x ∈ Rn \ {0}, and define un as in (5.15). Due to (5.16),
we find vn ∈ Vn \ {0} such that

|a(vn, un)| ≥ CK‖vn‖V‖un‖V > 0.
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5. Variational problems

Since (ϕi)
n
i=1 is a basis, we find y ∈ Rn \ {0} such that

vn =

n∑
i=1

yiϕi

and obtain

|〈y,Ax〉2| =
∣∣∣ n∑
i=1

n∑
j=1

yiaijxj

∣∣∣ =

∣∣∣∣∣a(
n∑
i=1

yiϕi,

n∑
j=1

xjϕj

)∣∣∣∣∣ = |a(vn, un)| > 0,

which implies Ax 6= 0. Contraposition yields that Ax = 0 implies x = 0, i.e., A is
injective and therefore invertible.

Of course, we are also interested in finding estimates for the accuracy of the approxi-
mate solution un provided by (5.14). A key property of Galerkin discretization methods
is the Galerkin orthogonality.

Lemma 5.36 (Galerkin orthogonality) Let u ∈ V be a solution of (5.9), and let
un ∈ Vn be a solution of (5.14). We have

a(vn, u− un) = 0 for all vn ∈ Vn. (5.17)

Proof. Let vn ∈ Vn. We have

a(vn, u− un) = a(vn, u)− a(vn, un) = β(vn)− β(vn) = 0

due to (5.9) and (5.14).

Galerkin orthogonality allows us to compare the discretization error u − un to any
approximation error u − ũn for ũn ∈ Vn. The standard result is that un is “almost as
good” as the best possible approximation of u.

Depending on the properties of the bilinear form, we can obtain different estimates
for the discretization error.

Theorem 5.37 (Discretization error) Let a be continuous with the continuity con-
stant CB ∈ R≥0 and let the discrete inf-sup condition (5.16) hold with the constant
αn ∈ R>0.

Let u ∈ V and un ∈ Vn be solutions of (5.9) and (5.14), respectively. We have

‖u− un‖V ≤
(

1 +
CB
αn

)
‖u− ũn‖V for all ũn ∈ Vn.

Proof. Let ũn ∈ Vn. With the triangle inequality, (5.16), the Galerkin orthogonality,
and the continuity, we find

‖u− un‖V ≤ ‖u− ũn‖V + ‖ũn − un‖V

≤ ‖u− ũn‖V +
1

αn
sup

{
|a(vn, ũn − un)|

‖vn‖V
: vn ∈ Vn \ {0}

}
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= ‖u− ũn‖V +
1

αn
sup

{
|a(vn, ũn − u)|
‖vn‖V

: vn ∈ Vn \ {0}
}

≤ ‖u− ũn‖V +
1

αn
sup

{
CB‖vn‖V‖u− ũn‖V

‖vn‖V
: vn ∈ Vn \ {0}

}
= ‖u− ũn‖V +

CB
αn
‖u− ũn‖V ,

and this is the desired estimate.

Lemma 5.38 (Céa’s lemma, general case) Let a be coercive with the continuity
constant CB ∈ R≥0 and the coercivity constant CK ∈ R>0.

Let u ∈ V and un ∈ Vn be solutions of (5.9) and (5.14), respectively. We have

‖u− un‖V ≤
CB
CK
‖u− ũn‖V for all ũn ∈ Vn.

Proof. Let ũn ∈ Vn. Using the Galerkin orthogonality (5.17), we obtain

‖u− un‖2V ≤
1

CK
a(u− un, u− un) =

1

CK

(
a(u− un, u− un) + a(un − ũn, u− un)

)
=

1

CK
a(u− ũn, u− un) ≤ CB

CK
‖u− ũn‖V‖u− un‖V ,

and dividing by ‖u− un‖V yields our estimate.

We can obtain an improved result if the bilinear form a is symmetric.

Lemma 5.39 (Energy norm) Let a be symmetric and coercive with the continuity
constant CB ∈ R≥0 and the coercivity constant CK ∈ R>0. The energy norm is defined
by

‖u‖A :=
√
a(u, u) for all u ∈ V.

It satisfies √
CK‖u‖V ≤ ‖u‖A ≤

√
CB‖u‖V for all u ∈ V,

i.e., it is equivalent to the norm ‖ · ‖V .

Proof. Since a is symmetric and coercive, it is an inner product for V, so the energy
norm is indeed a norm.

Let u ∈ V. We have

CK‖u‖2V ≤ a(u, u) = ‖u‖2A = a(u, u) ≤ CB‖u‖2V ,

and taking the square roots yields the equivalence of the norms.
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5. Variational problems

Lemma 5.40 (Céa’s lemma, symmetric case) Let a be symmetric and coercive
with the continuity constant CB ∈ R≥0 and the coercivity constant CK ∈ R>0.

Let u ∈ V and un ∈ Vn be solutions of (5.9) and (5.14), respectively. We have

‖u− un‖A ≤ ‖u− ũn‖A,

‖u− un‖V ≤
√
CB
CK
‖u− ũn‖V for all ũn ∈ Vn.

Proof. (cf. [3]) Since a is symmetric and coercive, it is an inner product for the Hilbert
space V, and we have the Cauchy-Schwarz inequality (2.21) at our disposal.

Let ũn ∈ Vn. Using the Galerkin orthogonality (5.17) and the Cauchy-Schwarz in-
equality, we find

‖u− un‖2A = a(u− un, u− un) = a(u− ũn, u− un) ≤ ‖u− ũn‖A‖u− un‖A,

and dividing by ‖u− un‖A yields

‖u− un‖A ≤ ‖u− ũn‖A.

Dividing by a(u− un, u− un)1/2 and squaring yields

a(u− un, u− un) ≤ a(u− ũn, u− ũn).

Lemma 5.39 gives us the second estimate.
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6. Finite element methods

The idea of Galerkin’s discretization technique is to replace the Hilbert space V under-
lying the variational problem by a finite-dimensional subspace Vn. If we choose a basis
of Vn, the variational problem is equivalent to a linear system of equations, and this
system inherits many important properties like symmetry or coercivity from the original
problem.

Now we consider how we can construct finite-dimensional subspaces and choose bases
in a way that allows us to handle the resulting linear systems efficiently.

6.1. Triangulations

Before we can start to construct a space of functions, we first have to find a description
of the domain of these functions. Our approach is to describe polygons or polyhedra as
disjoint unions of triangles or tetrahedra following certain rules.

Definition 6.1 (Simplex) Let d ∈ N and k ∈ [0 : d]. A set t ⊆ Rd of cardinality k + 1
is called a k-dimensional vertex set in d-dimensional space if there is a w ∈ t such that

{v − w : v ∈ t \ {w}}

is linearly independent.
The set of all k-dimensional vertex sets in d-dimensional space is denoted by Sdk .
For all t ∈ Sdk , the sets

ωt :=
{∑
v∈t

αvv :
∑
v∈t

αv = 1, ∀v ∈ t : αv ∈ R>0

}
,

ω̄t :=
{∑
v∈t

αvv :
∑
v∈t

αv = 1, ∀v ∈ t : αv ∈ R≥0

}
,

are called the corresponding open and closed simplices.
Two-dimensional simplices are called triangles, three-dimensional simplices are called

tetrahedra.

Lemma 6.2 (Linear independence) Let d ∈ N, k ∈ [0 : d], and t ∈ Sdk . Let w ∈ t.
Then

{v − w : v ∈ t \ {w}} (6.1)

is linearly independent.
For all s ⊆ t we have s ∈ Sd` with ` := #s ≤ k.
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6. Finite element methods

Proof. By definition we find ŵ ∈ t such that

{v − ŵ : v ∈ t \ {ŵ}} (6.2)

is linearly independent. Let α ∈ Rt. We have∑
v∈t\{ŵ}

αv(v − ŵ) =
∑

v∈t\{ŵ}

αv(v − w)−
∑

v∈t\{ŵ}

αv(ŵ − w)

=
∑

v∈t\{w,ŵ}

αv(v − w)−
∑

v∈t\{ŵ}

αv(ŵ − w) =
∑

v∈t\{w}

βv(v − w)

with

βŵ := −
∑

v∈t\{ŵ}

αv, βv := αv for all v ∈ t \ {w, ŵ}.

We conclude that the span of (6.1) contains the span of (6.2). Since the latter is k-
dimensional, (6.1) has to be linearly independent.

Lemma 6.3 (Barycentric coordinates) Let d ∈ N, k ∈ [0 : d], t ∈ Sdk , and

Ft :=
{∑
v∈t

αvv :
∑
v∈t

αv = 1, ∀v ∈ t : αv ∈ R
}
.

There are unique mappings (λt,v)v∈t such that

x =
∑
v∈t

λt,v(x)v,
∑
v∈t

λt,v(x) = 1 for all x ∈ Ft.

For a point x ∈ Ft, the vector (λt,v(x))v∈t is called the vector of barycentric coordinates
of x with respect to t.

For v ∈ t, n ∈ N, and x1, . . . , xn ∈ Ft we have

λt,v

(
n∑
i=1

βixi

)
=

n∑
i=1

βiλt,v(xi) for all β1, . . . , βn ∈ R with
n∑
i=1

βi = 1. (6.3)

Proof. Let x ∈ Ft. By definition, we can find (αv)v∈t with∑
v∈t

αvv = x,
∑
v∈t

αv = 1.

We would like to define λt,v(x) := αv, but this is only admissible if the coefficients are
uniquely determined by x.

We fix a second family (βv)v∈t of coefficients also satisfying∑
v∈t

βvv = x,
∑
v∈t

βv = 1,
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and have to prove αv = βv for all v ∈ t.
By definition, we can find w ∈ t such that

{v − w : v ∈ t \ {w}}

is linearly independent. We have

x =
∑
v∈t

αvv = αww +
∑

v∈t\{w}

αvv =
(

1−
∑

v∈t\{w}

αv

)
w +

∑
v∈t\{w}

αvv

= w +
∑

v∈t\{w}

αv(v − w),

x = w +
∑

v∈t\{w}

βv(v − w).

Subtracting both equations yields

0 =
∑

v∈t\{w}

(αv − βv)(v − w),

and linear independence yields αv = βv for all v ∈ t \ {w}. Due to

αw = 1−
∑

v∈t\{w}

αv = 1−
∑

v∈t\{w}

βv = βw,

we have proven uniqueness, so the mappings λt,v are well-defined.

Let n ∈ N, x1, . . . , xn ∈ Ft, and β1, . . . , βn ∈ R with

n∑
i=1

βi = 1.

We have

x :=

n∑
i=1

βixi =

n∑
i=1

βi
∑
v∈t

λt,v(xi)v =
∑
v∈t

(
n∑
i=1

βiλt,v(xi)

)
v,

1 =
n∑
i=1

βi =
n∑
i=1

βi
∑
v∈t

λt,v(xi)
∑
v∈t

(
n∑
i=1

βiλt,v(xi)

)
.

Since barycentric coordinates are unique, we conclude

λt,v

(
n∑
i=1

βixi

)
= λt,v(x) =

n∑
i=1

βiλt,v(xi) for all v ∈ t.

This is (6.3).

111



6. Finite element methods

Lemma 6.4 (Representation of barycentric coordinates) Let d, k, t, Ft and the
barycentric coordinates be given as in Lemma 6.3. Let k > 0. Let v, w ∈ t with v 6= w,
and let z ∈ Ft − w with

〈z, u− w〉2 = 0 for all u ∈ t \ {v, w}.

Then we have 〈z, v − w〉2 6= 0 and

λt,v(x) =
〈z, x− w〉2
〈z, v − w〉2

for all x ∈ Ft.

Proof. We first address the existence of z with the stated properties. Due to Lemma 6.2,
the set {u− w : u ∈ t \ {w}} is a basis of a k-dimensional subspace V ⊆ Rd, therefore
{u − w : u ∈ t \ {v, w}} is a basis of a (k − 1)-dimensional subspace W ⊆ V. We can
choose z ∈ V \W to be orthogonal with respect to W.

〈z, v−w〉2 = 0 is impossible, since this would imply that z ∈ V \ {0} is perpendicular
on the entire space V spanned by W and v − w.

Let now x ∈ Ft. We have

x =
∑
u∈t

λt,u(x)u, 1 =
∑
u∈t

λt,u(x)

by definition and therefore

x− w = λt,w(x)w − w +
∑

u∈t\{w}

λt,u(x)u

=

1−
∑

u∈t\{w}

λt,u(x)

w − w +
∑

u∈t\{w}

λt,u(x)u

=
∑

u∈t\{w}

λt,u(x)(u− w).

Due to our choice of z, we find

〈z, x− w〉2 =
∑

u∈t\{w}

λt,u(x)〈z, u− w〉2 = λt,v(x)〈z, v − w〉2.

Dividing by 〈z, v − w〉2 yields the desired equation.

Definition 6.5 (Triangulation) Let Ω ⊆ Rd. A finite set T ⊆ Sdd is called a triangu-
lation of Ω if

ω̄t ∩ ω̄s = ω̄t∩s for all t, s ∈ T, (6.4a)

Ω̄ =
⋃
t∈t
ω̄t. (6.4b)
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6.1. Triangulations

Figure 6.1.: Triangulation of a two-dimensional domain

Lemma 6.6 (Disjoint simplices) Let Ω ⊆ Rd, and let T be a triangulation of Ω. If
there are t, s ∈ T with ωt ∩ ωs 6= ∅, we have t = s.

Proof. Let t, s ∈ T with ωt ∩ ωs 6= ∅. Let x ∈ ωt ∩ ωs.
Due to (6.4a), we have

x ∈ ω̄t ∩ ω̄s = ω̄t∩s.

We define

αv :=

{
λt∩s,v(x) if v ∈ t ∩ s,
0 otherwise

for all v ∈ t

and have

x =
∑
v∈t∩s

αvv =
∑
v∈t

αvv.

Due to Lemma 6.3, the barycentric coordinates are unique, so x ∈ ωt implies αv > 0 for
all v ∈ t. The definition of αv yields t ∩ s = t, and with #t = d + 1 = #s this already
gives us t = s.

Lemma 6.7 (Neighbouring simplices) Let Ω ⊆ Rd, and let T be a triangulation of
Ω. Let t, s, r ∈ T . If t ∩ s = t ∩ r and #(t ∩ s) = d, we have s = r.

This means that t can share a face or an edge with at most one other element of the
triangulation.

Proof. Let t ∩ s = t ∩ r and #(t ∩ s) = d.

We first consider the case d > 1. In this case, we can find x ∈ ωt∩s. This implies
λt∩s,v(x) > 0 for all v ∈ t ∩ s.
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x
y

y′
u

w

Figure 6.2.: Neighbouring simplices in the proof of Lemma 6.7

Since #t = d + 1 and #(t ∩ s) = d, we can find u ∈ t \ s such that t = {u} ∪ (t ∩ s).
By the same argument, we can also find w ∈ s \ t such that s = {w} ∪ (t ∩ s). Due to
x ∈ ωt∩s, the uniqueness of barycentric coordinates yields λt,u(x) = 0 = λs,w(x) and

λt,v(x) = λt∩s,v(x) > 0, λs,v(x) = λt∩s,v(x) > 0 for all v ∈ t ∩ s.

