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Abstract

The well-known star discrepancy is a common measure for the uniformity of
point distributions. It is used, e.g., in multivariate integration, pseudo random
number generation, experimental design, statistics, or computer graphics.

We study here the complexity of calculating the star discrepancy of point sets
in the d-dimensional unit cube and show that this is an NP-hard problem.

To establish this complexity result, we first prove NP-hardness of the following
related problems in computational geometry: Given n points in the d-dimensional
unit cube, find a subinterval of minimum or maximum volume that contains k of
the n points.

Our results for the complexity of the subinterval problems settle a conjecture of
E. Thiémard [Math. Meth. Oper. Res. 54 (2001) 21–45].
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1 Introduction

Geometric discrepancy theory studies the irregularity of distributions of point sets and has
considerable theoretical and practical importance. There are many notions of discrepancy
known which have a wide range of applications as in optimization, combinatorics, pseudo
random number generation, option pricing, experimental design, computer graphics, and
other areas, see, e.g., [1, 2, 7, 8, 19, 20, 22].

In particular for the ubiquitous task of multivariate numerical integration (arising in
numerous applications such as mathematical finance, econometrics, physics or quantum
chemistry) quasi-Monte Carlo algorithms, based on low-discrepancy samples, have at-
tracted a lot of research interest in the last decades. Here the error of the quasi-Monte
Carlo approximation for certain classes of integrands can be expressed in terms of the dis-
crepancy of the set of sample points via inequalities of Koksma-Hlawka- or Zaremba-type,
see, e.g., [7, 15, 16, 22, 24, 31]. The essence is that sample points with small discrepancy
lead to small integration errors.

The most prominent discrepancy measure is the so-called star discrepancy, which is
defined as follows: Let X = (xi)n

i=1 be a finite sequence in the d-dimensional (half-open)
unit cube [0, 1)d. For y = (y1, . . . , yd) ∈ [0, 1]d let A(y,X) be the number of points of X
lying in the d-dimensional half-open subinterval [0, y) := [0, y1) × · · · × [0, yd), and let Vy

be the d-dimensional (Lebesgue) volume of [0, y) . We call

d∗∞(X) = sup
y∈(0,1]d

∣

∣

∣
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the L∞-star discrepancy, or simply the star discrepancy of X. Other important discrep-
ancy measures are, e.g., the Lp-star discrepancies

d∗p(X) =

(
∫

[0,1]d
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p
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)1/p

, 1 ≤ p <∞.

In many applications it is of interest to measure the quality of certain sets by cal-
culating their star discrepancy, e.g., to test whether successive pseudo random numbers
are statistically independent [22], or whether certain sample sets are suitable for multi-
variate numerical integration of certain classes of integrands. Apart from that, we find
particularly interesting that the fast calculation or approximation of the star discrepancy
would allow practicable semi-constructions of low-discrepancy samples of moderate size
as described in [4, 12]. (Here “moderate size” means that the number of sample points
should be at most polynomial in the dimension d.) The underlying simple idea is the
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following: Let X be a set of point configurations endowed with some probability measure.
Let us assume that the mean value of the star discrepancy taken over all elements of
X (i.e., all point configurations in X ) is small, and that there exists a large deviation
bound ensuring that the star discrepancy is concentrated around its mean (examples of
such settings are discussed in [3, 4, 5, 11, 14]). Then one may choose a point set from X
randomly and calculate its actual star discrepancy. If it is sufficiently close to the mean,
we accept the set, otherwise we choose another set randomly from X . The large deviation
bound guarantees us that with high probability we only have to perform a small number
of random choices to receive the low-discrepancy set we are seeking for.

Actually there are derandomized algorithms known to construct such samples de-
terministically [3, 4, 5], but these exhibit high running times. Therefore efficient semi-
constructions would be appreciated to avoid the costly derandomization procedures. The
critical step of the semi-construction described above is clearly the efficient calculation
(or approximation) of the star discrepancy of a chosen set.

It is known that the L2-star discrepancy of a given n-point set in dimension d can
be calculated via Warnock’s formula [29] with O(dn2) arithmetic operations. S. Heinrich
and K. Frank developed an asymptotically even faster algorithm using O(n(logn)d−1)
operations for fixed d [9, 13]. (As indicated by the exponent of the log-term, the algorithm
is unfortunately not beneficial in high dimensions.) But, as pointed out by J. Matoušek
in [20], no similarly efficient algorithms are known for the Lp-star discrepancy if p 6= 2.

In particular, all known algorithms for calculating the star discrepancy or approximat-
ing it up to a user-specified error, have running times exponential in d, see [6, 11, 26, 27].
Let us have a closer look at the problem: If we define for a finite sequence X = (xi)n

i=1 in
[0, 1)d and for j ∈ {1, . . . , d}

Γj(X) = {xi
j ; i ∈ {1, ..., n}} and Γ̄j(X) = Γj(X) ∪ {1},

and put
Γ(X) = Γ1(X) × · · · × Γd(X) and Γ̄ = Γ̄1(X) × · · · × Γ̄d(X),

it is not hard to see that

d∗∞(X) = max

{

max
y∈Γ̄(X)

(

Vy −
1

n
A(y,X)

)

, max
y∈Γ(X)

(

1

n
Ā(y,X)− Vy

)}

, (1)

where Ā(y,X) denotes the number of points of X lying in the closed d-dimensional subin-
terval [0, y]. Indeed, consider an arbitrary test box [0, y), y ∈ (0, 1]d. Then for every
j ∈ {1, . . . , d} we find a maximal xj ∈ Γj(X) ∪ {0} and a minimal zj ∈ Γ̄(X) satisfying
xj < yj ≤ zj . Put x = (x1, . . . , xd) and z = (z1, . . . , zd). We get the inequalities

Vy −
1

n
A(y,X) = Vy −

1

n
A(z,X) ≤ Vz −

1

n
A(z,X),

and
1

n
A(y,X) − Vy =

1

n
Ā(x,X) − Vy ≤

1

n
Ā(x,X) − Vx,
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showing that the right hand side of (1) is at least as big as d∗∞(X). If, on the other hand,
we have some y ∈ Γ(X), then we may consider for a small ε > 0 the vector y(ε), defined
by y(ε)j = min{yj + ε, 1} for j = 1, . . . , d. Obviously, y(ε) ∈ (0, 1]d and

lim
ε→0

(

1

n
A(y(ε), X)− Vy(ε)

)

=
1

n
Ā(y,X)− Vy.

These arguments show that (1) is valid. (Formulas similar to (1) can be found in several
places in the literature—the first reference we are aware of is [21, Thm. 2].) Thus an
enumeration algorithm would provide us with the exact value of d∗∞(X). But since the
cardinality of Γ(X) for almost all X is nd, such an algorithm would be infeasible for n
and d large.

Since no efficient algorithm for the exact calculation or tight approximation of the
star discrepancy is known, other authors tried to deal with this large scale integer pro-
gramming problem by using optimization heuristics. In [30] P. Winker and K.-T. Fang
used threshold accepting, a refined (randomized) local search algorithm based on a similar
idea as the simulated annealing algorithm, to find lower bounds for the star discrepancy.
The algorithm performed well in numerical tests on rank-1 integration lattices, but in
general no approximation quality can be guaranteed. The authors expressed their hope
that future research might give new insights into the real computational complexity of
calculating the star discrepancy.

In [28] E. Thiémard gave an integer linear programming formulation for the prob-
lem and used techniques as cutting plane generation and branch and bound to tackle it.
With the resulting algorithm he was able to perform non-trivial star discrepancy com-
parisons between low-discrepancy sequences. The key observation to approach a highly
non-linear expression as (1) via linear programming is that one can divide it into at most
2n sub-problems of the type “optimal volume subintervals with k points” (for the precise
definition see the next section). However, Thiémard conjectured these sub-problems to
be NP-hard.

In this paper we prove the conjecture of Thiémard by establishing the NP-hardness of
these optimal volume subinterval problems. (Notice by the way that another conjecture of
Thiémard, made in [27], was proved to be wrong by Pillards and Cools in [25].) Moreover,
we use these results to show that indeed the problem of calculating the star discrepancy is
also NP-hard. Recall that NP-hardness of an optimization problem U is proved by verify-
ing that deciding the so-called threshold language of U is an NP-hard problem (see, e.g.,
[17, Sect. 2.3.3] or, for a less formal explanation, [10, Sect. 2.1]). Thus we actually prove
the NP-completeness of decision problems corresponding to the optimization problems
mentioned above.

Furthermore, we state some errors occurring in [28] which may lead to incorrect solu-
tions of Thiémard’s algorithm for certain instances. We show how to avoid the undesired
consequences of these errors.
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2 Optimal Volume Subintervals with k Points

In addition to the notation introduced in the previous section, we will use the following
conventions: For ν ∈ N let [ν] = {1, . . . , ν}. For x = (x1, ..., xd) ∈ [0, 1]d we denote
the d-dimensional subinterval [0, x1] × · · · × [0, xd] by [0, x]. (For convenience, we will
often use the shorter term “box” instead of “subinterval”.) If A is a set, 1A denotes its
characteristic function and |A| its cardinality.