Since the barycentric coordinates are continuous due to Lemma 6.4, we can find an
ε ∈ R>0 such that

‖y − x‖2 < ε =⇒ ∀v ∈ t ∩ s : λt,v(y) > 0 ∧ λs,v(y) > 0 for all y ∈ Rd. (6.5)

Let y ∈ Rd with ‖y − x‖2 < ε. If λt,u(y) > 0 holds, (6.5) yields y ∈ ωt. If λt,u(y) = 0
holds, we have y ∈ ωt∩s. If λt,u(y) < 0 holds, we let y′ := x − (y − x) and use (6.3) to
find that

y + y′

2
=
y + x− y + x

2
= x

gives us

0 = λt,u(x) = λt,u

(
y + y′

2

)
=

1

2

(
λt,u(y) + λt,u(y′)

)
,

i.e., λt,u(y′) > 0, so (6.5) again gives us y′ ∈ ωt. Due to Lemma 6.6, this implies y′ 6∈ ωs
and therefore λs,w(y′) < 0. We use (6.3) again to get

0 = λs,w(x) = λs,w

(
y + y′

2

)
=

1

2

(
λs,w(y) + λs,w(y′)

)
,

i.e., λs,w(y) > 0 and therefore y ∈ ωs. To summarize, we have
y ∈ ωt if λt,u(y) > 0,

y ∈ ωt∩s if λt,u(y) = 0,

y ∈ ωs if λt,u(y) < 0.
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6.2. Piecewise polynomials

We have x ∈ ω̄t∩s = ω̄t∩r ⊆ ω̄r, so any ball centered at x has to intersect ωr. This means
that we can find y ∈ ωr such that ‖y − x‖2 < ε. We cannot have λt,u(y) = 0, since this
would imply y ∈ ω̄t∩s 6⊆ ωr.

We cannot have λt,u(y) > 0, since this would imply y ∈ ωt∩ωr, and Lemma 6.6 would
yield t = r, although we have #(t ∩ r) = d < d+ 1 = #t.

This leaves only λt,u(y) < 0, i.e., y ∈ ωs. Lemma 6.6 yields r = s.

6.2. Piecewise polynomials

Given a triangulation that describes the domain Ω, we can now investigate suitable
discrete spaces Vn that may be used in Galerkin’s method.

A simple approach would be to use polynomials. We define multidimensional mono-
mials by

xν := xν1
1 . . . xνdd for all ν ∈ Nd0, x ∈ Rd

and introduce the spaces

Πd
m :=

{
x 7→

∑
ν∈Nd0
|ν|≤m

ανx
ν : αν ∈ R for all ν ∈ Nd0, |ν| ≤ m

}
for all d ∈ N, m ∈ N0

of d-dimensional polynomials of m-th degree.
A first approach could be to use

Vn = {p|Ω : p ∈ Πd
m}

for a suitable degree m ∈ N0. According to Theorem 5.37, we can only expect to be
able to approximate solutions u of the variational problem that are close to polynomials,
i.e., “almost” infinitely differentiable. This would be a severe limitation of the resulting
discretization.

A better approach is to use piecewise polynomials, i.e., to fix a triangulation T and
consider the space

Πd
T,m := {u ∈ L2(Ω) : u|ωt ∈ Πd

m for all t ∈ T}

of square-integrable functions that are polynomials on each simplex of the triangulation.
By definition, this is a subspace of L2(Ω). For our variational problem, we need a
subspace of H1

0 (Ω), and it is possible to prove that Πd
T,m is not a subspace of H1(Ω).

This is due to the fact that an element of Πd
T,m can have “jumps” at the boundaries

of the simplices ωt. Our goal is to prove that if we can get rid of these jumps, we obtain
a subspace of H1(Ω).

Let T be a triangulation of Ω. We define the set of faces of a simplex

Et := {e : e ⊆ t, #e = d} ⊆ Sdd−1
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6. Finite element methods

and the set of faces of the entire triangulation

ET := {e : e ∈ Et, t ∈ T} ⊆ Sdd−1.

For d = 2, the elements of Et correspond to the edges between triangles. For d = 3, they
correspond to the triangular faces of tetrahedra. The boundary of a simplex is given by

∂ωt =
⋃
e∈Et

ω̄e for all t ∈ T.

We denote the outer unit normal vector of ωt by

nt : ∂ωt → Rd.

Due to Lemma 6.7, there can be at most two t ∈ T with e ⊆ t.
A face e ∈ ET is called a boundary face if there is exactly one t ∈ T such that e ⊆ t.

A face e ∈ ET is a boundary face if and only if ωe ⊆ ∂Ω holds.
For each e ∈ Et, we fix a unit normal vector ne ∈ Rd. If e is a boundary face, we

require ne to be the outer normal vector.
If e ∈ ET is not a boundary face, the normal vector ne has to be an outer normal

vector for one of the two simplices sharing e as a face, i.e., there is exactly one simplex
t ∈ T such that e ⊆ t and nt|ωe = ne. We denote this simplex by te,+.

There is exactly one other simplex t ∈ T with e ⊆ t, and for this simplex, we have
nt|ωe = −ne. We denote this simplex by te,−.

Theorem 6.8 (Continuous piecewise polynomials) Let m ∈ N0 and denote by

PT,m := {u ∈ C(Ω̄) : u ∈ Πd
T,m}

the continuous piecewise polynomials of degree m.
We have PT,m ⊆ H1(Ω) and

(∂νu)|ωt = ∂ν(u|ωt) for all t ∈ T, ν ∈ Nd0, |ν| = 1.

Proof. Let u ∈ PT,m and ν ∈ [1 : d]. Due to u ∈ Πd
T,m, we can find polynomials ut ∈ Πd

m

such that

u|ωt = ut|ωt for all t ∈ T.

Our candidate for a weak derivative is the function v ∈ L2(Ω) given by

v|ωt :=
∂ut
∂xν
|ωt for all t ∈ T.

We have to verify that (5.6) holds. Let ϕ ∈ C∞0 (Ω). Using partial integration (cf.
Reminder 4.3), we find∫

Ω

∂ϕ

∂xν
(x)u(x) dx =

∑
t∈T

∫
ωt

∂ϕ

∂xν
(x)ut(x) dx
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6.2. Piecewise polynomials

=
∑
t∈T

∫
∂ωt

nt,ν(x)ϕ(x)ut(x) dx−
∫
ωt

ϕ(x)
∂ut
∂xν

(x) dx

=
∑
t∈T

∑
e∈Et

∫
ωe

nt,ν(x)ϕ(x)ut(x) dx−
∫

Ω
ϕ(x)v(x) dx

Due to ϕ|∂Ω = 0, we can discard all integrals for boundary edges and get

∑
t∈T

∑
e∈Et

∫
ωe

nt,ν(x)ϕ(x)ut(x) dx =
∑
e∈ET

∑
t∈T
e⊆t

∫
ωe

nt,ν(x)ϕ(x)ut(x) dx

=
∑
e∈ET
ωe 6⊆∂Ω

∑
t∈T
e⊆t

∫
ωe

nt,ν(x)ϕ(x)ut(x) dx

=
∑
e∈Et
ωe 6⊆∂Ω

∫
ωe

ne,νϕ(x)(ute,+(x)− ute,−(x)) dx.

Since u is continuous, we have

ute,+ |ωe = ute,− |ωe

and conclude ∑
e∈Et
ωe 6⊆∂Ω

∫
ωe

ne,νϕ(x)(ute,+(x)− ute,−(x)) dx = 0.

This implies ∫
Ω

∂

∂xν
ϕ(x)u(x) dx = −

∫
Ω
ϕ(x)v(x) dx,

so v is indeed the weak derivative of u.

The space PT,0 is not of interest to us, since a continuous piecewise constant polynomial
is just constant. If we take our boundary conditions into account, only the zero function
would remain.

The space PT,1, on the other hand, is very useful and probably the most frequently
used finite element space. Its popularity is largely due to the fact that we can construct
a very convenient basis.

Theorem 6.9 (Barycentric basis) Let t ∈ Sdd . Then we have Ft = Rd, and the
barycentric coordinates (λt,v)v∈t are a basis of Πd

1 with

λt,v(w) =

{
1 if w = v,

0 otherwise
for all v, w ∈ t, (6.6a)

p =
∑
v∈t

p(v)λt,v for all p ∈ Πd
1. (6.6b)
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Proof. Due to Definition 6.1, we find w ∈ t such that

{v − w : v ∈ t \ {w}}

is a basis of Rd. Let x ∈ Rd, and let (βv)v∈t\{w} be chosen such that

x− w =
∑

v∈t\{w}

βv(v − w).

We find

x = w +
∑

v∈t\{w}

βv(v − w) = w +
∑

v∈t\{w}

βvv −
( ∑
v∈t\{w}

βv

)
=
(

1−
∑

v∈t\{w}

βv

)
︸ ︷︷ ︸

=:αw

w +
∑

v∈t\{w}

βv︸︷︷︸
=:αv

v =
∑
v∈t

αvv,

and conclude x ∈ Ft, i.e., Ft = Rd.
Let now v ∈ t. Lemma 6.4 yields that λt,v is a linear polynomial.
Due to Lemma 6.3, we have (6.6a). Let α ∈ Rd, and let

p :=
∑
v∈t

αvλt,v.

Due to (6.6a), we have

αw =
∑
v∈t

αvλt,v(w) = p(w) for all w ∈ t.

This is (6.6b), and since p = 0 implies α = 0, we also obtain that (λt,v)v∈t is linearly
independent. Its span is a subspace of Πd

1 of dimension #t = d+1, and since d+1 is also
the dimension of Πd

1, we have established that the barycentric coordinates are indeed a
basis.

This Theorem allows us to characterize a function u ∈ PT,1 entirely by its values in
the vertices of the simplices: let t ∈ T , and let ũ ∈ PT,1 be another function such that

u(v) = ũ(v) for all v ∈ t.

Due to Theorem 6.9, we have u|ωt = ũ|ωt . If u and ũ have identical values in all vertices,
they have to be identical.

Now let us consider the reverse question: given values in all vertices, can we find a
function u ∈ PT,1 that takes these values? Theorem 6.9 allows us to define a function in
Πd

1, but in order to ensure continuity, we have to extend the result.

Corollary 6.10 (Local representation) We have

p(x) =
∑
v∈t∩s

p(v)λt∩s,v(x) for all p ∈ Πd
1, t, s ∈ T, x ∈ ω̄t∩s.
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6.2. Piecewise polynomials

Figure 6.3.: Nodal basis function (left) and its support (right) for a two-dimensional
triangulation

Proof. Let p ∈ Πd
1, t, s ∈ T , and x ∈ ω̄t∩s.

Due to Theorem 6.9, we have

p =
∑
v∈t

p(v)λt,v.

Due to Lemma 6.3 and x ∈ ω̄t∩s, we have

λt,v(x) =

{
λt∩s,v(x) if v ∈ t ∩ s,
0 otherwise

for all v ∈ t,

and combining both equations yields

p(x) =
∑
v∈t

p(v)λt,v(x) =
∑
v∈t∩s

p(v)λt∩s,v(x).

Definition 6.11 (Nodal basis) We denote the set of nodes of the triangulation T by

NT :=
⋃
{t : t ∈ T}.

For each v ∈ NT we define ϕv ∈ PT,1 by

ϕv|ω̄t =

{
λt,v|ω̄t if v ∈ t,
0 otherwise

for all t ∈ T. (6.7)

The set (ϕv)v∈NT is called the nodal basis of PT,1.

Lemma 6.12 (Nodal basis) We have ϕv ∈ PT,1 for all v ∈ NT . (ϕv)v∈NT is a basis
of PT,1 satisfying

ϕv(w) =

{
1 if w = v,

0 otherwise
for all v, w ∈ NT , (6.8a)

u =
∑
v∈NT

u(v)ϕv for all u ∈ PT,1. (6.8b)
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6. Finite element methods

Proof. Let v ∈ NT . By definition, we have ϕv ∈ Πd
1.

We have to prove that ϕv is well-defined and continuous. Let t, s ∈ T with v ∈ t and
ω̄t∩ ω̄s 6= ∅. Due to Definition 6.5, we have ω̄t∩s = ω̄t∩ ω̄s 6= ∅, and this implies t∩s 6= ∅.

If v ∈ t ∩ s, Corollary 6.10 yields

λt,v|ω̄t∩s = λt∩s,v|ω̄t∩s = λs,v|ω̄t∩s .

If v ∈ t \ s, the uniqueness of the barycentric coordinates (cf. Lemma 6.3) yields

λt,v|ω̄t∩s = 0.

We conclude that ϕv is well-defined and continuous.

To prove (6.8a), let v, w ∈ NT . By definition, we find t ∈ T with v ∈ t. If w 6∈ t,
Definition 6.11 immediately yields ϕv(w) = 0. Otherwise, we have v, w ∈ t and (6.6a)
yields (6.8a).

To prove that {ϕv : v ∈ NT } is linearly independent, let α ∈ RNT and

u :=
∑
v∈NT

αvϕv.

Due to (6.8a), we have

αw =
∑
v∈NT

αvϕv(w) = u(w) for all w ∈ NT . (6.9)

In particular, u = 0 implies α = 0, so the nodal basis functions are linearly independent.

Let now u ∈ PT,1. We define

αv := u(v) for all v ∈ NT ,

and (6.6b) yields

u|ωt =
∑
v∈t

u(v)λt,v|ωt =
∑
v∈t

αvϕv|ωt =
∑
v∈NT

αvϕv|ωt for all t ∈ T,

and therefore

u =
∑
v∈NT

αvϕv.

We conclude that the nodal basis spans PT,1, and (6.9) gives us (6.8b).

For our model problem, we require a finite-dimensional subspace of H1
0 (Ω), so we have

to include our boundary condition. Since a function in PT,1 can only be non-zero on the
boundary if it is non-zero in at least one vertex on the boundary, we can include the
boundary condition by discarding all boundary vertices. This leads to the subspace

Vn := span{ϕi : i ∈ I} = {u ∈ PT,1 : u|∂Ω = 0}, I := {i ∈ NT : i 6∈ ∂Ω}.
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6.3. Assembly of the linear system

We have already seen in Lemma 5.32 that finding the solution un ∈ Vn of the discretized
variational problem

a(vn, un) = β(vn) for all vn ∈ Vn

is equivalent to solving the linear system

Ax = b

with A ∈ RI×I and b ∈ RI given by

aij = a(ϕi, ϕj), bi = β(ϕi) for all i, j ∈ I.

In the case of nodal basis functions, we have

aij =

∫
Ω
〈∇ϕi(x),∇ϕj(x)〉2 dx =

∑
t∈T

∫
ωt

〈∇ϕi(x),∇ϕj(x)〉2 dx,

bi =

∫
Ω
ϕi(x)f(x) dx =

∑
t∈T

∫
ωt

ϕi(x)f(x) dx for all i, j ∈ I.

By our definition, ϕi|ωt 6= 0 holds if and only if i ∈ t, so we can elimininate most of the
simplices and obtain

aij =
∑
t∈T
i,j∈t

∫
ωt

〈∇ϕi(x),∇ϕj(x)〉2 dx,

bi =
∑
t∈T
i∈t

∫
ωt

ϕi(x)f(x) dx for all i, j ∈ I.

In theory, we could evaluate the entries of A and b by these equations, but it would be
challenging to obtain an efficient implementation: in order to avoid quadratic complexity
for A, we would have to ensure that for each i ∈ I we can quickly find all t ∈ T with
i ∈ t, e.g., by keeping suitable lists.

A far more elegant way is to assemble the matrix and the vector incrementally : we
start with a zero matrix and a zero vector and then add the contributions of the individual
simplices associated with t ∈ T .

Definition 6.13 (Element matrix and vector) Let t ∈ T . The matrix At ∈ Rt×t
given by

at,ij :=

∫
ωt

〈∇ϕi(x),∇ϕj(x)〉2 dx for all i, j ∈ t

is called the element matrix for t.
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The vector bt ∈ Rt given by

bt,i :=

∫
ωt

ϕi(x)f(x) dx for all i ∈ t

is called the element vector for t.