For a given n-point sequence X = (xi)n
i=1 in [0, 1)d and some given integer 0 ≤ k ≤ n,

Eric Thiémard considered in [28] the problems of finding the minimum volumes of closed
subintervals containing exactly k points of X

Ṽ k
min = min{Vy ; y ∈ Γ(X), Ā(y,X) = k}

and the maximal volume of half-open subintervals containing k points

Ṽ k
max = max{Vy ; y ∈ Γ̄(X), A(y,X) = k}.

Remark 2.1. It is easy to see that we have

Ṽ k
min = inf{Vy ; y ∈ [0, 1]d, A(y,X) = k}

and
Ṽ k

max = sup{Vy ; y ∈ [0, 1]d, A(y,X) = k}.

From identity (1) we get

d∗∞(X) = max

{

max
k=0,...,n−1

(

Ṽ k
max −

k

n

)

, max
k=1,...,n

(

k

n
− Ṽ k

min

)}

. (2)

Thus solving the optimal volume subinterval problems Ṽ k
max, k = 0, . . . , n−1, and Ṽ k

min, k =
1, . . . , n, would give us the exact star discrepancy of X. In [28] Thiémard formulated the
optimal volume subinterval problems as integer linear programs and proposed a strategy
(using cutting plane generation and branch and bound) to calculate d∗∞(X) in a way that
most of these integer programs do not have to be solved to optimality.

A drawback of the problem formulation of Thiémard is that for some choices of k and
X the Ṽ k

min- and Ṽ k
max-problem do not have a solution (more precisely, there exists no

subinterval containing exactly k points). In [28, Remark 1] it is stated that this could not
happen if X consists of n distinct points. The following simple example shows that this
statement is false:

Let d = 2 and n = 3. Put x1 = (0.3; 0.5), x2 = (0.5; 0.5), and x3 = (0.5; 0.3). In this
situation we do neither find a half-open nor a closed box containing exactly 2 of the 3
points of the sequence X = (x1, x2, x3). But if we require |Γj(X)| = n for at least one
index j ∈ [d], then the Ṽ k

min- and Ṽ k
max-problems always have a solution.

The concrete strategy of Thiémard to calculate the star discrepancy made strong use
of the inequalities

Ṽ 1
min ≤ · · · ≤ Ṽ n

min and Ṽ 0
max ≤ · · · ≤ Ṽ n−1

max (3)
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under the assumption that X consists of n distinct points. But as the following examples
reveal, this assumption is not sufficient to guarantee that these inequalities hold (even if
all of the subinterval problems have a solution):

1
4

2
5

1
2

1
4

1
2

3
4

1
4

1
2

1
8

3
8

1
4

1
2

3
4

For the sample on the left we get

Ṽ 3
min =

1

2
·
1

2
=

1

4
<

3

10
=

2

5
·
3

4
= Ṽ 2

min.

Such a counterexample can again not occur if |Γj(X)| = n for at least one index j ∈ [d].
For the sequence in the right figure we actually have |Γ2(X)| = n = 4, but still we obtain

Ṽ 3
max =

1

2
<

3

4
= Ṽ 2

max.

To avoid counterexamples of this type, it is sufficient to require |Γj(X)| = n for all indices
j ∈ [d]. Thus the condition that all projections of X to a single coordinate axis consist of
n distinct values implies the inequalities (3).

Since we do not want to restrict ourselves to those sequences with pairwise distinct
coordinates, let us introduce modified subinterval problems which will help us to overcome
the undesirable properties of the problem formulation of Thiémard.

For a given n-point sequence X = (xi)n
i=1 in [0, 1)d and some given integer 0 ≤ k ≤ n we

consider the problems of finding the minimum volume of all closed subintervals containing
at least k points

V k
min = min{Vy ; y ∈ Γ(X), Ā(y,X) ≥ k}

and of finding the maximum volume of all open subintervals containing at most k points

V k
max = max{Vy ; y ∈ Γ̄(X), A(y,X) ≤ k}.

Evidently, for all 0 ≤ k ≤ n, the V k
min- and V k

max-problems always have a solution, and
we get

V 0
min ≤ V 1

min ≤ · · · ≤ V n
min and V 0

max ≤ V 1
max ≤ · · · ≤ V n

max.
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What is most important, an analogue of identity (2) holds:

d∗∞(X) = max

{

max
k=0,...,n−1

(

V k
max −

k

n

)

, max
k=1,...,n

(

k

n
− V k

min

)}

. (4)

Furthermore, it is easy to see from the discussion above that the V k
min- and Ṽ k

min-problems
have the same solution if |Γj(X)| = n for some j ∈ [d], and that the V k

max- and Ṽ k
max-

problems have the same solution if |Γj(X)| = n for all j ∈ [d].
In [28] Eric Thiémard conjectured that the Ṽ k

min- and Ṽ k
max-problems are NP-hard, but

stated that he was not able to prove it.
We will formulate the decision problems corresponding to the V k

min- and V k
max-problems

and prove that they are NP-complete, and that the same holds for the decision problems
corresponding to the Ṽ k

min- and Ṽ k
max-problems.

Let us previously define the coding length of a real number from the interval [0, 1) to
be the number of digits in its binary expansion.

We will state the decision problems in a quite general form. But since in practice only
inputs with finite coding length are of interest, the reader may think of rational numbers
with finite binary expansion instead of general real numbers as in our formulation. Notice
that to prove the hardness of a decision problem it is obviously sufficient to find some
subproblem which is already a hard problem. In the subproblems, which we actually prove
to be NP-hard, we indeed only consider rational numbers with finite binary expansion.

Let us now define the (k+, ε−)-box problem.

Definition 2.2. Let X = (xi)n
i=1 be a finite sequence in [0, 1)d and let ε ∈ (0, 1]. For

y ∈ Γ(X) the closed box [0, y] is called (k+, ε−)-box for X if Ā(y,X) ≥ k and Vy ≤ ε.

Decision Problem (k+, ǫ−)-Box

Instance: Natural numbers n, d ∈ N, k ∈ [n], sequence X = (xi)n
i=1 in [0, 1)d, ε ∈ (0, 1]

Question: Is there a (k+, ǫ−)-box for X?

Theorem 2.3. The decision problem (k+, ε−)-Box is NP-complete.

The problem is obviously in NP. We will prove NP-hardness for the subproblem where
n = d, and where the coding length of xi

j is of order O(1) for all i, j and the coding length
of ε of order O(n). To do so, we need some further definitions.

Definition 2.4. Given some undirected finite graph G = (V,E), some k ∈ [|V |] and two
disjoint subsets I, J of V , each of cardinality k, we call the pair (I, J) a balanced subgraph
of size k if {i, j} ∈ E for each i ∈ I and j ∈ J .

Decision Problem Balanced Subgraph

Instance: Graph G = (V,E), k ∈ N

Question: Is there a balanced subgraph of G of size k?

The subproblem of Balanced Subgraph, where we only consider bipartite graphs
G as part of the input, is called Balanced Complete Bipartite Subgraph. It was
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proved by David Johnson in [18] to be NP-complete by reduction of the problem Clique.
For our purpose it thus suffices to reduce Balanced Subgraph to the problem (k+, ε−)-
Box.

Proof of Theorem 2.3. Let G = (V,E), k ∈ [n] with n = |V | be an instance of the problem
Balanced Subgraph. For convenience we assume V = [n].
Let α < β ∈ (0, 1) (e.g., we may choose β = 1/2, α = 1/4). Put

xi
j =

{

α , if {i, j} ∈ E

β , else

and
xi = (xi

j)
n
j=1, i = 1, ..., n.

We will prove that there exists a balanced subgraph of size k for G if and only if there is
a (k+, (αkβn−k)−)-box for X := (xi)n

i=1.

First, assume the existence of I, J ⊆ V such that |I| = |J | = k, I ∩ J = ∅, and
{i, j} ∈ E for all i ∈ I, j ∈ J . Put

yj = α · 1J(j) + β · 1V \J(j), j = 1, ..., n and y = (yj)
n
j=1

and obtain Vy = αkβn−k as well as Ā(y,X) =
∑n

i=1 1[0,y](x
i) ≥

∑

i∈I 1[0,y](x
i) = k. There-

fore, [0, y] is a (k+, (αkβn−k)−)-box for X.

Conversely, assume the existence of a point y ∈ Γ(X) such that Vy ≤ αkβn−k and
Ā(y,X) ≥ k. Then, yj ≥ α for all j ∈ [n], since otherwise 1[0,y](x

i) = 0 for each i. Since
Vy ≤ αkβn−k we also get yj < β for at least k coordinates j1, ..., jk. By assumption there
are pairwise distinct indices i1, ..., ik such that xi1 , ..., xik ∈ [0, y]. This yields {i, j} ∈ E for
all i ∈ {i1, ..., ik} and j ∈ {j1, ..., jk}. The sets {i1, ..., ik} and {j1, ..., jk} are necessarily
disjoint, since {j, j} /∈ E for any j ∈ [n].