We find

aij =
∑
t∈T
i,j∈t

at,ij , bi =
∑
t∈T
i∈t

bt,i for all i, j ∈ I

and perform the assembly of the matrix A and the vector b by the following algorithm:

procedure assemble;
A← 0;
b← 0;
for t ∈ T do begin

Compute At and bt;
for i, j ∈ t do
aij ← aij + at,ij ;

for i ∈ t do
bi ← bi + bt,i

end

This is a very elegant approach: we compute only the entries we need (with the
exception of a small number of boundary nodes), and we never touch entries of the
matrix that correspond to indices not sharing the same simplex.

Unless the function f has very special properties, we may not be able to evalute bt,i
directly. We can avoid this problem by using a quadrature formula.

Lemma 6.14 (Edge midpoint quadrature) Let t ∈ Sd2 with d ≥ 2. We denote the
midpoint of the edge opposite the vertex v ∈ t by

mv :=
1

2

∑
w∈t\{v}

w for all v ∈ t.

The edge midpoint quadrature rule is given by

Qt : C(ω̄t)→ R, u 7→ |ωt|
3

∑
v∈t

u(mv),

where |ωt| denotes the Lebesgue measure of the set ωt.
Since the weights are positive, we obtain the optimal stability estimate

|Qt(u)| ≤ |ωt| ‖u‖∞,ωt for all u ∈ C(ω̄t).
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We also find

Qt(λt,v) =

∫
ωt

λt,v(x) dx, Qt(λt,vλt,w) =

∫
ωt

λt,v(x)λt,w(x) dx for all v, w ∈ t,

and this implies that all quadratic polynomials are integrated exactly by Qt.

Proof. Left to the reader as an exercise. It may be a good idea to transform to a simple
triangle like t̂ = {(0, 0), (1, 0), (0, 1)} to evaluate the exact integrals.

If we use the edge midpoint quadrature rule to approximate bt,i, we can take advantage
of the uniqueness of barycentric coordinates to obtain

λt,w(mv) =

{
1/2 if w 6= v,

0 otherwise
for all v, w ∈ t,

i.e., evaluating the nodal basis functions ϕi|ωt = λt,i|ωt in the edge midpoints is partic-
ularly simple.

In order to compute At, we require the gradients of the basis functions. A simple
approach can be based on the determinant: let i ∈ I and t ∈ T with i ∈ t. By definition,
we have ϕi|ωt = λt,i|ωt . Let t = {v0, . . . , vd}, where v0 = v, and consider

µ(x) :=
det(x− v1, v2 − v1, . . . , vd − v1)

det(v0 − v1, v2 − v1, . . . , vd − v1)
for all x ∈ Rd.

Due to Lemma 6.2, the denominator is non-zero, so µ is well-defined, and we have
µ(v0) = 1. Since the determinant is multilinear, we have µ(v1) = 0 and µ is a linear
polynomial. Since the determinant is alternating, we have µ(v`) = 0 for all ` ∈ [2 : d].

This means that µ and λt,v coincide in all vertices v ∈ t, and Theorem 6.9 yields
µ = λt,v.

For d = 2, µ is of the form

µ(x) =
det(x− v1, v2 − v1)

det(v0 − v1, v2 − v1)

=
(x1 − v1,1)(v2,2 − v1,2)− (x2 − v1,2)(v2,1 − v1,1)

det(v0 − v1, v2 − v1)

= 〈x− v1, gv〉2 for all x ∈ Rd,

where we use

gv :=
1

det(v0 − v1, v2 − v1)

(
v2,2 − v1,2

v1,1 − v2,1

)
.

This representation immediately yields ∇λt,v = ∇µ = gv.
For d = 3, we have

µ(x) =
det(x− v1, v2 − v1, v3 − v1)

det(v0 − v1, v2 − v1, v3 − v1)
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=
1

det(v0 − v1, v2 − v1, v3 − v1)

(
(x1 − v1,1) det

(
v2,2 − v1,2 v3,2 − v1,2

v2,3 − v1,3 v3,3 − v1,3

)
− (x2 − v1,2) det

(
v2,1 − v1,1 v3,1 − v1,1

v2,3 − v1,3 v3,3 − v1,3

)
+ (x3 − v1,3) det

(
v2,1 − v1,1 v3,1 − v1,1

v2,2 − v1,2 v3,2 − v1,2

))

=
〈x− v1, (v2 − v1)× (v3 − v1)〉2
det(v0 − v1, v2 − v1, v3 − v1)

= 〈x− v1, gv〉 for all x ∈ Rd,

where the cross product is defined by

a× b :=

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 for all a, b ∈ R3

and the vector gv is given by

gv :=
(v2 − v1)× (v3 − v1)

det(v0 − v1, v2 − v1, v3 − v1)
.

For d > 3, we can generalize this approach by using Laplace’s formula and using cofactors
to construct gv.

Remark 6.15 (Cyclic evaluation) In order to construct At, we require the gradients
gv for all v ∈ t. We can reduce the number of operations by taking advantage of the
properties of the determinant: assume that we have already computed det(v0 − v1, v2 −
v1, . . . , vd−1−v1, vd−v1) and now have to compute the determinant for cyclically shifted
vectors, i.e., det(v1−v2, v3−v2, . . . , vd−v2, v0−v2). Since the determinant is alternating
and multilinear, we can add the first argument v1 − v2 to all other arguments without
changing the result and get

det(v1 − v2, v3 − v2, . . . , vd − v2, v0 − v2) = det(v1 − v2, v3 − v1, . . . , vd − v1, v0 − v1).

Since the determinant is linear in the first argument, we can change the sign to get

det(v1 − v2, v3 − v2, . . . , vd − v2, v0 − v2) = −det(v2 − v1, v3 − v1, . . . , vd − v1, v0 − v1).

Now we can again use the alternating property to switch the columns d− 1 and d, then
d− 2 and d− 1, and so on until we have performed d− 1 switches and arrive at

det(v1 − v2, v3 − v2, . . . , vd − v2, v0 − v2) = (−1)d det(v0 − v1, v2 − v1, . . . , vd − v1).

This means that every cyclic shift of the vertices only changes the sign of the determinant
(and its reciprocal) by (−1)d, so we only have to compute it once and just flip the sign
appropriately.
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6.4. Reference elements

Until now, we have only considered domains that can be split into simplices, e.g., poly-
gons and polyhedra. In order to treat more general domains, we replace the simplices
by images of a fixed reference simplex under suitable diffeomorphisms. This approach
allows us to handle, e.g., curved domains.

Let T be a triangulation of a domain Ω ⊆ Rd, and let t ∈ T . We enumerate the
vertices in t, i.e., we fix v0, . . . , vd ∈ t such that t = {v0, . . . , vd}. Due to Lemma 6.2, we
know that

{v1 − v0, . . . , vd − v0}
is linearly independent, so the matrix

F :=
(
v1 − v0 . . . vd − v0

)
∈ Rd×d

is invertible, and the mapping

Φt : Rd → Rd, x̂ 7→ v0 + Fx̂,

is bijective. We define the reference simplex by

ω̂ :=
{
x̂ ∈ Rd :

d∑
i=1

x̂i ≤ 1, x̂i ≥ 0 for all i ∈ [1 : d]
}

and observe

Φt(ω̂) = {v0 + Fx̂ : x̂ ∈ ω̂}

=
{
v0 +

d∑
j=1

(vj − v0)x̂j :

d∑
i=1

x̂i ≤ 1, x̂i ∈ R≥0 for all i ∈ [1 : d]
}

=

{(
1−

d∑
i=1

x̂i

)
v0 +

d∑
j=1

vj x̂j : 1−
d∑
i=1

x̂i ≥ 0, x̂i ∈ R≥0 for all i ∈ [1 : d]

}

=
{ d∑
j=0

vj x̂j :

d∑
j=0

x̂j = 1, x̂i ∈ R≥0 for all i ∈ [0 : d]
}

= ω̄t,

where we have introduced x̂0 = 1−
∑d

j=1 x̂j in the last step.

Remark 6.16 (Barycentric coordinates) Since the barycentric coordinates for an
element t ∈ T are uniquely determined by∑

v∈t
λt,v(x)v = x,

∑
v∈t

λt,v(x) = 1 for all x ∈ Rd,

our equation allows us to compute these coordinates by usingλt,v1(x)
...

λt,vd(x)

 = Φ−1
t (x) = F−1(x− v0), λt,v0(x) = 1−

d∑
j=1

λt,vj (x) for all x ∈ Rd.
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Φ

ω̂
ω

Figure 6.4.: Mapping the reference simplex ω̂ to ω

Since Φt is a bijective diffeomorphism mapping ω̂ to ωt, we can use the transformation
of variables equation to obtain∫

ωt

ϕi(x)f(x) dx =

∫
Φt(ω̂)

ϕi(x)f(x) dx =

∫
ω̂
| detDΦt(x̂)|ϕi(Φt(x̂))f(Φt(x̂)) dx̂

for i ∈ t. We can see that
ϕ̂t,i := ϕi ◦ Φt

is a linear polynomial, since ϕi is a linear polynomial and Φt is a linear transformation.
We denote the vertices of the reference simplex by

v̂0 :=


0
0
...
0

 , v̂1 :=


1
0
...
0

 , v̂2 :=


0
1
...
0

 , . . . , v̂d :=


0
0
...
1

 ,

introduce the vertex set t̂ := {v̂0, . . . , v̂d}, and observe

Φt(v̂i) = vi for all i ∈ [0 : d].

Due to (6.8a), we have

ϕ̂t,vi(v̂j) = ϕvi(Φt(v̂j)) = ϕvi(vj) =

{
1 if i = j,

0 otherwise
for all i, j ∈ [0 : d],

and (6.6b) yields that ϕ̂t,vi is the barycentric coordinate λt̂,v̂i corresponding to the ref-
erence simplex.

This means that the nodal basis functions can also be defined by

ϕi|ωt =

{
λt̂,v̂ ◦ Φ−1

t if i = Φt(v̂) for v̂ ∈ t̂,
0 otherwise

for all i ∈ NT ,

and this definition can be generalized: we assume that a set (ϕ̂i)i∈Î of basis functions
on ω̂ is given and that we have a general invertible diffeomorphism

Φ : ω̂ → ω

126



6.4. Reference elements

with ω ⊆ Rd. We define mapped basis functions by

ϕi := ϕ̂i ◦ Φ−1 for all i ∈ Î,

and consider the element vector and the element matrix given by

bω,i :=

∫
ω
ϕi(x)f(x) dx for all i ∈ Î,

aω,ij :=

∫
ω
〈∇ϕi(x),∇ϕj(x)〉2 dx for all i, j ∈ Î.

By applying our transformation, the element vector can be easily evaluated (or at least
approximated) due to

bω,i :=

∫
ω
ϕi(x)f(x) dx =

∫
ω̂
|detDΦ(x̂)|ϕi(Φ(x̂)) f(Φ(x̂)) dx̂

=

∫
ω̂
| detDΦ(x̂)| ϕ̂i(x̂) f(Φ(x̂)) dx̂ for all i ∈ Î

if we have a suitable quadrature rule for the reference simplex ω̂ at our disposal and can
efficiently evaluate the Jacobi matrix

DΦ(x̂) =
(
∂Φ
∂x̂1

(x̂) . . . ∂Φ
∂x̂d

(x̂)
)

for all quadrature points.
Evaluating the element matrix is a little more challenging, since it requires the gradi-

ents of the mapped basis functions. Due to the chain rule, we have

∇ϕi(x) = Dϕi(x)∗ = D(ϕ̂i ◦ Φ−1)(x)∗ = (Dϕ̂i(Φ
−1(x))D(Φ−1)(x))∗

= (Dϕ̂i(Φ
−1(x))DΦ(x)−1)∗ = (DΦ(Φ−1(x))−1)∗(Dϕ̂i(Φ

−1(x))

= (DΦ(Φ−1(x))−1)∗∇ϕ̂i(Φ−1(x)) for all x ∈ ω, i ∈ Î.

If we use the transformation Φ again, we only have to be able to evaluate ∇ϕi(Φ(x̂)),
which is given by

∇ϕi(Φ(x̂)) = (DΦ(x̂)−1)∗∇ϕ̂i(x̂) for all x̂ ∈ ω̂, i ∈ Î.

We can see that we only need the gradient of the basis function ϕ̂i on the reference
simplex and the transposed matrix of the inverse of DΦ(x̂), and the latter can be easily
computed if we have DΦ(x̂) at our disposal.

The entries of the element matrix are given by

aω,ij =

∫
ω
〈∇ϕi(x),∇ϕj(x)〉2 dx

=

∫
ω̂
|detDΦ(x̂)| 〈∇ϕi(Φ(x̂)),∇ϕj(Φ(x̂))〉2 dx̂

=

∫
ω̂
|detDΦ(x̂)| 〈(DΦ(x̂)−1)∗∇ϕ̂i(x̂), (DΦ(x̂)−1)∗∇ϕ̂j(x̂)〉2 dx̂ for all i, j ∈ Î.

By using a suitable quadrature rule, we only have to be able to evaluate DΦ(x̂) and
∇ϕ̂i(x̂) in all quadrature points to find an approximation of aω,ij .
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6. Finite element methods

6.5. Averaged Taylor expansion

We have already seen that the error ‖u− un‖V introduced by the Galerin discretization
can be bounded by ‖u − vn‖V for all vn ∈ Vn, so in order to obtain a practical bound,
we only have to find some element of Vn that approximates u reasonably well.

In the one-dimensional setting, this can be accomplished by using a simple interpolant:
we define the interpolation operator

I1 : C2[−h, h]→ Π1, u 7→
(
x 7→ h− x

2h
u(−h) +

h+ x

2h
u(h)

)
,

and observe that it is stable, i.e.,

‖I1[u]‖∞,[−h,h] ≤ ‖u‖∞,[−h,h] for all u ∈ C2[−h, h], (6.10)

and that it is a projection, i.e.,

I1[p] = p for all p ∈ Π1. (6.11)

In order to obtain an estimate for the interpolation error, we employ the linear Taylor
polynomial

T1 : C2[−h, h]→ Π1, u 7→
(
x 7→ u(0) + xu′(0)

)
,

and note that Taylor’s theorem allows us to find an η ∈ [−h, h] for each x ∈ [−h, h] such
that

u(x) = u(0) + xu′(0) + x2u
′′(η)

2
= T1[u](x) + x2u

′′(η)

2

holds, and this implies

‖u− T1[u]‖∞,[−h,h] ≤
h2

2
‖u′′‖∞,[−h,h] for all u ∈ C2[−h, h]. (6.12)

Using T1[u] ∈ Π1, (6.11), and (6.10), we find

‖u− I1[u]‖∞,[−h,h] = ‖u− T1[u]− I1[u− T1[u]]‖∞,[−h,h]

≤ ‖u− T1[u]‖∞,[−h,h] + ‖I1[u− T1[u]]‖∞,[−h,h]︸ ︷︷ ︸
≤‖u−T1[u]‖∞,[−h,h]

≤ 2‖u− T1[u]‖∞,[−h,h]

≤ h2‖u′′‖∞,[−h,h] for all u ∈ C2[−h, h].

In order to approximate by continuous piecewise linear polynomials, we interpolate in the
vertices of the sub-intervals. This guarantees continuity, and the Taylor error estimate
yields an error bound for each sub-interval.

Our goal is now to generalize this approach, first to the multi-dimensional setting with
classically differentiable functions, then to weakly differentiable functions.
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6.5. Averaged Taylor expansion

Let t ∈ Sdd , and let

It : C(ω̄t)→ Πd
1, u 7→

(
x 7→

∑
v∈t

λt,v(x)u(v)

)
,

denote the nodal interpolation operator.