Remark 2.5. Let us mention that we can also prove NP-hardness for the subproblem
where the finite sequences consist of points with pairwise distinct coordinates. For this
purpose, let G be as in the proof stated above and let ϕ : [n] × [n] → [n2] be bijective.
Now put, e.g.,

xi
j =

{ ϕ(i,j)
22nk , if {i, j} ∈ E

1 − ϕ(i,j)
22n , else

Some calculations show that for n ≥ 4 there is a balanced subgraph of size k for G if and
only if there exists a (k+, (( n2

22nk )k(1 − 1
22n )n−k)−)-box for X = ((xi

j)
d
j=1)

n
i=1. (The detailed

calculations can be found in the appendix of this article.)
In the situation of pairwise distinct coordinates there exists a (k+, ε−)-box if and

only if there exists a (k, ε−)-box, i.e., a box [0, y), y ∈ Γ(X), such that Vy ≤ ε and
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Ā(y,X) = k. Thus our argument above shows that the decision problem (k, ε−)-Box,
which corresponds to the Ṽ k

min-problems, is also NP-hard, proving the first part of the
conjecture of Thiémard.

We now turn to the (k−, ε+)-box-problem and start with the definition of (k−, ε+)-
boxes.

Definition 2.6. According to Definition 2.2, for a given sequence X = (xi)n
i=1 in [0, 1)d

and a given ε ∈ (0, 1] we define a (k−, ε+)-box for X to be a half-open box [0, y) where
y ∈ Γ̄(X), A(y,X) ≤ k, and Vy ≥ ε.

Decision Problem (k−, ǫ+)-Box

Instance: Integers n, d ∈ N, 0 ≤ k ≤ n, sequence X = (xi)n
i=1 in [0, 1)d, ε ∈ (0, 1]

Question: Is there a (k−, ǫ+)-box for X?

The (k−, ε+)-box problem slightly differs from the problem we have just examined,
since for the (k−, ε+)-box problem we can even prove NP-hardness for a fixed k. In
particular, it will be demonstrated that it is NP-hard to decide whether for instances
n, d ∈ N, X = (xi)n

i=1 ∈ [0, 1)dn, ε ∈ (0, 1], there exists a (0−, ε+)-box (we will use
this fact in the next section to prove NP-hardness of the problem of calculating the star
discrepancy).

As long as P6=NP, this cannot be shown for the (k+, ε−)-box problem since for a
given sequence X = (x1, . . . , xn) ∈ [0, 1)d we may enumerate the

(

n
k

)

subsets S ⊆ [n] of

cardinality |S| = k and put BS =
∏d

j=1[0,max{xs
j ; s ∈ S}]. Obviously, all these boxes

BS contain at least k points and it is easily verified that V k
min = min {vol(BS) ; S ⊆

[n], |S| = k}. Hence for fixed k we can solve the (k+, ε−)-box problem in polynomial
time.

Theorem 2.7. The decision problem (k−, ε+)-Box is NP-complete. Moreover, the sub-
problem where k is a fixed non-negative integer (and not part of the input anymore) is
also NP-complete, regardless of the choice of k.

The problem (k−, ε+)-Box is obviously in NP. For a fixed k we will actually prove
NP-hardness for the subproblem where n = d, xi

j ∈ {0, 1
2
} for all i, j and the coding length

of ε is ≤ n. For the proof, we need a further definition.

Definition 2.8. Let G = (V,E) be a graph and T a subset of V . Then T is a dominating
set of G if for all v ∈ V \ T there exists a t ∈ T such that {v, t} is contained in the edge
set E.

Decision Problem Dominating Set

Instance: Graph G = (V,E), m ∈ [|V |]
Question: Is there a dominating set T ⊆ V of cardinality at most m?

It is well known that the decision problem Dominating Set is NP-complete, see,
e.g., [10].
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Proof of Theorem 2.7. We first prove the NP-hardness result for k = 0. We do so by
reducing Dominating Set to the problem (0−, ε+)-Box. Therefore, let G = (V,E), c ∈
[|V |] be an instance of Dominating Set. Without loss of generality we may assume that
V = [n] for n = |V |. Now, let α and β ∈ [0, 1) such that β < αn. In particular, we may
choose α = 1/2 and β = 0. For i, j ∈ [n] put

xi
j =

{

α , if {i, j} ∈ E or i = j

β , else

and let
xi = (xi

j)
n
j=1 and X = (xi)n

i=1.

We will show that there exists a dominating set C ⊆ V of cardinality ≤ c if and only if
there is a y ∈ Γ̄(X) such that Vy ≥ αc and A(y,X) = 0.

Let us first assume that there exists a dominating set C ⊆ V of G of cardinality at
most c. Put

yj = α · 1C(j) + 1[n]\C(j) , j = 1, ..., n and y = (yj)
n
j=1.

Obviously, y ∈ Γ̄(X) and Vy =
∏

j∈C α = α|C| ≥ αc. Thus, it suffices to prove that the
half-open anchored box [0, y) does not contain any point of X. Now for each i ∈ C we
have xi

i = α, i.e., xi /∈ [0, y). For every i ∈ V \C there is a ν ∈ C such that {i, ν} ∈ E
(by definition of a dominating set) yielding xi

ν = α, implying again xi /∈ [0, y). Therefore
A(y,X) = 0.