Lemma 6.17 (Nodal interpolation) We have

‖It[u]‖∞,ω̄t ≤ ‖u‖∞,ω̄t for all u ∈ C(ω̄t), , (6.13a)

It[p] = p for all p ∈ Πd
1. (6.13b)

Proof. Since x ∈ ω̄t is equivalent to λt,v(x) ≥ 0 for all v ∈ t, we have∑
v∈t
|λt,v(x)| =

∑
v∈t

λt,v(x) = 1 for all x ∈ ω̄t.

and this implies

|It[u](x)| =

∣∣∣∣∣∑
v∈t

λt,v(x)u(v)

∣∣∣∣∣ ≤∑
v∈t
|λt,v(x)| |u(v)|

≤
∑
v∈t
|λt,v(x)| ‖u‖∞,ω̄t = ‖u‖∞,ω̄t for all u ∈ C(ω̄t), x ∈ ω̄t,

and this implies the stability estimate (6.13a). Due to (6.6b), we have

It[p] =
∑
v∈t

p(v)λt,v(w) = p for all p ∈ Πd
1.

This is the projection property (6.13b).

We are left with the task of developing a suitable multi-dimensional counterpart of
the Taylor expansion.

Let ω ⊆ Rd be a bounded domain, let x, y ∈ ω be such that

(1− s)y + sx ∈ ω for all s ∈ [0, 1]

holds, and let u ∈ Cm+1(ω). To construct a Taylor expansion centered at y, we introduce
the function

f : [0, 1]→ R, s 7→ u(y + s(x− y)),

such that f(0) = u(y) and f(1) = u(x). Applying Taylor’s theorem yields

u(x) = f(1) =
m∑
ν=0

f (ν)(0)

ν!
+

∫ 1

0
(1− s)m f

(m+1)(s)

m!
ds. (6.14)
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6. Finite element methods

In order to express this equation in terms of the derivatives of the function u, we once
again use multi-indices with the notations

|ν| = ν1 + ν2 + . . .+ νd,

∂ν =
∂ν1

∂xν1
1

∂ν2

∂xν2
2

. . .
∂νd

∂xνdd
, zν = zν1

1 · · · z
νd
d ,

ν! = ν1! ν2! · · · νd!,
(
ν

µ

)
=

ν!

µ! (ν − µ)!
for all ν, µ ∈ Nd0, µ ≤ ν, z ∈ Rd,

where the relation ν ≤ µ is defined by

ν ≤ µ ⇐⇒ ∀i ∈ [1 : d] : νi ≤ µi for all ν, µ ∈ Nd0.

Lemma 6.18 (Multi-indices) We have

(x+ y)ν =
∑
µ≤ν

(
ν

µ

)
xµyν−µ for all x, y ∈ Rd, ν ∈ Nd0, (6.15a)

|xν | ≤ ‖x‖|ν|2 for all x ∈ Rd, ν ∈ Nd0, (6.15b)∑
ν∈Nd0
|ν|=m

1

ν!
=
dm

m!
for all m ∈ N0. (6.15c)

Proof. We prove (6.15a) by induction for the dimension d.

Base case. If d = 1, (6.15a) is just the generalized binomal equation.

Induction assumption. Let d ∈ N be such that (6.15a) holds.

Induction step. Let x, y ∈ Rd+1 and ν ∈ Nd+1
0 . We define x̂ := (x2, . . . , xd+1),

ŷ := (y2, . . . , yd+1), and ν̂ := (ν2, . . . , νd+1), and use the induction assumption to get

(x+ y)ν = (x1 + y1)ν1(x̂+ ŷ)ν̂

=

 ν1∑
µ1=0

(
ν1

µ1

)
xµ1

1 yν1−µ1
1

∑
µ̂≤ν̂

(
ν̂

µ̂

)
x̂µ̂ŷν̂−µ̂


=

∑
(µ1,µ̂)≤ν

ν1! ν̂!

µ1! µ̂! (ν1 − µ1)! (ν̂ − µ̂)!
x(µ1,µ̂)y(ν1−µ1,ν̂−µ̂)

=
∑
µ≤ν

ν!

µ! (ν − µ)!
xµyν−µ =

∑
µ≤ν

(
ν

µ

)
xµyν−µ.

The estimate (6.15b) is a direct consequence of |xi| ≤ ‖x‖2 for all i ∈ [1 : d].

We prove (6.15c) again by induction for the dimension d.

Base case. If d = 1, |ν| = m implies ν = m.

Induction assumption. Let d ∈ N be such that (6.15c) holds.
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6.5. Averaged Taylor expansion

Induction step. We have

∑
ν∈Nd+1

0
|ν|=m

1

ν!
=

m∑
ν1=0

∑
ν̂∈Nd0

|ν̂|=m−ν1

1

ν1!

1

ν̂!
=

1

m!

m∑
ν1=0

m!

ν1!

∑
ν̂∈Nd0

|ν̂|=m−ν1

1

ν̂!

=
1

m!

m∑
ν1=0

m!

ν1!

dm−ν1

(m− ν1)!
=

1

m!

m∑
ν1=0

(
m

ν1

)
1ν1dm−ν1

=
1

m!
(1 + d)m =

(d+ 1)m

m!
.

Using multi-indices, we can now derive explicit representations of the derivatives of
the auxiliary function f in terms of the partial derivatives of u.

Lemma 6.19 (Derivatives) Let m ∈ N0 and u ∈ Cm(ω). We have

f (m)(s) =
∑
|ν|=m

m!

ν!
(x− y)ν∂νu(y + s(x− y)) for all s ∈ [0, 1]. (6.16)

Proof. By induction.
Base case: For m = 0, the identity is trival.
Induction assumption: Let m ∈ N0 be such that (6.16) holds for all u ∈ Cm(ω).
Induction step: Let u ∈ Cm+1(ω), and let µi ∈ {0, 1}d be defined by

(µi)j =

{
1 if j = i,

0 otherwise
for all i, j ∈ [1 : d].

Applying the chain rule to the induction assumption yields

f (m+1)(s) =
∑
|ν|=m

m!

ν!
(y − x)ν

d∑
i=1

(yi − xi)∂µi∂νu(y + s(x− y))

=
∑
|ν|=m

m!

ν!
(y − x)ν

d∑
i=1

(y − x)µi∂ν+µiu(y + s(x− y))

=
∑
|ν|=m

d∑
i=1

m!

ν!
(y − x)ν+µi∂ν+µiu(y + s(x− y))

=

d∑
i=1

∑
|ν|=m

m! (νi + 1)

(ν + µi)!
(y − x)ν+µi∂ν+µiu(y + s(x− y))

=

d∑
i=1

∑
|ν̂|=m+1
ν̂i>0

m! ν̂i
ν̂!

(y − x)ν̂∂ν̂u(y + s(x− y))
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Figure 6.5.: Example for a mollifier function: ϕ(x) = exp
(
− 1

1−x2

)

=
d∑
i=1

∑
|ν̂|=m+1

m! ν̂i
ν̂!

(y − x)ν̂∂ν̂u(y + s(x− y))

=
∑

|ν̂|=m+1

(m+ 1)!

ν̂!
(y − x)ν̂∂ν̂u(y + s(x− y)) for all s ∈ [0, 1].

Applying this result to (6.14) yields

u(x) =
∑
|ν|≤m

∂νu(y)

ν!
(x− y)ν (6.17a)

+ (m+ 1)

∫ 1

0
(1− s)m

∑
|ν|=m+1

∂νu(y + s(x− y))

ν!
(x− y)ν ds (6.17b)

Since we are interested in working with weakly differentiable functions, we cannot use
the classical derivatives of u in x to define an approximation, so instead we use multiple
centers of expansion and take an average. Our construction closely follows [1, Chapter 4].

Let x0 ∈ Rd and r ∈ R>0 and denote the ball of radius r centered at x0 by

Bx0,r := {y ∈ Rd : ‖y − x0‖2 < r}.

Definition 6.20 (Star-shaped domain) A domain ω ⊆ Rd is called star-shaped with
respect to a ball B if

(1− s)y + sx ∈ ω for all x ∈ ω, y ∈ B, s ∈ [0, 1].

Let ω ⊆ Rd be star-shaped with respect to a ball B = Bx0,r. Then we can apply (6.17)
to all expansion points y ∈ B.
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6.5. Averaged Taylor expansion

In order to obtain an average, we introduce a mollifier function, i.e., a function ϕ̂ ∈
C∞(Rd) such that

ϕ̂(x) ≥ 0 for all x ∈ Rd,
supp(ϕ̂) ⊆ {y ∈ Rd : ‖y‖2 < 1},∫

Rd
ϕ̂(x) dx = 1.

An example is the function

ϕ̂(x) =

{
exp

(
− 1

1−‖x‖22

)
if ‖x‖2 < 1

0 otherwise
for all x ∈ Rd,

shown in Figure 6.5.
We require a function with support in B, so we shift and scale ϕ̂ to define

ϕ : Rd → R, x 7→ r−dϕ̂((x− x0)/r),

and observe supp(ϕ) ⊆ B and∫
Rd
ϕ(x) dx =

∫
Rd
r−dϕ̂((x− x0)/r) dx =

∫
Rd
ϕ̂(x̂) dx̂ = 1.

Using (6.17) gives us

u(x) =

∫
ω
ϕ(y)u(x) dy =

∫
B
ϕ(y)u(x) dy

=
∑
|ν|≤m

∫
B
ϕ(y)

∂νu(y)

ν!
(x− y)ν dy (6.18a)

+ (m+ 1)

∫
B

∫ 1

0
ϕ(y)(1− s)m

∑
|ν|=m+1

∂νu(y + s(x− y))

ν!
(x− y)ν ds dy, (6.18b)

and the right-hand side only involves integrals of ∂νu, but no point evaluations anymore,
so we can define the averaged Taylor polynomial by

Tm : Hm(ω)→ Πd
m, u 7→

x 7→ ∑
|ν|≤m

∫
B
ϕ(y)

∂νu(y)

ν!
(x− y)ν dy

 . (6.19)

In order to prove that Tm[u] is well-defined, i.e., that the integral on the right-hand side
is a polynomial of degree not higher than m, we have to show that we can split the
powers (x− y)ν into powers of x and powers of y.

Lemma 6.21 (Averaged Taylor polynomial) Let u ∈ Hm(ω). We have

u(x) =
∑
|µ|≤m

aµ
(x− x0)µ

µ!
for all x ∈ Rd,
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x

y

x0

B Cx

Figure 6.6.: Construction of the averaged Taylor expansion

where the coefficients are given by

aµ :=
∑
|ν|≤m
µ≤ν

∫
B
ϕ(y)∂νu(y)

(x0 − y)ν−µ

(ν − µ)!
dy for all µ ∈ Nd0, |µ| ≤ m. (6.20)

Proof. (cf. [1, Proposition (4.1.9)]) Let x, y ∈ Rd and ν ∈ Nd0. Applying (6.15a) to (6.19)
yields

Tm[u](x) =
∑
|ν|≤m

∫
B
ϕ(y)

∂νu(y)

ν!
(x− x0 + x0 − y)ν dy

=
∑
|ν|≤m

∫
B
ϕ(y)

∂νu(y)

ν!

∑
µ≤ν

(
ν

µ

)
(x− x0)µ(x0 − y)ν−µ dy

=
∑
|µ|≤m

∑
|ν|≤m
µ≤ν

∫
B
ϕ(y)

∂νu(y)

ν!

ν!

µ!(ν − µ)!
(x0 − y)ν−µ dy (x− x0)µ

=
∑
|µ|≤m

∑
|ν|≤m
µ≤ν

∫
B
ϕ(y)∂νu(y)

(x0 − y)ν−µ

(ν − µ)!
dy

(x− x0)µ

µ!

=
∑
|µ|≤m

aµ
(x− x0)µ

µ!
,

so the averaged Taylor polynomial is indeed a polynomial in Πd
m.

A closer look at (6.20) reveals that we can define averaged Taylor polynomials even
for u ∈ L2(ω) by using partial integration.

Lemma 6.22 (Generalization) We define

ϕµ : Rd → R, y 7→ (x0 − y)µ

µ!
ϕ(x) for all µ ∈ Nd0.
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6.5. Averaged Taylor expansion

The coefficients (6.20) satisfy

aµ =
∑
|ν|≤m
µ≤ν

(−1)|ν|
∫
B
∂νϕν−µ(y)u(y) dy for all µ ∈ Nd0, |µ| ≤ m,

and we can extend Tm to a linear operator such that we have

‖Tm[u]‖∞,ω ≤ Cstab‖u‖L2 for all u ∈ L2(ω)

with a constant Cstab ∈ R>0.

Proof. (cf. [1, Proposition (4.1.12)]) Let u ∈ Hm(ω), and let µ ∈ Nd0 with |µ| ≤ m. Since
ϕν−µ is in C∞0 (B), we can apply partial integration due to Definition 5.4 and get

aµ =
∑
|ν|≤m
µ≤ν

∫
B
ϕν−µ(y)∂νu(y) dy =

∑
|ν|≤m
µ≤ν

(−1)|ν|
∫
B
∂νϕν−µ(y)u(y) dy,

so using the Cauchy-Schwarz inequality (5.4) yields

|aµ| ≤
∑
|ν|≤m
µ≤ν

‖∂νϕν−µ‖L2︸ ︷︷ ︸
=:Cµ

‖u‖L2 for all µ ∈ Nd0, |µ| ≤ m.

We define

ψµ : ω → R, x 7→ (x− x0)µ

µ!
, for all µ ∈ Nd0, |µ| ≤ m.

Using Lemma 6.21 and the triangle inequality, we obtain

‖Tm[u]‖∞,ω ≤
∑
|µ|≤m

|aµ|‖ψµ‖∞,ω ≤
∑
|µ|≤m

Cµ‖u‖L2‖ψµ‖∞,ω ≤ Cstab‖u‖L2

with
Cstab :=

∑
|µ|≤m

Cµ‖ψµ‖∞,ω.

Since C∞(ω) is dense in Hm(ω) due to Theorem 5.12, Hm(ω) is dense in L2(ω), so we
can indeed extend the operator Tm continuously to L2(ω).

In order to obtain an estimate for the approximation error, we have to consider the
remainder (6.18b) given by

Rm[u](x) := (m+ 1)

∫
B

∫ 1

0
ϕ(y)(1− s)m

∑
|ν|=m+1

∂νu(y + s(x− y))

ν!
(x− y)ν ds dx

for all u ∈ Hm+1(ω), x ∈ ω.

We would like to bound this quantity in terms of ∂νu, so we have to look for a variable
transformation that replaces y + s(x− y) with a new variable z.
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Exercise 6.23 (Polar coordinates) Let d ∈ N. We define

Φ̂d : Rd → Rd+1, x 7→



(
cos(x1)

sin(x1)

)
if d = 1,(

cos(x1)

sin(x1)Φ̂d−1(x2, . . . , xd)

)
otherwise

for all d ∈ N

and

Φd : Rd → Rd, x 7→ x1Φ̂d−1(x2, . . . , xd).

Prove that Φ̂d maps

Ωd :=

{
[0, 2π) if d = 1,

[0, π)d−1 × [0, 2π) otherwise

bijectively to the unit sphere {x ∈ Rd+1 : ‖x‖2 = 1}.
Prove that Φd maps (0, r)× Ωd−1 bijectively to {x ∈ Rd : ‖x‖2 ∈ (0, r)}, is differen-

tiable, and satisfies | detDΦd(x)| ≤ xd−1
1 for all x ∈ Rd.

Lemma 6.24 (Riesz potential) Let p, q ∈ R with 1 < p, q < ∞ and 1/p + 1/q = 1.
Let Ω ⊆ Rd be a domain and α ∈ R<d.