Assume now the existence of a y ∈ Γ̄(X) such that Vy ≥ αc and A(y,X) = 0. Since
β < αn ≤ Vy, we get

|{j ∈ [n] ; yj ≥ α}| = n.

On the other hand, putting C = {i ∈ [n] ; yi = α}, we obtain |C| ≤ c. But since
A(y,X) = 0 we get |C| ≥ 1 and for each i ∈ [n] there exists a ν ∈ C such that {i, ν} ∈ E
or i ∈ C. Therefore, C is a dominating set of G of cardinality ≤ c.

Now let k ∈ N be arbitrary and let n, d ∈ N, a finite sequence X = (x1, . . . , xn) in
[0, 1)d and ε > 0 be given. Put X̃ = (xi)n+k

i=1 , where xn+i = (0)d
j=1 for i ∈ [k]. Obviously,

there exists a y ∈ Γ̄(X) such that Vy ≥ ε and A(y,X) = 0 if and only if there is a
ỹ ∈ Γ̄(X̃) such that Vỹ ≥ ε and A(ỹ, X̃) = k. This proves the general case.

Remark 2.9. We can also prove NP-hardness of (k−, ε+)-Box for fixed k if we restrict
ourselves to sequences X whose points have pairwise distinct coordinates. Let G and c
be as in the previous proof and let ϕ : [n] × [n] → [n2] be some bijection. Now put, e.g.,

xi
j =







1
2

(

1 + ϕ(i,j)
23n

)

, if {i, j} ∈ E or i = j

ϕ(i,j)
23n , else

It can be verified that there exists a dominating set C ⊆ V of cardinality ≤ c if and only
if there is a (0−, ((1/2)c)+)-box for X = ((xi

j)
d
j=1)

n
i=1. (The full argument can be found in

the appendix.)
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To prove the NP-hardness for the subproblem with k ∈ N fixed, we may use the same
argument as at the end of the proof of Theorem 2.7, but put xn+i

j = ψ(i, j)ε/2k+d for
some bijection ψ : [k] × [d] → [kd] and all i ∈ [k], j ∈ [d].

Thus altogether we showed that for each non-negative integer k the Ṽ k
max-problem is

NP-hard, and that solving the Ṽ k
min-problems for all k ∈ [n] is also NP-hard. In this sense

we proved the conjecture of Thiémard.

3 Calculating the Star Discrepancy is NP-hard

In this section we prove that the calculation of the star discrepancy for a given n-point se-
quence is an NP-hard problem. Let us first introduce the corresponding decision problem.

Decision Problem Star Discrepancy

Instance: Natural numbers n, d ∈ N, sequence X = (xi)n
i=1 in [0, 1)d, ε ∈ (0, 1]

Question: Is d∗∞(X) ≥ ε?

We will prove NP-hardness for the subproblem where n = d, the coding length of
each xi

j is bounded by O(n) for all i, j, and the coding length of ε is bounded by O(n2).
(Note that for well-distributed sequences of points the star discrepancy tends to 0 if n
approaches infinity, thus it is natural to allow the coding length of ε to increase with n.)

Theorem 3.1. Star Discrepancy is NP-complete.

Proof. Let us pose the question of the decision problem Star Discrepancy in a different
but (due to identity (1)) equivalent way: Is there a y ∈ Γ̄(X) such that Vy−

1
n
A(y,X) ≥ ε

or 1
n
Ā(y,X) − Vy ≥ ε? From this formulation it is easy to see that Star Discrepancy

is in NP.
As in the proof of Theorem 2.7, we will establish the NP-hardness of Star Discrepancy

by reduction of Dominating Set. For this purpose, let G = (V,E), k ∈ [|V |] be an
instance of Dominating Set. Again, we may assume V = [n] for n = |V |. We may
further assume without loss of generality n ≥ 2 and k < n. Put

xi
j =

{

1 − 1
2n+1 , if {i, j} ∈ E or i = j

0 , else

We will prove for X = (xi)n
i=1 that we have d∗∞(X) ≥ (1− 1

2n+1 )
k if and only if there exists

a dominating set C ⊂ V for G with |C| ≤ k.
From the proof of Theorem 2.7 we know that the existence of such a dominating set C

is equivalent to the existence of a y ∈ Γ̄(X) satisfying Vy ≥ (1 − 1
2n+1 )

k and A(y,X) = 0.
Since the existence of such a y implies d∗∞(X) ≥ V 0

max ≥ (1 − 1
2n+1 )

k, it remains only to
show that d∗∞(X) ≥ (1 − 1

2n+1 )
k implies d∗∞(X) = V 0

max.