There is a constant Crs ∈ R>0 depending only on d such that∫
Ω

1

‖x− z‖α2
dx ≤ Crs

diam(Ω)d−α

d− α
for all z ∈ Ω

and for all f ∈ Lp(Ω), the Riesz potential of f defined by

g(z) :=

∫
Ω

f(x)

‖x− z‖α2
dx for all z ∈ Ω

satisfies g ∈ Lp(Ω) and
‖g‖Lp ≤ Crs diam(ω)d−α‖f‖Lp .

Proof. (cf. [1, Lemma 4.3.6]) We start by considering∫
Ω
‖x− z‖−α2 dx

for a given z ∈ Ω. Let r := diam(Ω), and define the ball (without center)

C := {x ∈ Rd : 0 < ‖x− z‖2 < r}.

For d = 1, we obtain∫
Ω
|x− z|−α dx ≤

∫
(−r,r)\{0}

|y|−α dy = 2

∫ r

0
y−α dy = 2

[
y1−α

1− α

]r
y=0

= 2
r1−α

1− α
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6.5. Averaged Taylor expansion

and let Crs := 2. For d > 1, we use Exercise 6.23 with C = z + Φd((0, r)× Ωd−1), so we
can apply a change of variables to find∫

Ω
‖x− z‖−α2 dx ≤

∫
C
‖x− z‖−α2 dx ≤

∫
(0,r)×Ωd−1

x̂d−1
1 ‖Φd(x̂)‖−α2 dx̂

=

∫
(0,r)×Ωd−1

x̂d−1
1 x̂−α1 dx̂ = |Ωd−1|

∫ r

0
yd−1−α dy.

We let β := d− 1− α, observe β > −1, and obtain∫ r

0
yβ dy =

[
yβ+1

β + 1

]r
y=0

=
rβ+1

β + 1
=

rd−α

d− α
,

so we may conclude∫
Ω
‖x− z‖−α2 dx ≤ |Ωd−1|

rd−α

d− α
= Crs

rd−α

d− α
for all z ∈ Ω (6.21)

with Crs := |Ωd−1|.
We apply Hölder’s inequality to find

‖g‖pLp(Ω) =

∫
Ω
|g(z)|p dz =

∫
Ω

(∫
Ω
|f(x)|‖x− z‖−α2 dx

)p
dz

=

∫
Ω

(∫
Ω
|f(x)|‖x− z‖−α/p2 ‖x− z‖−α/q2 dx

)p
dz

≤
∫

Ω

[(∫
Ω
|f(x)|p‖x− z‖−α2 dx

)1/p(∫
Ω
‖x− z‖−α2 dx

)1/q
]p

dz

≤
(
Crs

rd−α

d− α

)p/q ∫
Ω

∫
Ω
|f(x)|p‖x− z‖−α2 dx dz.

Due to (6.21) and v ∈ Lp(Ω), we can apply the Fubini-Tonelli theorem to obtain

‖g‖pLp(Ω) ≤
(
Crs

rd−α

d− α

)p/q ∫
Ω

∫
Ω
‖x− z‖−α2 dz|f(x)|p dx

≤
(
Crs

rd−α

d− α

)p/q+1 ∫
Ω
|f(x)|p dx =

(
Crs

rd−α

d− α

)p
‖f‖pLp(Ω)

using p/q + 1 = p(1/q + 1/p) = p.

Lemma 6.25 (Error representation) Let u ∈ Hm+1(ω) and x ∈ ω. Let

Cx := {y + s(x− y) : y ∈ B, s ∈ [0, 1]}.

We have

Rm[u](x) = (m+ 1)
∑

|ν|=m+1

∫
Cx
kν(x, z)∂νu(z) dz
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6. Finite element methods

with

kν(x, z) =
(x− z)ν

ν!
k(x, z) for all ν ∈ Nd0, |ν| = m+ 1

for a function k satisfying

|k(x, z)| ≤ CR

(
1 +
‖x− x0‖2

r

)d
‖z − x‖−d for all z ∈ Cx

with CR depending only on ϕ̂ and d.

Proof. (cf. [1, Proposition (4.2.8)]) Since it is more convenient to deal with a singularity
at s = 0 instead of s = 1, we first apply the transformation s 7→ 1− s and get

Rm[u](x) = (m+ 1)

∫
B

∫ 1

0
ϕ(y)sm

∑
|ν|=m+1

(x− y)ν

ν!
∂νu(x+ s(y − x)) ds dx

due to y + (1− s)(x− y) = y + (1− s)x− (1− s)y = x+ s(y − x).
We want to focus on one term of the sum and fix ν ∈ Nd0 with |ν| = m+ 1.
We define the transformation

Φ: Rd × (0, 1]→ Rd × (0, 1], (y, s) 7→ (x+ s(y − x), s).

In order to compute its inverse, we let (z, s) ∈ Rd × (0, 1] and find

z = x+ s(y − x) ⇐⇒ z − x = s(y − x) ⇐⇒ (z − x)/s = y − x
⇐⇒ (z − x)/s+ x = y.

This means that (y, s) := Φ−1(z, s) ∈ B × (0, 1] holds if and only if

(z, s) ∈ A := {(z, s) ∈ Rd × (0, 1] : ‖(z − x)/s+ x− x0‖2 < r}.

In this case we have

z = x+ s(y − x) ∈ Cx, (6.22a)

(x− y)ν = (x− (z − x)/s− x)ν = s−(m+1)(x− z)ν , (6.22b)

s =
‖z − x‖2
‖(z − x)/s‖2

=
‖z − x‖2

‖(z − x)/s− (x0 − x) + (x0 − x)‖2

≥ ‖z − x‖2
‖(z − x)/s+ x− x0‖2 + ‖x0 − x‖2

>
‖z − x‖2

r + ‖x0 − x‖2
. (6.22c)

We conclude that
Φ : B × (0, 1]→ A

is a bijective differentiable mapping with

detDΦ(y, s) = det

(
sI (y − x)
0 1

)
= sd for all (y, s) ∈ B × (0, 1],
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6.5. Averaged Taylor expansion

Φ−1(z, s) = ((z − x)/s+ x, s) for all (z, s) ∈ A,

so we can apply a change of variables. Using (6.22b), we find∫
B

∫ 1

0
ϕ(y)sm

(x− y)ν

ν!
∂νu(x+ s(y − x)) ds dy

=

∫
B×(0,1]

|detDΦ(y, s)| ϕ(y)sm−d
(x− y)ν

ν!
∂νu(Φ(y, s)) d(y, s)

=

∫
A
ϕ((z − x)/s+ x)sm−ds−(m+1) (x− z)ν

ν!
∂νu(z) d(z, s)

=

∫
A
ϕ((z − x)/s+ x)s−d−1 (x− z)ν

ν!
∂νu(z) d(z, s).

Due to (6.22a), we have

A ⊆ Cx × (0, 1].

We introduce the characteristic function

1A : Cx × (0, 1]→ R,

(z, s) 7→

{
1 if (z, s) ∈ A,
0 otherwise,

and use Fubini’s theorem to get∫
B

∫ 1

0
ϕ(y)sm

(x− y)ν

ν!
∂νu(x+ s(y − x)) ds dy

=

∫
Cx×(0,1]

1A(z, s)ϕ((z − x)/s+ x)s−d−1 (x− z)ν

ν!
∂νu(z) d(z, s)

=

∫
Cx

∫ 1

0
1A(z, s)ϕ((z − x)/s+ x)s−d−1 (x− z)ν

ν!
∂νu(z) ds dz

=

∫
Cx

(x− z)ν

ν!
∂νu(z)

∫ 1

0
1A(z, s)ϕ((z − x)/s+ x)s−d−1 ds dz.

The second term does not depend on u, so we define

k(x, z) :=

∫ 1

0
1A(z, s)ϕ((z − x)/s+ x)s−d−1 ds for all z ∈ Cx

and obtain ∫
B

∫ 1

0
ϕ(y)sm

∂νu(x+ s(y − x))

ν!
(x− y)ν ds dy

=

∫
Cx
kν(x, z)∂νu(z) dz,
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6. Finite element methods

Figure 6.7.: Dependence of the chunkiness parameter on the domain’s shape: γ is small
in the left domain and large in the right domain

Rm[u](x) = (m+ 1)
∑

|ν|=m+1

∫
Cx
kν(x, z)∂νu(z) dz.

To obtain a bound for k(x, z), recall that (6.22c) implies that for z ∈ Cx we have

s > s0 :=
‖z − x‖2

r + ‖x0 − x‖2
> 0 for all s ∈ R with (z, s) ∈ A.

We find

k(x, z) =

∫ 1

0
1A(z, s)ϕ((z − x)/s+ x)s−d−1 ds =

∫ 1

s0

ϕ((z − x)/s+ x)s−d−1 ds

≤ ‖ϕ‖∞
[
s−d

−d

]1

s=s0

= ‖ϕ‖∞

(
s−d0

d
− 1

d

)
≤ ‖ϕ‖∞

d
s−d0

=
‖ϕ‖∞
d

(r + ‖x0 − x‖2)d‖x− z‖−d2 =
r−d‖ϕ̂‖∞

d
(r + ‖x0 − x‖2)d‖x− z‖−d2

=
‖ϕ̂‖∞
d

(
1 +
‖x0 − x‖2

r

)d
‖x− z‖−d2 .

We complete the proof by choosing CR := ‖ϕ̂‖∞/d.

Definition 6.26 (Chunkiness parameter) Let ω ⊆ Rd be a domain. We define

rmax := sup{r ∈ R>0 : ω is star-shaped with respect to Bx0,r for an x0 ∈ ω}

(with the convention sup ∅ = −∞) and call

γ :=

{
diam(ω)
rmax

if rmax > 0,

∞ otherwise

the chunkiness parameter of ω.
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6.5. Averaged Taylor expansion

For a convex domain ω, rmax is the radius of the largest ball contained in ω.

Theorem 6.27 (Bramble-Hilbert lemma) Let ω ⊆ Rd be a domain with chunkiness
parameter γ < ∞, and let m ∈ N0. If B is chosen appropriately, there is a constant
Cbh ∈ R>0 depending only on d, ϕ̂, and γ, such that

‖u− Tm[u]‖L2(ω) ≤
Cbhd

m+1

(m+ 1)!
diam(ω)m+1|u|Hm+1(ω) for all u ∈ Hm+1(ω).

Proof. (cf. [1, Lemma 4.3.8]) Let u ∈ Hm+1(ω) and δ := diam(ω). By definition of γ,
we can find a ball B ⊆ ω of radius r > diam(ω)/(2γ) such that ω is star-shaped with
respect to B. Applying Lemma 6.25 to this ball, we have

‖u− Tm[u]‖L2(ω) = ‖Rm[u]‖L2(ω) ≤ (m+ 1)

∥∥∥∥∥∥
∑

|ν|=m+1

∫
ω
|kν(·, z)| |∂νu(z)| dz

∥∥∥∥∥∥
L2(ω)

≤ (m+ 1)
∑

|ν|=m+1

∥∥∥∥∫
ω
CR

(1 + 2γ)d

ν!
‖z − ·‖|ν|−d2 |∂νu(z)| dz

∥∥∥∥
L2(ω)

≤ CR(m+ 1)(1 + 2γ)d
∑

|ν|=m+1

∥∥∥∥∫
ω
‖z − ·‖m+1−d

2

|∂νu(z)|
ν!

dz

∥∥∥∥
L2(ω)

= C1(m+ 1)
∑

|ν|=m+1

∥∥∥∥∫
ω
‖z − ·‖m+1−d

2

|∂νu(z)|
ν!

dz

∥∥∥∥
L2(ω)

with C1 := CR(1 + 2γ)d. Now we can use Lemma 6.24 with α = d − (m + 1), the
Cauchy-Schwarz inequality, and the equation (6.15c) of Lemma 6.18 to obtain

‖u− Tm[u]‖L2(ω) ≤ C1(m+ 1)Crs
δm+1

m+ 1

∑
|ν|=m+1

1

ν!
‖∂νu‖L2

≤ C1Crsδ
m+1

 ∑
|ν|=m+1

1

(ν!)2

1/2 ∑
|ν|=m+1

‖∂νu‖2L2

1/2

≤ C1Crsδ
m+1

 ∑
|ν|=m+1

1

ν!

 ∑
|ν|=m+1

‖∂νu‖2L2

1/2

= C1Crsδ
m+1 dm+1

(m+ 1)!

 ∑
|ν|=m+1

‖∂νu‖2L2

1/2

=
Cbhd

m+1

(m+ 1)!
δm+1|u|Hm+1(ω),

where Crs is the constant of Lemma 6.24 and Cbh := C1Crs = CR(1 + 2γ)dCrs.
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6. Finite element methods

This result allows us to construct approximating polynomials on star-shaped domains,
and since a triangulation consists of such domains, we can also construct piecewise
polynomial approximations.

Exercise 6.28 (Approximation of derivatives) Let ω, γ,m be as in Theorem 6.27.
Let µ ∈ Nd0 with |µ| ≤ m, and let ` := m− |µ|. Prove

∂µTm[u] = T`[∂µu] for all u ∈ Hm(ω).

Combine this result with Theorem 6.27 to prove

‖∂µu− ∂µTm[u]‖L2(ω) ≤
Cbhd

`+1

(`+ 1)!
diam(ω)`+1|u|Hm+1(ω) for all u ∈ Hm+1(ω).

In order to obtain the continuous piecewise polynomial approximation we require, we
can employ interpolation. Unfortunately, standard interpolation relies on the evaluation
of the interpolant in the interpolation points, and functions in L2(Ω) are only defined
up to null sets.

This problem can be solved by the Sobolev’s lemma: if a function has weak derivatives
of sufficiently high order, it is continuous, so evaluation in interpolation points is possible.

Lemma 6.29 (Stability) Let ω ⊆ Rd be a domain with chunkiness parameter γ < 0,
and let m ∈ N.

If B is chosen appropriately, there is a constant Cst ∈ R>0 depending only on ϕ̂, γ, d,
and m with

‖Tm[u]‖∞,ω ≤ Cst max{diam(ω)−d/2,diam(ω)m−d/2}‖u‖Hm(ω) for all u ∈ Hm(ω).

Proof. Let B ⊆ ω be a ball of radius r > diam(ω)/(2γ) such that ω is star-shaped with
respect to B.

Let u ∈ Hm(ω) and x ∈ ω.

We have

Tm[u](x) =
∑
|ν|≤m

∫
B
ϕ(y)

(x− y)ν

ν!
∂νu(y) dy

by definition. We also have ‖ϕ‖∞,ω = r−d‖ϕ̂‖∞,Rd by construction.

Let ν ∈ Nd0 with |ν| ≤ m. Using the triangle inequality and (6.15b), we obtain∣∣∣∣∫
B
ϕ(y)

(x− y)ν

ν!
∂νu(y) dy

∣∣∣∣ ≤ ∫
B
ϕ(y)

‖x− y‖|ν|2

ν!
|∂νu(y)| dy

≤ ‖ϕ̂‖1/2∞,Rdr
−d/2

∫
B

√
ϕ(y)

diam(ω)|ν|

ν!
|∂νu(y)| dy

= ‖ϕ̂‖1/2∞,Rdr
−d/2 diam(ω)|ν|

∫
B

√
ϕ(y)

ν!
|∂νu(y)| dy.
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6.5. Averaged Taylor expansion

Now we can apply the Cauchy-Schwarz inequality (5.4) to get∣∣∣∣∫
B
ϕ(y)

(x− y)ν

ν!
∂νu(y) dy

∣∣∣∣ ≤ ‖ϕ̂‖1/2∞,Rdr−d/2 diam(ω)|ν|
(∫
B

ϕ(y)

(ν!)2
dy

)1/2

‖∂νu‖L2(ω)

= ‖ϕ̂‖1/2∞,Rdr
−d/2 diam(ω)|ν|

1

ν!
‖∂νu‖L2(ω).