In view of identity (4) we verify first l
n
− V l

min <
(

1 − 1
2n+1

)k
for all l ∈ [n]: Whenever

l ∈ [n−1], we get with Bernoulli’s inequality 1+νa ≤ (1+a)ν for all a ∈ [−1,∞), ν ∈ N,

11



the estimates
l

n
− V l

min ≤
n− 1

n
< 1 −

k

2n+1
≤

(

1 −
1

2n+1

)k

.

For the volume V n
min of the smallest box containing all n points of the sequence X we have

V n
min =

(

1 −
1

2n+1

)n

.

Bernoulli’s inequality gives us

1 <
(

1 −
n

2n+1

)

+

(

1 −
k

2n+1

)

≤

(

1 −
1

2n+1

)n

+

(

1 −
1

2n+1

)k

.

Hence,

1 − V n
min = 1 −

(

1 −
1

2n+1

)n

<

(

1 −
1

2n+1

)k

.

Now we verify V l
max−

l
n
<

(

1 − 1
2n+1

)k
for all l ∈ [n−1]: Let l ∈ [n−1]. Each half-open

box [0, y) containing no more than n− 1 points satisfies

Vy ≤ 1 −
1

2n+1
.

Since we assumed n ≥ 2, we have therefore

V l
max −

l

n
≤

(

1 −
1

2n+1

)

−
1

n
.

From
(

1 −
1

2n+1

)

−
1

n
<

(

1 −
1

2n+1

)

−
n− 1

2n+1
≤ 1 −

k

2n+1
.

we obtain with the help of Bernoulli’s inequality

V l
max −

l

n
<

(

1 −
1

2n+1

)k

.

Thus, due to (4), we have d∗∞(X) = V 0
max. This completes the proof.

4 Discussion

We proved in the previous section that calculating the star discrepancy is an NP-hard
problem. To what extent does this affect applications for which estimating the discrepancy
is essential?

Recall first that the bad instances we used to establish the NP-hardness of Star

Discrepancy displayed in fact a huge discrepancy—for n approaching infinity their
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star discrepancy tends to the worst possible value 1. It is easily seen that these point
sets are, e.g., no serious candidates for well distributed integration samples and that
their components are not suited to serve as good pseudo random numbers. Hence for
multivariate integration or pseudo random number generation it is not necessary to test
the discrepancy of such pathological point configurations.

So it would be interesting to learn about the complexity of calculating the discrepancy
of more interesting point sets.

A first step may be the study of the following relaxed decision problem: Let α ∈ (0, 1).
We consider instances consisting of natural numbers n, d, a sequence X = (xi)n

i=1 in [0, 1)d,
and an ε ∈ (0, 1]. We ask if d∗∞(X) ≥ ε holds, but do not demand the true answer in the
case that ε ≤ d∗∞(X) ≤ (1+α)ε. That is the answer “Yes” tells us that in fact d∗∞(X) ≥ ε,
but the answer “No” gives us only the secure information that d∗∞(X) ≤ (1 + α)ε. If
ε > (1 + α)−1 (as it is the case for the bad instances in the proof of Theorem 2.7 for
large n), an algorithm could always provide an acceptable answer by saying “No”. (The
definition of the relaxed decision problem is inspired by the concept of relaxed verification
for continuous problems proposed by E. Novak and H. Woźniakowski in [23].)

Studying a relaxed decision problem of this form seems to be of more practical interest
than the more rigid decision problem Star Discrepancy, since pathological sequences
whose discrepancy of the first n points tends to one as n approaches infinity can be easily
handled, and in the applications one is in general not interested in the exact value of the
discrepancy of a given point set but only wants to have relatively good upper and lower
bounds for it. We think that complexity results for such a relaxed decision problem would
be interesting. (Other kinds of complexity results may of course be interesting, too.)

But even if the relaxed decision problem turns out to be infeasible, one may still find
distinguished classes of point configurations being good candidates for the samples one is
looking for in the applications and which allow for a fast evaluation or approximation of
the star discrepancy. A simple example of a class of sets whose star discrepancy can be
efficiently evaluated via (1) are tensor product sets (“grids”) X—here we obviously have
that the cardinality of Γ(X) and Γ̄(X) are of order O(n). Unfortunately, the discrepancy
of these sets is at least of order Ω(n−1/d) in dimension d, which is rather bad.

Finding more suitable classes would be helpful for many applications. For the semi-
construction of low-discrepancy sets of moderate size mentioned in the introduction maybe
certain classes of lattice rules or of subsets of distinguished tensor product sets (see [4])
could be interesting candidates.

5 Appendix

For the sake of completeness we verify in this appendix the unproven statements from
Remark 2.5 and 2.9.

Lemma 5.1. Let G = (V,E), k ∈ [n] with n = |V | be an instance of the problem Bal-

anced Subgraph. We assume V = [n] and put d = n. Let ϕ : [n] × [n] → [n2] be

13



bijective. Put

xi
j =

{ ϕ(i,j)
22nk , if {i, j} ∈ E

1 − ϕ(i,j)
22n , else

For n ≥ 4 there is a balanced subgraph of size k for G if and only if there exists a
(k+, ε−)-box for X = ((xi

j)
d
j=1)

n
i=1, where ε = ( n2

22nk )k(1 − 1
22n )n−k.

Proof. First, assume the existence of I, J ⊆ V such that |I| = |J | = k, I ∩ J = ∅, and
{i, j} ∈ E for all i ∈ I, j ∈ J . Put

yj =
n2

22nk
· 1J(j) +

(

1 −
1

22n

)

· 1V \J (j), j = 1, . . . , n.

Then Vy = ε and Ā(y,X) ≥
∑

i∈I 1[0,y](x
i) = k.

Now let us assume that there exists a y ∈ Γ(X) such that Vy ≤ ε and Ā(y,X) ≥ k.
There must be at least k coordinates j1, ..., jk satisfying

yj ≤
n2

22nk
,

since otherwise

Vy >

(

1

22nk

)k−1 (

1 −
n2

22n

)n−k+1

>

(

n2

22nk

)k (

1 −
1

22n

)n−k

= ε.

Here the second inequality can be easily seen by using the inequality of Bernoulli 1+νa ≤
(1 + a)ν for all a ∈ [−1,∞), ν ∈ N:

(

1 −
n2

22n

)n−k+1

=

(

1 −
n2

2n · 2n

)n−k+1

≥

(

1 −
1

2n

)n−k+1

≥

(

1 −
1

2n

)n

≥ 1 −
n

2n
≥

n

2n
>

( n

2n

)2k

=
1

22nk
· n2k,

which leads to
(

1

22nk

)k−1 (

1 −
n2

22n

)n−k+1

>

(

1

22nk

)k−1

·
1

22nk
· n2k =

(

1

22nk

)k

· n2k =

(

n2

22nk

)k

.

Now finish the proof the same way as the proof of Theorem 2.3.

Lemma 5.2. Let G = (V,E), c ∈ [n] with n = |V | be an instance of Dominating Set.
We may assume V = [n] and put d = n. Let ϕ : [n] × [n] → [n2] be some bijection, and
put

xi
j =







1
2

(

1 + ϕ(i,j)
23n

)

, if {i, j} ∈ E or i = j

ϕ(i,j)
23n , else

Then there exists a dominating set C ⊆ V of cardinality ≤ c if and only if there is a
(0−, ε+)-box for X = ((xi

j)
d
j=1)

n
i=1, where ε = (1/2)c.
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Proof. Let us first assume that there exists a dominating set C ⊆ [n] of cardinality ≤ c.
Put

yj =
1

2
· 1C(j) + 1[n]\C(j), j = 1, . . . , d = n.

Then Vy = (1/2)|C| ≥ (1/2)c. Furthermore, we have for i ∈ C: xi
i > 1/2 and yi = 1/2,

i.e., xi /∈ [0, y). For i ∈ [n] \C there exists a ν ∈ C such that {i, ν} ∈ E. Hence xi
ν > 1/2

and yν = 1/2, implying xi /∈ [0, y). Thus A(y,X) = 0. It is easy to see that now there
exists a y′ ∈ Γ̄(X) such that y′ ≥ y, i.e., Vy′ ≥ Vy, and A(y′, X) = A(y,X) = 0.

Let us now assume that there exists a y ∈ Γ̄(X) such that Vy ≥ (1/2)c andA(y,X) = 0.
Then |{j ∈ [n]; yj ≥ 1/2}| = n. Put C = {i ∈ [n]; yi 6= 1}. We show |C| ≤ c: If c = n,
there is nothing to prove. If c < n, then

Vy =
∏

ν∈C

yν ≤

(

1

2

(

1 +
n2

23n

))|C|

,

and from
(

1

2

(

1 +
n2

23n

))c+1

≤

(

1

2

)c+1 (

1 +
1

2n

)n

<

(

1

2

)c

follows |C| ≤ c. Let i ∈ [n] \ C. Since xi /∈ [0, y), there exists a ν ∈ C such that
xi

ν ≥ yν ≥ 1/2. Thus {i, ν} ∈ E. This shows that C is a dominating set of G.
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[20] J. Matoušek, Geometric Discrepancy, Springer, Berlin, 1999.

[21] H. Niederreiter, Discrepancy and convex programming, Ann. Mat. Pura Appl. 93 (1972) 89–97.

[22] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadel-
phia, 1992.
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