Let δ := max{diam(ω)−d/2, diam(ω)m−d/2}. We have

r−d/2 diam(ω)|ν| = r−d/2 diam(ω)d/2 diam(ω)|ν|−d/2

≤ r−d/2(2γr)d/2 diam(ω)|ν|−d/2

= (2γ)d/2 diam(ω)|ν|−d/2 ≤ (2γ)d/2δ,

and due to the Cauchy-Schwarz inequality, we find

|Tm[u](x)| ≤
∑
|ν|≤m

‖ϕ̂‖1/2∞,Rd(2γ)d/2δ
1

ν!
‖∂νu‖L2(ω)

≤ ‖ϕ̂‖1/2∞,Rd(2γ)d/2δ

 ∑
|ν|≤m

1

(ν!)2

1/2 ∑
|ν|≤m

‖∂νu‖2L2(ω)

1/2

≤ ‖ϕ̂‖1/2∞,Rd(2γ)d/2δ

 ∑
|ν|≤m

1

ν!

 ‖u‖Hm(ω).

We let

Cst := ‖ϕ̂‖1/2∞,Rd(2γ)d/2

 ∑
|ν|≤m

1

ν!


and conclude

|Tm[u](x)| ≤ Cstδ‖u‖Hm(ω) for all u ∈ Hm(ω), x ∈ ω.

This is equivalent to the required estimate.

Lemma 6.30 (Maximal approximation error) Let ω ⊆ Rd be a domain with
chunkiness parameter γ < 0, and let m ∈ N with m+ 1 > d/2.

If B is chosen appropriately, there is a constant Cer ∈ R>0 depending only on ϕ̂, γ,
d, and m with

‖u− Tm[u]‖∞,ω ≤ Cer diam(ω)m+1−d/2|u|Hm+1(ω) for all u ∈ Hm+1(ω).

Proof. Let B ⊆ ω be a ball of radius r > diam(ω)/(2γ) such that ω is star-shaped with
respect to B.

Let u ∈ Hm+1(ω) and x ∈ ω. Denote the diameter of ω by δ := diam(ω).
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Lemma 6.25 yields

|u(x)− Tm[u](x)| = |Rm[u](x)|

≤ (m+ 1)
∑

|ν|=m+1

∫
ω

‖x− z‖m+1
2

ν!
CR(1 + 2γ)d‖x− z‖−d2 |∂νu(z)| dz

= CR(m+ 1)(1 + 2γ)d
∑

|ν|=m+1

∫
ω
‖x− z‖m+1−d

2

|∂νu(z)|
ν!

dz.

By our assumption, we have 2(m+1)−d > 0 and α := 2d−2(m+1) < d, and Lemma 6.24
yields ∫

ω

1

‖x− z‖α2
dx ≤ Crs

d− α
δd−α,

i.e., ‖x− ·‖m+1−d
2 ∈ L2(ω).

Let ν ∈ Nd0 with |ν| = m+ 1. With the Cauchy-Schwarz inequality (5.4), we obtain∫
ω
‖x− z‖m+1−d

2 |∂νu(z)| dz ≤
(∫

ω
‖x− z‖2(m+1−d)

2 dz

)1/2(∫
ω
|∂νu(z)|2 dz

)1/2

≤
√

Crs

d− α
δd−α

(∫
ω
|∂νu(z)|2 dz

)1/2

=

√
Crs

2(m+ 1)− d
δm+1−d/2‖∂νu‖L2(ω).

Combining the terms yields

|u(x)− Tm[u](x)| ≤ CR(m+ 1)(1 + 2γ)d
√

Crs

2m+ 2− d
δm+1−d/2

∑
|ν|=m+1

‖∂νu‖L2(ω)

ν!
.

We let C1 := CR(1 + 2γ)d
√
Crs/(2m+ 2− d) and use the Cauchy-Schwarz inequality

and (6.15c) to find

|u(x)− Tm[u](x)| ≤ C1(m+ 1)δm+1−d/2
∑

|ν|=m+1

‖∂νu‖L2(ω)

ν!

≤ C1(m+ 1)δm+1−d/2

 ∑
|ν|=m+1

1

(ν!)2

1/2 ∑
|ν|=m+1

‖∂νu‖2L2(ω)

1/2

≤ C1(m+ 1)δm+1−d/2

 ∑
|ν|=m+1

1

ν!

 |u|Hm+1(ω)

= C1(m+ 1)δm+1−d/2 dm+1

(m+ 1)!
|u|Hm+1(ω)
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= C1 diam(ω)m+1−d/2d
m+1

m!
|u|Hm+1(ω)

We complete the proof by choosing

Cer := C1
dm+1

m!

and observing that C1 depends only on CR, γ, d, and m, while CR depends only on ϕ̂
and d.

Remark 6.31 (Maximum norm vs. L2-norm) The factor diam(ω)−d/2 in the esti-
mate of Lemma 6.30 might seem a little disappointing, since it means that the estimate
will go to infinity if we let the diameter go to zero.

A closer look suggests that this factor might be necessary: we can find a constant C
such that |ω| ≤ C diam(ω)d holds for all domains, e.g., by choosing C as the Lebesgue
measure of a ball with radius diam(ω). We have

‖u‖L2(ω) ≤ |ω|1/2‖u‖∞,ω ≤ C diam(ω)d/2‖u‖∞,ω for all u ∈ C(ω),

so if the maximum norm estimate would not involve the factor diam(ω)−d/2, we would
get a higher power of diam(ω) in the Bramble-Hilbert lemma. A comparison with the
standard Taylor expansion suggests that this is unrealistic.

Theorem 6.32 (Sobolev’s lemma) Let ω ⊆ Rd be a domain with chunkiness param-
eter γ < 0, and let m ∈ N with m > d/2.

There is a constant Cso ∈ R>0 depending only on ϕ̂, γ, d, and m such that all functions
u ∈ Hm(Ω) are in u ∈ C(Ω) with

‖u‖∞,ω ≤ Csoδ‖u‖Hm(ω),

where δ := max{diam(ω)−d/2,diam(ω)m−d/2}.

Proof. (cf. [1, Lemma 4.3.4]) We first prove this result for u ∈ C∞(ω). Let ω ⊆ Rd
be star-shaped with respect to a ball B ⊆ ω of radius r > diam(ω)/(2γ). The triangle
inequality yields

‖u‖∞,ω ≤ ‖Tm−1[u]‖∞,ω − ‖un − Tm−1[u]‖∞,ω.

For the first term, Lemma 6.29 yields

‖Tm−1[u]‖∞,ω ≤ Cst max{diam(ω)−d/2, diam(ω)m−1−d/2}‖u‖Hm−1(ω)

≤ Cst max{diam(ω)−d/2, diam(ω)m−d/2}‖u‖Hm(ω).

With δ := max{diam(ω)−d/2, diam(ω)m−d/2}, we can write this estimate in the short
form

‖Tm−1[u]‖∞,ω ≤ Cstδ‖u‖Hm(ω).
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For the second term, Lemma 6.30 yields

‖u− Tm−1[u]‖∞,ω ≤ Cerδ|u|Hm(ω)

≤ Cerδ‖u‖Hm(ω).

Combining both estimates yields

‖u‖∞,ω ≤ Cstδ‖u‖Hm(ω) + Cerδ‖u‖Hm(ω)

≤ (Cst + Cer)δ‖u‖Hm(ω) = Csoδ‖u‖Hm(ω)

with
Cso := Cst + Cer.

This completes the proof for u ∈ C∞(ω).
Now let u ∈ Hm(ω). Due to Theorem 5.12, we can find a sequence (un)∞n=1 in C∞(ω)

with
lim
n→∞

‖u− un‖Hm(ω) = 0.

This implies that (un)∞n=1 is a Cauchy sequence with respect to the Hm-norm. Due to
our previous result, it is also a Cauchy sequence with respect to the maximum norm.
Since C(ω) is a complete space if equipped with the maximum norm, we find ũ ∈ C(ω)
such that

lim
n→∞

‖ũ− un‖∞,ω = 0.

The domain ω is bounded, so convergence in the maximum norm implies convergence in
the L2-norm, i.e.,

lim
n→∞

‖ũ− un‖L2(ω) = 0.

By our definition, the sequence (un)∞n=1 also converges to u in the L2-norm, so we have
‖u− ũ‖L2(ω) = 0, i.e., u and ũ are identical up to a null set.

The norm estimate for u follows immediately from the estimates for (un)∞n=1.

Remark 6.33 (C(ω) and L2(ω)) The statement of Theorem 6.32 is a little ambiguous,
since u ∈ Hm(ω) is only defined up to null sets, but the maximum norm takes the point-
wise maximum.

The proof of the theorem suggests the correct interpretation: in the equivalence class
of functions u that differ only on a null set, there is a continuous function, and this
continuous function satisfies the estimate.

In fact, this continuous function is unique, since continuous functions that are identical
up to null sets already have to be identical.

6.6. Approximation error estimates

In view of Theorem 6.32, we require d ∈ {1, 2, 3}. Let Ω ⊆ Rd, and let T ⊆ Sdd be a
triangulation of Ω.
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Corollary 6.34 (Sobolev’s lemma) Assume that there is a family (Ωi)
`
i=1 of subdo-

mains such that

Ω =
⋃̀
i=1

Ωi,

and that the subdomains Ωi are star-shaped with respect to suitable balls.
Then there is a constant Cso,Ω ∈ R>0 such that

‖u‖∞,Ω ≤ Cso,Ω‖u‖H2 for all u ∈ H2(Ω).

Proof. For each i ∈ [1 : `], the domain Ωi has finite chunkiness by definition. Since
2 > 3/2 ≥ d/2, we can apply Theorem 6.32 to find that u|Ωi is continuous and that its
maximum norm can be bounded by a constant times ‖u‖H2 .

We can complete the proof by defining Cso,Ω as the maximum of the constants for the
subdomains.

Under the assumptions of Corollary 6.34, we can define the nodal interpolation oper-
ator

IT : H2(Ω)→ PT,1, u 7→
∑
v∈NT

u(v)ϕv,

since u ∈ H2(Ω) ensures that u is continuous, so the pointwise evaluation is well-defined.

Lemma 6.35 (Stability) Under the assumptions of Corollary 6.34, we have

‖IT [u]‖∞,Ω ≤ Cso,Ω‖u‖H2 for all u ∈ H2(Ω).

Proof. Let t ∈ T . Due to Lemma 6.17, we have

‖IT [u]‖∞,ωt = ‖It[u]‖∞,ωt ≤ ‖u‖∞,ωt ≤ Cso,Ω‖u‖H2 for all u ∈ H2(Ω).

Due to (6.4b), this implies our claim.

In order to obtain an estimate for the interpolation error, we can apply the Bramble-
Hilbert lemma (cf. Theorem 6.27) to all simplices in the triangulation. We introduce
the maximal meshwidth by

hT := max{diam(ωt) : t ∈ T},

denote the chunkiness of ωt by γt, and define the maximal chunkiness by

γT := max{γt : t ∈ T}.

Lemma 6.36 (Inverse estimate) Let t ∈ Sdd , and let γ > 0 denote the chunkiness
parameter of ωt. We have

‖∇p‖2 ≤ γ diam(ωt)
−1‖p‖∞,ωt for all p ∈ Πd

1.
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6. Finite element methods

Proof. Let p ∈ Πd
1. If ∇p = 0, the estimate is trivial.

Assume now ∇p 6= 0. Let ε ∈ R>0. Let B ⊆ ωt be a ball of radius r > diam(ωt)/(γ+ε)
centered at x0. We let

α :=
r

‖∇p‖2
, y := x0 + α∇p, z := x0 − α∇p,

and have

‖y − x0‖2 = α‖∇p‖2 = r, ‖z − x0‖2 = α‖∇p‖2 = r,

and since B ⊆ ωt holds, we conclude y, z ∈ ω̄t. This implies

2‖p‖∞,ωt ≥ |p(y)− p(z)| = |〈∇p, y − z〉2| = |〈∇p, 2α∇p〉2|

= 2α‖∇p‖22 =
2r

‖∇p‖2
‖∇p‖22 = 2r‖∇p‖2,

and we find

‖∇p‖2 ≤
1

r
‖p‖∞,ωt ≤

γ + ε

diam(ωt)
‖p‖∞,ωt .

Since this estimate holds for all ε > 0, we get the final result.

Theorem 6.37 (Interpolation error) Under the assumptions of Corollary 6.34, we
can find Cin ∈ R>0 with

‖u− IT [u]‖L2 ≤ Cinh
2
T |u|H2 , (6.23a)

‖u− IT [u]‖H1 ≤ CinhT |u|H2 for all u ∈ H2(Ω). (6.23b)

Proof. Let u ∈ H2(Ω), and let t ∈ T . By definition, we can find a ball B ⊆ ωt of
radius r > diam(ωt)/(2γT ). Let T1 denote the corresponding averaged Taylor expansion
operator of degree m = 1 and let p := T1[u].

Due to (6.13b), we have

‖u− IT [u]‖L2(ωt) = ‖u− It[u]‖L2(ωt)t = ‖u− p+ It[p]− It[u]‖L2(ωt)

≤ ‖u− p‖L2(ωt) + ‖It[u− p]‖L2(ωt).

We can apply the Bramble-Hilbert lemma (cf. Theorem 6.27) to the first term to get

‖u− p‖L2(ωt) = ‖u− T1[u]‖L2(ωt) ≤ C1 diam(ωt)
m+1|u|Hm+1(ωt)

with a constant C1 depending only on d, ϕ̂, γT , d, and m.

For the second term, we use

‖It[u− p]‖L2(ωt) =

(∫
ωt

It[u− p](x)2 dx

)1/2

≤ |ωt|1/2‖It[u− p]‖∞,ωt .
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We can find a constant C2 depending only on d such that

|ωt| ≤ C2 diam(ωt)
d,

and combining (6.13a) with Lemma 6.30 yields

‖It[u− p]‖L2(ωt) ≤ C
1/2
2 diam(ωt)

d/2‖It[u− p]‖∞,ωt ≤ C
1/2
2 diam(ωt)

d/2‖u− p‖∞,ωt
≤ C1/2

2 diam(ωt)
d/2Cer diam(ωt)

m+1−d/2|u|Hm+1(ωt)

= C
1/2
2 Cer diam(ωt)

m+1|u|Hm+1(ωt). (6.24)

Combining the estimates for u− p and It[u− p] gives us

‖u− IT [u]‖L2(ωt) ≤ C3 diam(ωt)
m+1|u|H2(ωt) (6.25)

with C3 := C1 + C
1/2
2 Cer. This gives us a local version of (6.23a).

In order to get a similar result for (6.23b), we fix ν ∈ Nd0 with |ν| ≤ m and use
Exercise 6.28 to find

‖∂ν(u− It[u])‖L2(ωt) = ‖∂ν(u− p) + ∂νIt[u− p]‖L2(ωt)

≤ ‖∂ν(u− p)‖L2(ωt) + ‖∂νIt[u− p]‖L2(ωt)

= ‖∂νu− T0[∂νu]‖L2(ωt) + ‖∂νIt[u− p]‖L2(ωt).

We can again apply the Bramble-Hilbert lemma to the first term to get

‖∂ν(u− p)‖L2(ωt) ≤ C4 diam(ωt)
m|∂νu|Hm(ωt) ≤ C4 diam(ωt)

m|u|Hm+1(ωt).

For the second term, we can use Lemma 6.36 and (6.24) to find

‖∂νIt[u− p]‖L2(ωt) ≤ C
1/2
2 diam(ωt)

d/2‖∂νIt[u− p]‖∞,ωt
≤ C1/2

2 γ diam(ωt)
d/2−1‖It[u− p]‖∞,ωt

≤ C1/2
2 γCer diam(ωt)

m|u|Hm+1(ωt),

and combining the two estimates yields

‖∂ν(u− IT [u])‖L2(ωt) ≤ C5 diam(ωt)
m|u|Hm+1(ωt) (6.26)

with C5 := C4 + γC
1/2
2 Cer.

Now we only have to combine the local estimates to obtain the global results. Due to
Lemma 6.6, the local estimate (6.25) gives rise to

‖u− IT [u]‖2L2(Ω) =
∑
t∈T
‖u− IT [u]‖2L2(ωt)

≤
∑
t∈T

C2
3 diam(ωt)

2(m+1)|u|2H2(ωt)

≤ C2
3

∑
t∈T

h
2(m+1)
T |u|2H2(ωt)

= C2
3h

2(m+1)
T |u|2H2(Ω).

We take the square root to get the first estimate (6.23a).
For the second estimate (6.23b), we can apply the same reasoning to (6.26).
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6. Finite element methods

Corollary 6.38 (Discretization error) Let V = H1
0 (Ω) and Vn = PT,1 ∩H1

0 (Ω). Let
u ∈ V be the solution of the variational problem (5.8), and let un ∈ Vn be the solution
of the discretized variational problem (5.14).

If u ∈ H2(Ω) holds, we have

‖u− un‖H1 ≤ Cin

(
CB
CK

)1/2

hT |u|H2

where Cin is the constant from Theorem 6.37, CB is the continuity constant of the
bilinear form a (in this case CB = 1), and CK is the coercivity constant (in this case
CK ≥ 1/(1 + diam(Ω)2) due to Corollary 5.26).

Proof. Let ũn := IT [u]. Due to u ∈ H2(Ω), we can apply Theorem 6.32 to find u ∈ C(Ω),
and u ∈ H1

0 (Ω) yields u|∂Ω = 0. Since we use a nodal interpolation operator, this implies
ũn ∈ Vn.

Now we can apply Céa’s Lemma 5.40 and Theorem 6.37 to get

‖u− un‖H1 ≤
√
CB
CK
‖u− ũn‖H1 ≤

√
CB
CK

CinhT |u|H2 .

Definition 6.39 (H2-regularity) A variational problem (5.9) with V ⊆ H1(Ω) is
called H2-regular if for f ∈ L2(Ω) and

β(v) = 〈v, f〉L2 for all v ∈ V

the solution u ∈ V satisfies u ∈ H2(Ω) and

‖u‖H2 ≤ CR‖f‖L2 (6.27)

with a constant CR depending only on the bilinear form a and the domain Ω.

If the variational problem (5.9) is H2-regular, Corollary 6.38 takes the form

‖u− un‖H1 ≤ CRCin

√
CB
CK

hT ‖f‖L2 ,

i.e., we can bound the discretization error in terms of the L2-norm of the right-hand
side.

Compared to error estimates like the one provided by Theorem 2.10 that guarantee
that the error falls like h2 for a finite difference discretization, it is a little disappointing
to get only hT in the case of the finite element method.

A closer look reveals that the two estimates are not really comparable: in the finite
difference case, we only get a bound for the maximum of the error, while in the finite
difference case the derivatives of the error are also controlled.

Our goal is now to prove that the L2-norm of the error does indeed converge like h2
T .
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Lemma 6.40 (Aubin-Nitsche) Let a be symmetric, bounded, and coercive with re-
spect to the H1-norm. Let the variational problem (5.9) be H2-regular, and let f ∈ L2(Ω).

There is a constant CA such that the solutions u ∈ V and un ∈ Vn of (5.9) and (5.14)
satisfy

‖u− un‖L2 ≤ CAhT ‖u− un‖H1 ,

‖u− un‖L2 ≤ CAh2
T ‖f‖L2 .

Proof. The proof relies on Nitsche’s trick : we consider the functional

λ : V → R, v 7→ 〈v, u− un〉L2 .

Due to the Cauchy-Schwarz inequality (5.4), it is an element of V ′ with

‖λ‖V ′ ≤ ‖u− un‖L2 .

The Riesz theorem 5.22 yields that we can find a solution e ∈ V of the variational
problem

a(e, v) = λ(v) for all v ∈ V,

and that this solution satisfies ‖e‖V ≤ ‖λ‖V ′/CK . We have

‖u− un‖2L2 = λ(u− un) = a(e, u− un).

We let en := IT [e] and take advantage of Galerkin orthogonality (cf. Lemma 5.36) to
get

‖u− un‖2L2 = a(e, u− un) = a(e− en, u− un) ≤ CB‖e− en‖V‖u− un‖V .

Now we can apply Theorem 6.37 and (6.27) to obtain

‖e− en‖V ≤ Cin hT ‖e‖H2 ≤ CinCR hT ‖u− un‖L2

and thus
‖u− un‖2L2 ≤ CBCinCR hT ‖u− un‖L2‖u− un‖V .

Dividing both sides by ‖u− un‖L2 yields the first estimate.
Applying Corollary 6.38 to ‖u− un‖V gives us

‖u− un‖V ≤ CinCR

√
CB√
CK

hT ‖f‖L2 ,

and combining this with the first estimate yields

‖u− un‖L2 ≤ CBCinCRhT ‖u− un‖V ≤ CBC2
inC

2
R

√
CB√
CK

h2
T ‖f‖L2 .

Now we choose

CA := max

{
CBCinCR, C

2
inC

2
R

C
3/2
B

C
1/2
K

}
to complete the proof.
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Remark 6.41 (Unsymmetric case) If the bilinear form a is not symmetric, we can
still derive a version of the Aubin-Nitsche lemma if the adjoint problem

Find e ∈ V such that

a(e, v) = λ(v) for all v ∈ V

is H2-regular.

Remark 6.42 (Residual error estimator) If the bilinear form a is symmetric, con-
tinuous, and coercive, the energy norm satisfies

‖u− uh‖A = a
(

u−uh
‖u−uh‖A , u− uh

)
= sup

{
a(v, u− uh)

‖v‖A
: v ∈ V \ {0}

}
due to the Cauchy-Schwarz inequality. The functional a(·, u− uh) is called the residual
for the solution u and its Galerkin approximation un. If we can find a bound for the
dual norm of the residual, we have a bound for the error in the energy norm.

Let v ∈ V, and let vh ∈ Vn be a suitable approximation. We denote by ut = un|ωt and
vt = vn|ωt the element-wise polynomials. Using the Galerkin orthogonality and partial
integration, we obtain

a(v, u− uh) = a(v − vh, u− uh) = a(v − vh, u)− a(v − vh, uh)

=

∫
Ω

(v − vh)(x)f(x) dx− a(v − vh, uh)

=
∑
t∈T

∫
ωt

(v − vh)(x)f(x) dx−
∫
ωt

〈∇(v − vh)(x),∇uh(x)〉2 dx

=
∑
t∈T

∫
ωt

(v − vh)(x)f(x) dx−
∫
∂ωt

(v − vt)(x) 〈n(x),∇ut(x)〉2

+
∑
t∈T

∫
ωt

(v − vt)(x)∆ut(x) dx.

Since ut is a linear polynomial, we have ∆ut = 0 for all t ∈ T , and the last term vanishes.
We can write ∂ωt again in terms of the edges of T and find

a(v, u− uh) = −
∑
e∈ET

∫
ωe

(v − vt)(x) 〈ne(x),∇(ute,+ − ute,−)〉2 dx

+
∑
t∈T

∫
ωt

(v − vt)(x)f(x) dx.

With suitable local mesh width parameters he and ht for all edges e ∈ ET and all simplices
t ∈ T , we can use the Cauchy-Schwarz inequality to get

a(v, u− uh) ≤
∑
e∈ET

‖v − vt‖L2(e)‖〈ne,∇(ute,+ − ute,−)〉2‖L2(e)
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+
∑
t∈T
‖v − vt‖L2(ωt)‖f‖L2(ωt)

=
∑
e∈ET

1√
he
‖v − vt‖L2(e)

√
he‖〈ne,∇(ute,+ − ute,−)〉2‖L2(e)

+
∑
t∈T

1

ht
‖v − vt‖L2(ωt)ht‖f‖L2(ωt).

Using the Clément interpolation operator, we can find vt such that ‖v−vt‖L2(e)/
√
he and

‖v − vt‖L2(t)/ht can be bounded in terms of ‖v‖H1, and we can use the Cauchy-Schwarz
inequality again to conclude

a(v, u− uh) ≤ ‖v‖H1

( ∑
e∈ET

he‖〈ne,∇(ute,+ − ute,−)〉2‖2L2(ωe)
+
∑
t∈T

h2
t ‖f‖2L2(ωt)

)1/2
.

Dividing by ‖v‖H1 yields an upper bound for the residual norm.

6.7. Time-dependent problems

We consider the heat equation

∂u

∂t
(t, x) = g(t, x) + ∆xu(t, x) for all t ∈ R≥0, x ∈ Ω.

For the finite element discretization, we multiply by a test function v ∈ H1
0 (Ω), integrate,

and apply partial integration to get∫
Ω
v(x)

∂u

∂t
(t, x) dx =

∫
Ω
v(x)g(t, x) dx+

∫
Ω
v(x)∆xu(t, x) dx,

∂

∂t

∫
Ω
v(x)u(t, x) dx =

∫
Ω
v(x)g(t, x) dx−

∫
Ω
〈∇v(x),∇u(t, x)〉2 dx,

∂

∂t
〈v, u(t, ·)〉L2 = 〈v, g(t, ·)〉L2 − a(v, u(t, ·)) for all t ∈ R≥0, v ∈ H1

0 (Ω),

where a(·, ·) denotes the familiar bilinear form

a : V × V → R, (v, u) 7→ 〈∇v,∇u〉L2 ,

used already for Poisson’s equation.
Replacing V := H1

0 (Ω) by a finite element subspace Vn ⊆ V yields

∂

∂t
〈vn, un(t, ·)〉L2 = 〈vn, g(t, ·)〉L2 − a(vn, un(t, ·)) for all t ∈ R≥0, vn ∈ Vn.

As before, we choose a suitable basis (ϕi)
n
i=1 of Vn and represent the solution un by its

coefficients:

un(t, ·) =

n∑
i=1

yi(t)ϕi for all t ∈ R≥0,
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6. Finite element methods

where

y : R≥0 → Rn, t 7→ y(t),

is now a function of time.
Introducing the stiffness matrix A ∈ Rn×n, the mass matrix M ∈ Rn×n, and the

forcing vector b : R≥0 → Rn by

aij := a(ϕi, ϕj), mij := 〈ϕi, ϕj〉L2 ,

bi(t) := 〈ϕi, g(t, ·)〉L2 for all t ∈ R≥0, i, j ∈ [1 : n],

the Galerkin formulation is equivalent with

∂

∂t
My(t) = b(t)−Ay(t) for all t ∈ R≥0.

Since the mass matrix is always positiv definite and symmetric, we can multiply both
sides of the equation by M−1 and obtain an ordinary differential equation that can be
treated by time-stepping schemes.

We consider the Crank-Nicolson method as an example. The starting point is the
trapezoidal rule

My(ti+1) = My(ti) +

∫ ti+1

ti

My′(s) ds

≈My(ti) +
δ

2
(b(ti) + b(ti+1)−Ay(ti)−Ay(ti+1)),(

M +
δ

2
A

)
y(ti+1) ≈My(ti) +

δ

2
(b(ti) + b(ti+1)−Ay(ti)),

and we can obtain an approximation for y(ti+1) by solving this linear system. Since
both M and A are positive definite, symmetric, and sparse, essentially the same solvers
as in the case of Poisson’s equation can be applied.
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A. Appendix

A.1. Perron-Frobenius theory

Now we can return our attention to the invertibility of a weakly diagonally dominant
matrix A. Let us take a closer look at the matrix

M = I−D−1A

introduced in (2.10) during the proof of invertibility for strictly diagonally dominant
matrices given in Lemma 2.17. In our model problem, the off-diagonal elements of A
are non-positive, therefore the off-diagonal elements of M have to be non-negative.

In order to establish convergence of the Neumann series for M, and therefore the
invertibility of A, it is a good idea to investigate the eigenvalues and eigenvectors of
non-negative matrices. The corresponding results go back to Oskar Perron [9] and Georg
Frobenius [6].

Definition A.1 (Positive vectors and matrices) Let x,y ∈ RI and A,B ∈ RI×I .
We write

x ≤ y ⇐⇒ ∀i ∈ I : xi ≤ yi,
x < y ⇐⇒ ∀i ∈ I : xi < yi,

A ≤ B ⇐⇒ ∀i, j ∈ I : aij ≤ bij ,
A < B ⇐⇒ ∀i, j ∈ I : aij < bij ,

and denote the cone of non-negative vectors by

RI≥0 := {x ∈ RI : x ≥ 0}.

Our goal is to prove that — under certain conditions — a positive matrix A has a
positive maximal eigenvalue corresponding to a positive eigenvector. Since the matrices
M appearing in our convergence analysis are not strictly positive, but only non-negative,
we will also prove a generalization of this result.

Let A ∈ RI×I be a matrix with A ≥ 0. For our proof, we follow a rather elegant
approach introduced by Helmut Wielandt [12]. We consider the function

r : RI \ {0} → R, x 7→ min

{
(Ax)i
xi

: i ∈ I, xi 6= 0

}
. (A.1)
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Lemma A.2 (Quotient function) If e ∈ RI \ {0} is an eigenvector of A for an
eigenvalue λ ∈ R, we have

r(e) = λ.

We also have

r(αx) = r(x) for all α ∈ R>0, x ∈ RI≥0 \ {0}, (A.2a)

r(x)x ≤ Ax for all x ∈ RI≥0 \ {0}, (A.2b)

%(A) ≤ sup{r(x) : x ∈ RI≥0 \ {0}}. (A.2c)

Proof. Let e ∈ RI \{0} be an eigenvector of A for an eigenvalue λ ∈ R. Due to Ae = λe,
we have

r(e) = min

{
(Ae)i
ei

: i ∈ I, ei 6= 0

}
= min

{
λei
ei

: i ∈ I, ei 6= 0

}
= λ.

Let now x ∈ RI≥0 \ {0} and α ∈ R>0. We have

r(αx) = min

{
α(Ax)i
αxi

: i ∈ I, xi 6= 0

}
= min

{
(Ax)i
xi

: i ∈ I, xi 6= 0

}
= r(x),

and the definition implies

r(x) ≤ (Ax)i
xi

, r(x)xi ≤ (Ax)i for all i ∈ I, xi 6= 0.

Due to A ≥ 0 and x ≥ 0, the right-hand side cannot be negative, and we find

r(x)xi ≤ (Ax)i for all i ∈ I.

This is equivalent to r(x)x ≤ Ax.
Let λ ∈ C be an eigenvalue of A, and let e ∈ CI \{0} be a corresponding eigenvector.

We define x ∈ RI≥0 \ {0} by

xi := |ei| for all i ∈ I.

The triangle inequality yields

|λ|xi = |λei| = |(Ae)i| =
∣∣∣∣∑
j∈I

aijej

∣∣∣∣ ≤∑
j∈I

aij |ej | = (Ax)i,

so we have

|λ| ≤ (Ax)i
xi

for all i ∈ I, xi 6= 0,

and conclude |λ| ≤ r(x).

We are looking for an eigenvector of A, i.e., a vector x ∈ RI≥0 satisfying the equation

r(x)x = Ax. Due to (A.2b), we have r(x)x ≤ Ax for all vectors x ∈ RI≥0. In order to
reach equality, we should therefore try to find a maximum of the function r.
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Lemma A.3 (Eigenvector) Let A > 0, and let x ∈ RI≥0 \ {0} be such that

r(z) ≤ r(x) for all z ∈ RI≥0 \ {0}.

Then x is an eigenvector of A for the eigenvalue r(x) and satisfies x > 0.

Proof. Let λ := r(x), and let
y := Ax− λx.

Due to (A.2b), we have y ≥ 0.
Let z := Ax. Due to A > 0 and x ∈ RI≥0 \ {0}, we have z > 0.
Since λ is maximal, we obtain

Az− r(z)z ≥ Az− λz = A2x− λAx = A(Ax− λx) = Ay.

By definition, we can find i ∈ I such that

r(z) =
(Az)i
zi

, (Ay)i = (Az− r(z)z)i = 0.

Due to A > 0, this gives us y = 0, so x is an eigenvector for the eigenvalue λ.
The definition (A.1) implies λ = r(x) > 0, and λx = Ax = z > 0 yields x > 0.

All we have to do is to prove that r has a maximum in RI≥0 \ {0}. Due to (A.2a), we
can restrict our attention to a compact subset

C :=

{
x ∈ RI : x ≥ 0,

∑
i∈I

xi = 1

}
,

since we can scale any vector in RI≥0 \ {0} by 1/
∑

i∈I xi to put it into this set without
changing the value of r.

Lemma A.4 (Upper semi-continuity) The function r is upper semi-continuous,
i.e., for each x ∈ RI≥0 \ {0} and ε ∈ R>0, we can find δ ∈ R>0 such that

r(y) ≤ r(x) + ε for all y ∈ RI , ‖x− y‖∞ < δ.

Proof. Let x ∈ RI≥0 \ {0} and ε ∈ R>0.
We define the set

N := {i ∈ I : xi 6= 0}

of indices corresponding to non-zero entries in x. Due to x 6= 0, it cannot be empty.
We let

δ̂ := min{xi/2 : i ∈ N}

and observe that for each y ∈ RI with ‖x− y‖∞ < δ̂ we have

yi = xi − xi + yi ≥ xi − |xi − yi| ≥ xi − δ̂ ≥ xi/2 > 0 for all i ∈ N. (A.3)
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This means that for each i ∈ N , the mapping

{y ∈ RI : ‖x− y‖∞ < δ̂} → R, y 7→ (Ay)i
yi

is continuous, so we can find δ ∈ (0, δ̂) such that we have

(Ay)i
yi

<
(Ax)i
xi

+ ε for all i ∈ N, y ∈ RI with ‖x− y‖∞ < δ.

Let now y ∈ RI with ‖x− y‖∞ < δ. We have

r(y) = min

{
(Ay)i
yi

: i ∈ I, yi 6= 0

}
(A.3)

≤ min

{
(Ay)i
yi

: i ∈ N
}

< min

{
(Ax)i
xi

+ ε : i ∈ N
}

= r(x) + ε.

Lemma A.5 (Maximum) There exists x ∈ C such that

r(z) ≤ r(x) for all z ∈ RI≥0 \ {0}.

Proof. Let e ∈ RI≥0 denote the vector with ei = 1 for all i ∈ I. Due to (A.2b), we have

〈e,Ax〉2 − r(x)〈e,x〉2 =
∑
i∈I

(Ax)i − r(x)xi ≥ 0 for all x ∈ RI≥0,

and we obtain

r(x) ≤ 〈e,Ax〉2
〈e,x〉2

=
〈A∗e,x〉2
〈e,x〉2

for all x ∈ RI≥0.

Let µ ∈ R>0 denote the maximal entry of the vector A∗e. We have

〈A∗e,x〉2 =
∑
i∈I

(A∗e)ixi ≤ α
∑
i∈I

xi = α〈e,x〉2 for all x ∈ RI≥0,

so we can conclude

r(x) ≤ 〈A
∗e,x〉2
〈e,x〉2

≤ α〈e,x〉2
〈e,x〉2

= α for all x ∈ RI≥0.

This means that the supremum

λ := sup{r(x) : x ∈ C}

is bounded by α and therefore a real number.
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By definition of the supremum, we can find a sequence (x(m))∞m=0 in C satisfying

r(x(m)) > λ− 1/m for all m ∈ N,

and since C is compact, this sequence has a limit point x ∈ C. We only have to prove
r(x) = λ.

Let ε ∈ R>0. Due to Lemma A.4, we can find δ ∈ R>0 such that

r(y) < r(x) + ε/2 for all y ∈ RI with ‖y − x‖∞ < δ.

Since x is a limit point, we can also find m ∈ N such that

‖x(m) − x‖ < δ, 1/m < ε/2.

Combining both estimates yields

λ− ε/2 < λ− 1/m < r(x(m)) < r(x) + ε/2, λ− ε < r(x).

Since ε can be chosen arbitrarily, this implies λ ≤ r(x). Since λ is the supremum of r in
C, we also have r(x) ≤ λ and therefore λ = r(x).

Corollary A.6 (Spectral radius) Let A > 0. The spectral radius %(A) of A is an
eigenvalue with an eigenvector x ∈ RI≥0 satisfying x > 0.

Proof. Lemma A.5 gives us a vector x ∈ RI≥0 \ {0} with

r(z) ≤ r(x) for all z ∈ RI≥0 \ {0}.

Due to Lemma A.3, this vector x is an eigenvector of A for the eigenvalue λ = r(x) with
x > 0.

Due to (A.2c), we have %(A) ≤ λ. Since λ is an eigenvalue, we also have λ = |λ| ≤
%(A), and can conclude λ = %(A).

Unfortunately, matrices resulting from finite difference discretization schemes tend to
be sparse, i.e., each row and column contains only a non-zero few coefficients. This
means that A > 0 is not a useful requirement for our investigation of finite difference
methods. We need another condition that can take its place.

Definition A.7 (Connections) Let A ∈ CI×I , and let i, j ∈ I.
We call a tuple (i`)

m
`=0 of indices in I a connection from j to i if

j = i0, i = im, ai`,i`−1
6= 0 for all ` ∈ [1 : m].

The number m ∈ N0 is called the length of the connection.

Definition A.8 (Irreducible matrices) A matrix A ∈ CI×I is called irreducible if
for each pair i, j ∈ I there is a connection of i and j. If the matrix is not irreducible, it
is called reducible.
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This definition has a geometric interpretation: we can define the graph of a matrix A
by using V := I as its vertices and

E := {(i, j) : aij 6= 0, i, j ∈ I}

as its edges. The matrix is irreducible if the graph is strongly connected.
In the case of a finite difference discretization, aij 6= 0 holds if and only if either i = j

or j is a neighbour of i. A matrix resulting from a finite difference scheme therefore is
irreducible if we can reach any grid point from any other grid point by moving from one
neighbour to the next. This is typically ensured if the underlying domain Ω is connected.

Exercise A.9 (Reducible matrix) Prove that a matrix A ∈ CI×I is reducible if and
only if there are index sets I1, I2 ⊆ I such that

I = I1 ∪ I2, ∅ = I1 ∩ I2, A|I2×I1 = 0.

These conditions mean that A can be written in the form

A =

(
A11 A12

A22

)
of a block upper triangular matrix with non-trivial blocks.

For irreducible matrices, we can replace Lemma A.3 by the following more general
result.

Lemma A.10 (Eigenvector) Let A ≥ 0 be an irreducible matrix, let x ∈ RI≥0 \ {0}
be such that

r(z) ≤ r(x) for all z ∈ RI≥0 \ {0}.

Then x is an eigenvector of A for the eigenvalue r(x) and satisfies x > 0.

Proof. Let λ := r(x), and let
y := Ax− λx.

Due to (A.2b), we have y ≥ 0.
Since A is irreducible, we can find n ∈ N0 such that (A+I)n > 0. Let z := (A+I)nx.

Due to (A + I)n > 0 and x ∈ RI≥0 \ {0}, we have z > 0.
Since λ is maximal, we obtain

Az− r(z)z ≥ Az− λz = (A + I)z− (λ+ 1)z = (A + I)n+1x− (λ+ 1)(A + I)nx

= (A + I)n((A + I)x− (λ+ 1)x) = (A + I)n(Ax− λx) = (A + I)ny.

By definition (A.1), we can find i ∈ I such that

r(z) =
(Az)i
zi

, ((A + I)ny)i = (Az− r(z)z)i = 0.
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Due to (A + I)n > 0, this gives us y = 0, so x is an eigenvector for the eigenvalue λ.
The definition (A.1) implies λ = r(x) ≥ 0, and

(λ+ 1)nx = (A + I)nx = z > 0

yields x > 0.

Theorem A.11 (Perron-Frobenius) Let A ≥ 0 be irreducible. The spectral radius
%(A) of A is an eigenvalue with an eigenvector x ∈ RI≥0 \ {0} satisfying x > 0.
%(A) is the maximum of the function r introduced in (A.1).

Proof. Lemma A.5 gives us a vector x ∈ RI≥0 \ {0} such that

r(z) ≤ r(x) for all z ∈ RI≥0 \ {0}.

Due to Lemma A.10, this vector x is an eigenvector of the matrix A for the eigenvalue
λ = r(x) ≥ 0 with x > 0.

Due to (A.2c), we have %(A) ≤ λ. Since λ is an eigenvalue, we also have λ = |λ| ≤
%(A), and can conclude λ = %(A).

Exercise A.12 (Stochastic matrix) Let A ∈ RI×I be a (left) stochastic matrix, i.e.,
a matrix satisfying A ≥ 0 and∑

i∈I
aij = 1 for all j ∈ I.

Prove %(A) = 1 (Hint: λ ∈ σ(A) ⇐⇒ λ̄ ∈ σ(A∗)).
Assuming that A is irreducible, show that there is a vector x ∈ RI with x > 0 and

Ax = x,
∑
i∈I

xi = 1.

Background: If the elements of I are the states of a Markov chain, a vector y ∈ RI with
y ≥ 0 and

∑
i∈I yi = 1 corresponds to a probability distribution for the states. If the

coefficients aij are the probabilities for switching from state j to state i, Ay gives us the
probability distribution after one step of the Markov chain.

The conditions above ensure that there is an invariant probability distribution, i.e.,
a distribution that will not change as the Markov chain progresses. If A is irreducible,
i.e., if it is possible for the Markov chain to reach any state from any other state with
non-zero probability, it is even possible to prove that the invariant probability distribution
is unique and that the sequence of probability distributions obtained by starting with an
arbitrary distribution and stepping through the Markov chain converges to the invariant
distribution.

Theorem A.11 provides us with the tool we need to obtain a generalized stability result
for finite difference discretizations.
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Definition A.13 (Irreducibly diagonally dominant) A matrix A ∈ CI×J is called
irreducibly diagonally dominant if it is irreducible, weakly diagonally dominant, and if
there is an index k ∈ I such that ∑

j∈I
j 6=k

|akj | < |akk|.

Lemma A.14 (Spectral radius) Let A ∈ CI×I be irreducibly diagonally dominant,
and let Â ∈ RI×I be defined by

âij = |aij | for all i, j ∈ I.

Then %(A) ≤ %(Â).

Proof. Let λ ∈ σ(A), and let e ∈ CI \ {0} be a corresponding eigenvalue.

We define ê ∈ RI≥0 \ {0} by

êi = |ei| for all i ∈ I.

Let i ∈ I with |ei| 6= 0. Then we have ei 6= 0 and the triangle inequality yields

|λ| = |(Ae)i|
|ei|

=
1

êi

∣∣∣∣∑
j∈I

aijej

∣∣∣∣ ≤ 1

êi

∑
j∈I
|aij ||ej | =

(Âê)i
êi

.

Introducing the function

r̂ : RI≥0 → R, x 7→ min

{
(Âx)i
xi

: i ∈ I, xi 6= 0

}
,

we conclude |λ| ≤ r̂(ê). Theorem A.11 yields that %(Â) is the maximum of r̂.

Lemma A.15 (Generalized maximum principle) Let A ∈ RI×I be irreducibly di-

agonally dominant, and let M̂ ∈ RI×I be defined by

m̂ij =

{
|aij |/|aii| if i 6= j,

0 otherwise
for all i, j ∈ I.

If there is a vector x ∈ RI≥0 such that x ≤ M̂x, x has to be a constant vector.

Proof. Let x ∈ RI≥0 be a vector satisfying x ≤ M̂x.

Let µ := max{xi : i ∈ I}, and let q ∈ I be an index with µ = xq.

We will prove that the existence of a connection of length m ∈ N0 from an index i ∈ I
to q implies xi = µ by induction.
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Base case: If there is a connection of length m = 0, from i ∈ I to q, we have i = q
and therefore xi = xq = µ.

Induction assumption: Let m ∈ N0 be chosen such that our claim holds for all con-
nections of length m.

Induction step: Let i ∈ I be an index such that a connection (i`)
m+1
`=0 from i to q

exists. Let k := i1. Obviously, (i`)
m+1
`=1 is a connection of length m from k to q, and our

assumption yields xk = µ. Since M̂x ≥ x and since A is weakly diagonally dominant,
we have

xk ≤ (M̂x)k =
1

|akk|
∑
j∈I
j 6=k

|akj |xj ≤
1

|akk|
∑
j∈I
j 6=k

|akj |µ ≤ µ = xk

and conclude xj = µ for all j ∈ I with akj 6= 0. Due to aki = ai1,i0 6= 0, this implies
xi = µ.

Lemma A.16 (Irreducibly diagonally dominant) Let A ∈ RI×I be irreducibly di-
agonally dominant. Then %(M) < 1 holds for M = I−D−1A and A is invertible.

Proof. Since A is irreducible, each row has to contain at least one non-zero element.
Since A is weakly diagonally dominant, this implies that all diagonal elements are non-
zero, so the diagonal matrix D ∈ RI×I given by

dij :=

{
aii if i = j,

0 otherwise
for all i, j ∈ I

is invertible. We consider the matrix

M := I−D−1A

and its non-negative version M̂ ∈ RI×I given by

m̂ij := |mij | =

{
|aij |/|aii| if i 6= j,

0 otherwise
for all i, j ∈ I.

Since A is irreducible and since aij 6= 0 implies mij 6= 0 for all i, j ∈ I with i 6= j, the

matrices M and M̂ are irreducible.
Due to Theorem A.11, we can find an eigenvector x ∈ RI of M̂ for the eigenvalue

%(M̂) with x > 0. We have to prove %(M̂) < 1.

Let y ∈ RI≥0 be a vector satisfying y ≤ M̂y. Due to Lemma A.15, this implies that
there is a µ ∈ R≥0 such that

yi = µ for all i ∈ I.

Since A is irreducibly diagonally dominant, there is an index k ∈ I such that∑
j∈I
j 6=k

|akj | < |akk|, β :=
1

|akk|
∑
j∈I
j 6=k

|akj | < 1,
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and we find

µ = yk ≤ (M̂y)k =
1

|akk|
∑

j∈Ij 6=k
|akj |yj =

1

|akk|
∑

j∈Ij 6=k
|akj |µ = βµ.

Due to β < 1, we can conclude µ = 0 and y = 0.
Since we have x > 0, this implies x 6≤ M̂x = %(M̂)x, i.e., %(M̂) < 1.

Lemma A.14 yields %(M) ≤ %(M̂) < 1. Due to Corollary 2.23, the Neumann series for
M converges and I−M = D−1A is invertible, so A itself also has to be invertible.
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